BEAUTY 2006

CONFERENCE SUMMARY
 \& FUTURE PROSPECTS

Tim Gershon, University of Warwick September $29^{\text {th }} 2006$

Disclaimer

- Far too many interesting talks and impressive results to cover everything ...
- Sorry if I miss your favourite topic

Beauty 2006: The $11^{\text {th }}$ International Conference on B Physics at Hadron Machines

- Will mostly focus on B physics (not c, cc, т, ...)
-... will also mention lepton machines!

The Ubiquitous Unitarity Triangle

B Physics Highlights 2006

- Huge amounts of statistics at the B factories
- Enormous numbers of conference papers
- BaBar 114
http://www-public.slac.stanford.edu/babar/ICHEP06_papers.htm
- Belle 38 (still increasing)
http://belle.kek.jp/conferences/ICHEP2006/
- Yet 2006 is the year of the Tevatron ...

Atoworld! (© K.Peach)

Tim Gershon, Beauty 2006, September $29^{\text {th }}$
NB. Not all luminosity is on $\mathrm{Y}(4 \mathrm{~S})$!

The Golden Mode: $\mathrm{J} / \Psi \mathrm{K}_{\mathrm{s}}$, etc

BELLE hep-ex/0608039 N(BB)=532m

Tim Gershon, Beauty 2006, September $29^{\text {th }}$

BABAR hep-ex/0607107 N(BB)=348m

LACKER

The Golden Mode: $\mathrm{J} / \Psi \mathrm{K}_{\mathrm{s}}$, etc

	$\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right) \xrightarrow{\text { HFAG }}$		$07 \mathrm{NBBE}=348 \mathrm{~m}$		
	BaBar				
${ }_{\text {a }}^{3}$		0.675 ± 0.026			
	$2 \quad 1 \quad 0 \quad 1{ }^{2}{ }^{2}{ }^{2}{ }^{3}$				
Cersho		LACKER			

The ambiguity

The ambiguity - D*D*K

$$
\begin{equation*}
f_{ \pm}(\Delta t) \propto \mathrm{e}^{-|\Delta t| / \tau_{B^{\circ}}}\left\{(1 \mp \Delta \omega) \pm(1-2 \omega) \times\left[\eta_{y} \frac{J_{c}}{J_{0}} \cos \left(\Delta m_{d} \Delta t\right)-\left(\frac{2 J_{s 1}}{J_{0}} \sin 2 \beta+\eta_{y} \frac{2 J_{s 2}}{J_{0}} \cos 2 \beta\right) \sin \left(\Delta m_{d} \Delta t\right)\right]\right\}, \tag{4}
\end{equation*}
$$

η_{y} (Dalitz half-plane) +1) -1

$$
\frac{J_{c}}{J_{0}}=0.76 \pm 0.18(\text { stat }) \pm 0.07(\text { syst })
$$

$\frac{2 J_{s 1}}{I} \sin 2 \beta=0.10 \pm 0.24$ (stat) ± 0.06 (syst)
$\frac{2 J_{s 2}}{J_{0}} \cos 2 \beta=0.38 \pm 0.24$ (stat) ± 0.05 (syst)
>0 from theory, but ...

- structure in D*D*?
- structure in D*K ?
theoretical re-examination desirablé
IIm Gershon, Beauty 2006, September 29"

The ambiguity

All three modes point to SM solution .

- Qualitative conclusion easy, but
- Quantitatively very difficult!

To do a really good job need some hard work on hadronic phenonema

- Km S-wave in J/ ψ K*
- contributions to $\mathrm{D}^{*} \mathrm{D}^{*} \mathrm{~K}_{\mathrm{s}}$ Dalitz plot
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \Pi^{+} \Pi^{\text {m }}$ model

These \& very similar questions reoccur

$\alpha \equiv \varphi_{2}-\Pi \Pi$

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

$\alpha \equiv \varphi_{2}-\Pi \Pi$

BaBar confirm Belle's observation of large CP violation in $B \rightarrow \pi^{+} \pi$ Additionally Belle observe large direct CP violation, not confirmed (nor refuted) by BaBar

Tim Gershon, Beauty 2006
$\alpha \equiv \varphi_{2}-\Pi \pi$ Isospin analysis

Different statistical treatments \Leftrightarrow surprisingly different answers

Tim Gershon, Beauty 2006, September $29^{\text {th }}$

Statistics

Frequentist: probability about the data (randomness of measurements), given the model

$$
\begin{array}{ll}
\text { P(data|model) } & \begin{array}{l}
\text { [only repeatable events } \\
\text { (Sampling Theory)] }
\end{array}
\end{array}
$$

Hypothesis testing: given a model, assess the consistency of the data with a particular parameter value $\boldsymbol{\rightarrow} 1$-CL curve (by varying the parameter value)

Bayesian: probability about the model (degree of belief), given the data

$$
\text { P(model|data) ikelihood(data,model) } \times \text { Prior(model) }
$$

P(data|model) $\neq \mathrm{P}($ model|data $): \quad \mathrm{P}($ pregnant \mid female $) \sim 3 \%$
model: Male or Female data: pregnant or not pregnant
but
P (female | pregnant) >>>3\%

OTHER "PRIOR" EVENTS IMPORTANT!

