

BEAUTY 2006

CONFERENCE SUMMARY & FUTURE PROSPECTS

Tim Gershon, University of Warwick September 29th 2006

Disclaimer

- Far too many interesting talks and impressive results to cover everything ...
- Sorry if I miss your favourite topic

Beauty 2006: The 11th International Conference on B Physics at Hadron Machines

- Will mostly focus on B physics (not c, cc, т, ...)
- ... will also mention lepton machines!

The Ubiquitous Unitarity Triangle

B Physics Highlights 2006

- Huge amounts of statistics at the B factories
- Enormous numbers of conference papers
 - BaBar 114 http://www-public.slac.stanford.edu/babar/ICHEP06_papers.htm
 - Belle 38 (still increasing) http://belle.kek.jp/conferences/ICHEP2006/
- Yet 2006 is the year of the Tevatron ...

The Golden Mode: $J/\psi K_{s}$, etc

The ambiguity

Tim Gershon, Beauty 2006, September 29th

8

The ambiguity

All three modes point to SM solution

- Qualitative conclusion easy, but
- Quantitatively very difficult!

NIVERSIT

10

To do a really good job need some hard work on hadronic phenonema

- Km S-wave in J/ ψ K*
- contributions to $D*D*K_{s}$ Dalitz plot

LACKER

 $\alpha \equiv$ φ_2 ΠΠ

Different statistical treatments ⇔ surprisingly different answers

Tim Gershon, Beauty 2006, September 29th

BIANCHI, T'JAMPENS

Statistics

Frequentist: probability **about the data** (randomness of measurements), given the model

P(data|model)

[only repeatable events (Sampling Theory)]

Hypothesis testing: given a model, assess the <u>consistency</u> of the data with a particular parameter value \rightarrow 1-CL curve (by varying the parameter value)

Bayesian: probability about the model (degree of belief), given the data

P(model|data) **Q**ikelihood(data,model) × **Prior(model)**

 P(data|model) ≠ P(model|data):
 P (pregnant | female) ~ 3%

 model: Male or Female
 but

 data: pregnant or not pregnant
 P (female | pregnant) >>>3%

 F (female | pregnant)
 EVENTS

 IMPORTANT!
 T'JAMPENS

Sir Francis Bacon

Father of the scientific method: inductive reasoning & hypothesis testing

"Histories make men wise; poets, witty; the mathematics, subtile; natural philosophy, deep; moral, grave; logic and rhetoric, able to contend."

(able to contend ~ contentious)

Tim Gershon, Beauty 2006, September 29th

CASHMORE

$\gamma \equiv \phi_{3}$ — DK methods

- Current best precision from $D \rightarrow K_{s} \pi^{+} \pi^{-}$ (Dalitz method)
- Associated model uncertainty
- Very difficult to reduce without information from CP tagged D mesons (CLEO-c)

Tim Gershon, Beauty 2006, September 29th

TRABELSI, ZUPAN

$\Phi_3 - K_s \pi^+ \pi^-$ model

BABAR hep-ex/0607104 N(BB)=347m

Component	$Re\{a_re^{i\phi_r}\}$	$Im\{a_re^{i\phi_r}\}$	Fit fraction $(\%)$
$K^{*}(892)^{-}$	-1.223 ± 0.011	1.3461 ± 0.0096	58.1
$K_0^*(1430)^-$	-1.698 ± 0.022	-0.576 ± 0.024	6.7
$K_{2}^{*}(1430)^{-}$	-0.834 ± 0.021	0.931 ± 0.022	3.6
$K^{*}(1410)^{-}$	-0.248 ± 0.038	-0.108 ± 0.031	0.1
$K^{*}(1680)^{-}$	-1.285 ± 0.014	0.205 ± 0.013	0.6
$K^{*}(892)^{+}$	0.0997 ± 0.0036	-0.1271 ± 0.0034	0.5
$K_0^*(1430)^+$	-0.027 ± 0.016	-0.076 ± 0.017	0.0
$K_{2}^{*}(1430)^{+}$	0.019 ± 0.017	0.177 ± 0.018	0.1
$\rho(770)$	1	0	21.6
$\omega(782)$	-0.02194 ± 0.00099	0.03942 ± 0.00066	0.7
$f_2(1270)$	-0.699 ± 0.018	0.387 ± 0.018	2.1
$\rho(1450)$	0.253 ± 0.038	0.036 ± 0.055	0.1
Non-resonant	-0.99 ± 0.19	3.82 ± 0.13	8.5
$f_0(980)$	0.4465 ± 0.0057	0.2572 ± 0.0081	6.4
$f_0(1370)$	0.95 ± 0.11	-1.619 ± 0.011	2.0
σ	1.28 ± 0.02	0.273 ± 0.024	7.6
σ'	0.290 ± 0.010	-0.0655 ± 0.0098	0.9

$$\sim$$
390,000 D^{*+} → Dπ⁺ decays (270/fb)
 χ^2 /ndf ~ 1.3

Tim Gershon, Beauty 2006, September 29th

TRABELSI, ZUPAN

2

m² (GeV²/c⁴)

ዔ

0.5

1

1.5

m²_{π+π-} (GeV²/c⁴)

$\gamma \equiv \phi_3 - DK$ methods

- Best approach is to combine many different B & D decays
- New BaBar results with $D \rightarrow K^+ \pi^- \pi^0$
- No signal for suppressed amplitude yet ⇔ r_B smaller than expected?
- Await results on new channels

Tim Gershon, Beauty 2006, September 29th

TRABELSI, XIE, ZITO, ZUPAN

19

"If a man's wit be wandering, let him study the mathematics"

Tim Gershon, Beauty 2006, September 29th

GIBBONS, PAZ

$V_{ub} - Exclusive (B \rightarrow \pi l v)$

Exclusive: |Vub|

Leverage larger data range?

Arnesen, Grínstein, Rothstein, Stewart Becher, Hill

data already constrains ff shape

Lattice statistical uncertainties: correlations clear, coeff's unknown quark mass (chiral) extrapolation procedure)

Combine chiral extrapolation + data fit $|v_{ub}| = normalization!$ preliminary indications (HPQCD ff's) $\sigma_{expt} \oplus \sigma_{latt_{stat}} \approx 5\%$

⇒ once 2 loop pert th'y in hand comparable precision to inclusive

Tim Gershon, Beauty 2006, September 29th

GIBBONS, DAVIES, PAZ

Discovery Mantra

Hadron colliders are discovery machines, lepton colliders are for precision measurements

 $\Delta m_s = 17.77 \pm 0.10(stat.) \pm 0.07(syst.) \text{ ps}^{-1}$ Systematic dominated by the *ct* scale, any other effect very small

What comes next?

- We have measurements (to varying degrees of precision) of all UT sides and angles
- No clear discrepancy with the SM

Success of CKM description

- Why should we improve the precision?
- We still have all the unsolved problems of the SM
 - hierarchy problem \rightarrow TeV scale NP \rightarrow flavour problem
 - baryon asymmetry of the universe
 - neutrino masses
 - 3 quark & lepton generations

Are surprises possible?

- Are there measurements which could have a comparable impact to $K_1 \rightarrow \pi^+\pi^-$?
 - Inconsistent CPV phenomena in (eg.) b→sss
 - New FCNCs
 - Unpolarised photons in (eg.) $b \rightarrow s\gamma$
 - Large CPV in $A_{_{SL}}(B_{_{S}})$ &/or $\phi_{_{S}}$
 - Enhanced v. rare decays, (eg.) $B_{s} \rightarrow \mu\mu$
 - CP violation in charm
 - т lepton flavour violation &/or CP violation

• . .

The FCNC Matrix

CP violation

CP violation has now been seen in

- $K^{0}K^{0}$ mixing ($\epsilon_{_{K}}$)
- interference between s \rightarrow uud and s \rightarrow ddd decay amplitudes (ϵ ')
- interference between B^oB^o mixing and
 - b \rightarrow ccs decay amplitudes (J/ ψ K⁰)
 - b→uud decay amplitudes $(\pi^+\pi^-)$
 - b \rightarrow sss decay amplitudes ($\eta' K^0$)
- interference between b→uud and b→duu decay amplitudes ($\pi^+\pi^-$)
- interference between b→suu and b→uus decay amplitudes (K⁺π⁻) ALL CONSISTENT WITH KM MECHANISM

[Not yet seen in charged particle decays, baryons, leptons, ...]