Sir Francis Bacon

Father of the scientific method: inductive reasoning \& hypothesis testing
"Histories make men wise; poets, witty; the mathematics, subtile; natural philosophy, deep; moral, grave;
logic and rhetoric, able to contend."

(able to contend \sim contentious)
$\alpha \equiv \varphi_{2}-\rho \rho$ Isospin analysis

THE UNIVERSITY OF WARWICK

$$
\begin{gathered}
\mathrm{BR}\left(\mathrm{~B}^{0} \rightarrow \rho^{+} \rho^{-}\right)=23.1^{+3.1}-3.2 \\
\mathrm{BR}\left(\mathrm{~B}^{+} \rightarrow \rho^{+} \rho^{0}\right)=18.2 \pm 3.0
\end{gathered}
$$

$$
\mathrm{BR}\left(\mathrm{~B}^{0} \rightarrow \rho^{0} \rho^{0}\right)=1.2 \pm 0.5
$$

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$
$\operatorname{ACP}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)$ NOT MEASURED YET

$Y \equiv \varphi_{3}$ — DK methods

- Current best precision from $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \Pi^{+} \Pi^{-}$(Dalitz method)
- Associated model uncertainty
- Very difficult to reduce without information from CP tagged D mesons (CLEO-c)

Contours do not include model uncertainties

$\mathrm{Y} \equiv \varphi_{3}-\mathrm{K}_{\mathrm{s}} \Pi^{+} \pi^{\prime}$ model

-

BABAR hep-ex/0607104 N(BB)=347m

Component	$\operatorname{Re}\left\{a_{r} e^{i \phi_{r}}\right\}$	$\operatorname{Im}\left\{a_{r} e^{i \phi_{r}}\right\}$	Fit fraction (\%)
$K^{*}(892)^{-}$	-1.223 ± 0.011	1.3461 ± 0.0096	58.1
$K_{0}^{*}(1430)^{-}$	-1.698 ± 0.022	-0.576 ± 0.024	6.7
$K_{2}^{*}(1430)^{-}$	-0.834 ± 0.021	0.931 ± 0.022	3.6
$K^{*}(1410)^{-}$	-0.248 ± 0.038	-0.108 ± 0.031	0.1
$K^{*}(1680)^{-}$	-1.285 ± 0.014	0.205 ± 0.013	0.6
$K^{*}(892)^{+}$	0.0997 ± 0.0036	-0.1271 ± 0.0034	0.5
$K_{0}^{*}(1430)^{+}$	-0.027 ± 0.016	-0.076 ± 0.017	0.0
$K_{2}^{*}(1430)^{+}$	0.019 ± 0.017	0.177 ± 0.018	0.1
$\rho(770)$	1	0	21.6
$\omega(782)$	-0.02194 ± 0.00099	0.03942 ± 0.00066	0.7
$f_{2}(1270)$	-0.699 ± 0.018	0.387 ± 0.018	2.1
$\rho(1450)$	0.253 ± 0.038	0.036 ± 0.055	0.1
Non-resonant	-0.99 ± 0.19	3.82 ± 0.13	8.5
$f_{0}(980)$	0.4465 ± 0.0057	0.2572 ± 0.0081	6.4
$f_{0}(1370)$	0.95 ± 0.11	-1.619 ± 0.011	2.0
σ	1.28 ± 0.02	0.273 ± 0.024	7.6
σ^{\prime}	0.290 ± 0.010	-0.0655 ± 0.0098	0.9

~390,000 $\mathrm{D}^{*+} \rightarrow \mathrm{D} \pi^{+}$decays $(270 / \mathrm{fb}$)

$$
x^{2} / \text { ndf } \sim 1.3
$$

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

$Y \equiv \varphi_{3}$ ——DK methods

- Best approach is to combine many different B \& D decays
- New BaBar results with D $\rightarrow K^{+} \pi^{\circ}{ }^{0}$
- No signal for suppressed amplitude yet $\Leftrightarrow r_{B}$ smaller than expected?
- Await results on new channels

Tim Gershon, Beauty 2006, September $29^{\text {th }}$ TRABELSI, XIE, ZITO, ZUPAN

$\mathrm{V}_{\mathrm{cb}} \& \mathrm{~V}_{\mathrm{ub}}$

"If a man's wit be wandering, let him study the mathematics"

V_{cb} - Inclusive

(statistical errors only)

$\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(41.93 \pm 0.65_{\mathrm{fit}} \pm 0.48{ }_{\alpha_{\mathrm{s}}} \pm 0.63_{\mathrm{th}}\right) \times 10^{-3}$
Error: $\quad\left|\mathbf{V}_{\mathrm{cb}}\right|=\mathbf{(4 1 . 5} \pm \mathbf{0 . 5} \mathbf{f i t}^{\mathbf{4}} \mathbf{0 . 2) \times 1 \mathbf { 1 0 } ^ { - 3 }}$
1-2\%

V_{cb} - Inclusive

Global fit Kinetic scheme expansion - all experiments (Buchmuller, Flaecher PRD73:073008 (2006)) Belle new measurements missing

Inclusive modes:

$\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(41.96 \pm 0.23_{\mathrm{exp}} \pm 0.35_{\mathrm{HQE}} \pm 0.59_{\text {「SL }}\right) 10^{-3}$

V_{ub} - Inclusive

Inclusive |Nub

BLIP

CLEO (endpoint)
$4.09 \pm 0.48 \pm 0.36$
BELLE (endpoint)
$4.82 \pm 0.45 \pm 0.30$
BABAR (endpoint)
$4.39 \pm 0.25 \pm 0.39$
GABAR ($\mathrm{E}_{\mathrm{o}} \mathrm{q}^{2}$)
$4.57 \pm 0.31 \pm 0.41$
BELLE m_{x}
$4.06 \pm 0.27 \pm 0.24$
BELLE sim. ann. $\left(\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}\right)$
$437 \pm 0.46 \pm 0.29$
GABAR $\left(\mathrm{m}_{\mathrm{x}}, \mathrm{q}^{2}\right)$
$4.75 \pm 0.35 \pm 0.32$
Average $+/-\exp +/-$ (mb, theory)
$4.49 \pm 0.19 \pm 0.27$
x^{2} /dor $=6.1 / 6(\mathrm{CL}=40.7 \%)$
OPE-HQET-SCET(BLNP)
Phys Rev.D72:073006, 0005
m_{b} input from $\mathrm{b}-\mathrm{c}$ lv and $\mathrm{b} \rightarrow \mathrm{s} \gamma$ moments

$\left|V_{u b}\right|=(4.49 \pm 0.19 \pm 0.27) \times 10^{-3}$
-CAL. $=41 \%$
-7.3 \% uncertainty
$\pm 2.2_{\mathrm{stat}} \pm 2.8_{\mathrm{exp}} \pm 1.9_{\mathrm{b} \rightarrow \mathrm{c}} \pm 1.6_{\mathrm{b} \rightarrow \mathrm{u}}$
$\pm 4.2 \mathrm{HQE} \pm 3.8$ sub SF $\pm 1.9 \mathrm{WA}$ more exp'tal scrutiny

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

$V_{u b}$ - Exclusive $(B \rightarrow \pi / v)$

Exclusive: $\left|\mathrm{V}_{\mathrm{ub}}\right|$

BaBar: 12 bins!

Leverage larger data range?

Arnesen, Grinstein, Rothstein, Stewart Becher, Hill
data already constrains ff shape
Lattice statistical uncertainties: correlations clear, coeff's unknown quark mass (chiral) extrapolation procedure)
combine chiral extrapolation + data fit
$\left|V_{\text {ub }}\right|=$ normalization!
preliminary indications (HPQCD ff's)
$\sigma_{\text {expt }} \oplus \sigma_{\text {latt_stat }} \widetilde{<} 5 \%$
\Rightarrow once 2 loop pert th' y in hand comparable precision to inclusive

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

Discovery Mantra

Hadron colliders are discovery machines, lepton colliders are for precision measurements

$>5 \sigma$

Limits
$+\quad[17.56,17.96] \mathrm{ps}^{-1} @ 90 \%$ C.L.

+ [16.51, 18.00]ps ${ }^{-1}$ @ 95\% C.L.
Consistent with SM

$$
+18.3_{-1.5}^{+6.5} \mathrm{ps}^{-1} \quad \text { EPS } 2005
$$

Agrees with $1^{\text {st }}$ measurement

$$
\begin{array}{r}
+17.31 \underset{-0.18}{+0.33} \pm 0.07 \mathrm{ps}^{-1} \\
\text { PRL 97, } 062003(2006)
\end{array}
$$

$$
\Delta m_{s}=17.77 \pm 0.10(\text { stat } .) \pm 0.07(\text { syst. }) \mathrm{ps}^{-1}
$$

Systematic dominated by the ct scale, any other effect very small

$\Delta m_{s} \& \Delta m_{d}$

$\Delta \mathrm{m}_{\mathrm{s}}=(17.77 \pm 0.10 \pm 0.07) \mathrm{ps}^{-1}$

$\Delta m_{d}=(0.507 \pm 0.005)$ ps $^{-1}$ (PDG 2006)

$$
\begin{equation*}
|\mathrm{Vtd} / \mathrm{Vts}|=0.2060 \pm 0.0007(\exp)^{+0.0081}{ }_{-0.0060} \tag{th}
\end{equation*}
$$

Δm_{s} - The end of the line?