Hadronic b \rightarrow s penguins

Radiative B decays

Four of Standard Model predictions:

- No tree-level FCNC
- top & W (Z,H) heaviest particles
- weak interactions are V-A
- only one CP violating phase

Can experimentally probe each and all of these

- rates (new NNLL calculation)
- asymmetries
 - direct CP, isospin, forward-backward, time-dependent
- polarization

Tim Gershon, Beauty 2006, September 29th

HURTH, LIN, RICHMAN

A_{FB} in K*I⁺I⁻

One of most interesting hints ... <u>NEED MORE DATA!</u> Inclusive A_{FB} in $X_{s}I^{+}I^{-}$ theoretically (even) cleaner

Tim Gershon, Beauty 2006, September 29th

HURTH, LIN, RICHMAN

THE UNIVERSITY OF WARWICK

CP in B_s mixing

Important measurements:

• $\Delta \Gamma_{s}$, Γ_{s} , ϕ_{s} , A_{sL}^{s} , (Δm_{s})

New prediction: $\Delta\Gamma_s = (0.090 \pm 0.017) \text{ ps}^{-1}$

cf. $\tau_s = (1.461 \pm 0.040)$ ps

Size of $\Delta \Gamma_{c}$ crucially important for <u>untagged</u>

measurements of ϕ_{c} (also possible at Y(5S))

$$\Gamma(B_{s}(t) \rightarrow f) = \mathcal{N}_{f} |A_{f}|^{2} \frac{1 + |\lambda_{f}|^{2}}{2} e^{-\Gamma t} \times \left[\cosh \frac{\Delta \Gamma t}{2} + \mathcal{A}_{CP}^{dir} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma t}{2} + \mathcal{A}_{CP}^{mix} \sin(\Delta m t)\right]$$

$$\Gamma(\overline{B}_{s}(t) \rightarrow f) = \mathcal{N}_{f} |A_{f}|^{2} \frac{1 + |\lambda_{f}|^{2}}{2} (1 + a) e^{-\Gamma t} \times \left[\cosh \frac{\Delta \Gamma t}{2} - \mathcal{A}_{CP}^{dir} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma t}{2} + \mathcal{A}_{CP}^{mix} \sin(\Delta m t)\right].$$

$$\operatorname{NIERSTE, CHEU, BLUSK, CHANDRA, MAGINI}$$

...these are possible **now**!

UNIVERSITY

NIERSTE, CHEU, BLUSK, CHANDRA, MAGINI

Tim Gershon, Beauty 2006, September 29th

39

The Excitement Mounts

- We are reaching the culmination of a long-running saga
- Many books have been written, films have been made
- The journey has not been without thrills and spills
- Millions of people worldwide are eagerly awaiting the outcome

Tim Gershon, Beauty 2006, September 29th

LHC preparation

I will not attempt to summarise details from several excellent status reports

- Please refer to slides of
- Burckhart, Eerola, Buchmuller, Schilling, Garrido, Corti, Kirk, Rodrigues, Ruiz

and relevant Tevatron experience in talks of

Annovi, Bauer, Moulik, and others

Take home message:

Prospects for B physics at the LHC are very exciting but much hard work lies ahead!

Motivation for Super B Factory

- How to beat theoretical (hadronic) uncertainties?
 - Measure ratios, asymmetries, etc.
 - Exploit flavour symmetries (isospin, U-spin, SU(3))
 - these approaches key to LHC(b) program
 - Avoid hadrons in the final state
 - neutrinos ← impossible in hadronic environment
 - photons ← difficult in hadronic environment
 - charged leptons

- e, μ , τ \leftarrow e difficult, τ impossible

Use inclusive final states

• X_s, X_d

 $\leftarrow \text{ impossible in hadronic environment}$

Tim Gershon, Beauty 2006, September 29th

BEVAN

physics/0603219 Nucl.Phys.A 771, 8 (2006)

Richard Dalitz 1925-2006

Not nearly enough time to discuss all applications of the Dalitz analysis technique Even a small selection enough to demonstrate the profound usefulness of the method

Will continue to throw light on both strong and weak interactions, and perhaps new physics, into the LHC era, and beyond

Thanks to the Organisers

Andy Carslaw Sue Geddes (Conference Secretary) Pete Gronbech Neville Harnew (Local Chair) Jim Libby Jonas Rademacker Guy Wilkinson

Closing thought

THE END

"Discretion in speech is more than eloquence."

Unitarity Triangle

Convenient method to illustrate (dis-)agreement $\bar{\eta}$ of observables with CKM prediction

KM Prediction

The ambiguity – $J/\psi K^*$

A.Snyder & H.Quinn, PRD 48 (1993) 2139

 $\pi^+\pi^-\pi^0$

$\alpha \equiv \phi_2 - \pi^+ \pi^- \pi^0$ Dalitz plot analysis

 $ho^+\pi^-$

 B^0

$$A(B^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}A(\rho^{+}\pi^{-}) + f_{-}A(\rho^{-}\pi^{+}) + f_{0}A(\rho^{0}\pi^{0})$$
$$\widetilde{A}(\overline{B}^{0} \to \pi^{+}\pi^{-}\pi^{0}) = f_{+}\widetilde{A}(\rho^{+}\pi^{-}) + f_{-}\widetilde{A}(\rho^{-}\pi^{+}) + f_{0}\widetilde{A}(\rho^{0}\pi^{0})$$

- Time-dependent Dalitz-plot analysis assuming isospin simmetry.
 - 26 coefficients of the bilinear form factor terms occurring in the decay rate are measured with a UML fit.
 - Physically relevant quantities are derived from subsequent fits to these coefficients.

Interference provides information on strong phase difference

Tim Gershon, Beauty 2006, September 29th

BIANCHI, ZUPAN, ROBBE

A.Snyder & H.Quinn, PRD 48 (1993) 2139

THE UNIVERSITY OF WARWICK

$\alpha \equiv \phi_2 - \pi^+ \pi^- \pi^0$ Dalitz plot analysis

Tim Gershon, Beauty 2006, September 29th

	$\pi^+\pi$	π^0 I para	neters	HFAG ICHEP 2006 PRELIMINABY
: · · · ·	BaBar		:	-0.03 ± 0.06 ± 0.02
	Belle			$0.02 \pm 0.09 \pm 0.06$
	Average	4		-0.01 ± 0.05
	BaBar	-		$-0.03 \pm 0.10 \pm 0.03$
<u> </u>	Belle			$0.11 \pm 0.11 \pm 0.05$
	Average	÷		0.05 ± 0.08
	BaBar			$0.04 \pm 0.10 \pm 0.02$
_+	Belle	- 👬		$\text{-0.03} \pm 0.11 \pm 0.06$
	Average			-0.01 ± 0.08
*	BaBar	-õ		$-1.90 \pm 1.10 \pm 0.10$
<u> </u>	*Belle	<u>A.</u>		$\text{-1.76} \pm 2.42 \pm 1.31$
	Average			-1.18 ± 0.95
	BaBar	<u> </u>		- 0.10 ± 1 .90 ± 0.30
	Belle -	– L		<mark>- 1.62k± 2.65</mark> ± 1.23-
	Average		8	0.43 ± 1.57
, <u>≞</u> , +0 +1	BaBar +	<u> </u>	- R R	$-0.10 \pm 1.10 \pm 0.30$
	Belle		- Children	0.00 ± 2.06 ± 1.15
	Average	T *	- <u>-</u>	0.14 ± 0.99
	BaBar -		5	$0.20 \pm 1.10 \pm 0.40$
	Belle	L L	ĥ	$-1 \pm 5 \pm 2.41 \pm 1.12$
	Average	X	8 <u>7</u>	0.16 ± 1.05
5.0	BaBar	G	<u></u>	0.70 ± 1.00 ± 0.30
· <u></u>	Belle		<u> </u>	-2.58 ± 1.72 ± 1.33
	Average	*	<u>- 78</u>	0.12 ± 0.91
	Balla		2 *	$-0.92 \pm 0.91 \pm 0.40$
<u> </u>		*	<u> </u>	$-0.65 \pm 1.63 \pm 1.49$
	Average	*	- -	0.27 ± 0.87
-2	-1	0	1	2

BIANCHI

DCPV in 3 body B decay

- Dalitz analysis → measure hadronic parameters
- Search for DCPV in $B^+ \rightarrow K^+ \pi^+ \pi^-$

Luminosity trends

Tim Gershon, Beauty 2006, September 29th

Asymmetric B Factories

PEPII at SLAC 9.0 GeV e^{-} on 3.1 GeV e^{+}

KEKB at KEK 8.0 GeV e^{-} on 3.5 GeV e^{+}