Yes, this is very pretty

... but why not aim for this?
Obviously, same precision not necessary yet Δm_{s} poster child for B physics at hadron machines
Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

What comes next?

- We have measurements (to varying degrees of precision) of all UT sides and angles
- No clear discrepancy with the SM

Success of CKM description

-Why should we improve the precision?

- We still have all the unsolved problems of the SM
- hierarchy problem \rightarrow TeV scale NP \rightarrow flavour problem
- baryon asymmetry of the universe
- neutrino masses
- 3 quark \& lepton generations

Are surprises possible?

- Are there measurements which could have a comparable impact to $K_{L} \rightarrow \Pi^{+} \pi^{-}$?
- Inconsistent CPV phenomena in (eg.) b \rightarrow sss
- New FCNCs
- Unpolarised photons in (eg.) b \rightarrow sY
- Large CPV in $\mathrm{A}_{\mathrm{sL}}\left(\mathrm{B}_{\mathrm{s}}\right) \& /$ or φ_{s}
- Enhanced v. rare decays, (eg.) $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$
- CP violation in charm
- т lepton flavour violation \&/or CP violation

The FCNC Matrix

$\bigcirc=$	$\begin{array}{r} \text {. error } \leqslant 10 \% \\ \text { p. error } \leqslant 10 \% \end{array}$	FLAVOUR COUPLING:			$\begin{aligned} & \frac{1}{1} \\ & \frac{0}{3} \\ & 0 \end{aligned}$	
=	. error $\sim 30 \%$	$\mathrm{b} \rightarrow \mathrm{s}\left(\sim \lambda^{2}\right)$	$\mathrm{b} \rightarrow \mathrm{d}\left(\sim \lambda^{3}\right)$	$s \rightarrow \mathrm{~d}\left(\sim \lambda^{5}\right)$		
[10	$\Delta \mathrm{F}=2$ box	$\begin{aligned} & \Delta \mathrm{M}_{\mathrm{Bs}} \\ & \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \psi \phi\right) \end{aligned}$	$\Delta \mathrm{M}_{\mathrm{B} \cdot}$	ΔM_{K}. ε_{K}	$\begin{aligned} & \frac{\bar{n}}{2} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	-
E	$\begin{gathered} \Delta \mathrm{F}=1 \\ \text { 4-quark box } \end{gathered}$	$B_{d} \rightarrow \phi \mathrm{~K} \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{K} \pi$,	$\mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi r, \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{p} \pi, \ldots$	$\varepsilon^{\prime} / \varepsilon, \mathrm{K} \rightarrow 3 \pi$, ..	$\frac{\vdots}{9}$	O
$\begin{aligned} & \sqrt[5]{2} \\ & v \end{aligned}$	gluon penguin		$\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} \gamma, \mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi \tau, \ldots$	$\varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} t^{+} T$,	$\begin{aligned} & \text { in } \\ & \stackrel{3}{7} \end{aligned}$	
\sum_{0}^{1}	$\begin{gathered} \gamma \\ \text { penguin } \end{gathered}$	$\begin{aligned} & B_{d} \rightarrow X_{\mathrm{s}} I^{\prime} t \rightarrow B_{\mathrm{d}}^{\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma} \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{~K} \\ & \mathrm{~B}_{\mathrm{d}} \rightarrow K \pi, \ldots, \end{aligned}$	$\left\{\begin{array}{l} \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} l^{t} \tau, \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} \gamma \\ \mathrm{~B}_{\mathrm{d}} \rightarrow \pi \pi \tau, \ldots \end{array}\right.$	$\varepsilon / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} \Gamma \ldots$		$\stackrel{\sim}{0}$
	$\begin{gathered} \mathrm{Z}^{0} \\ \text { penguin } \end{gathered}$	$\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{s}} I^{\prime} \mid\right) \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ $\mathrm{B}_{\mathrm{d}} \rightarrow \phi \mathrm{~K}, \mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{~K} \pi,$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{X}_{\mathrm{d}} t^{\prime} r, \mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu \\ & \mathrm{~B}_{\mathrm{d} \rightarrow \pi} \rightarrow \pi, \ldots \end{aligned}$	$\begin{aligned} & \varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} l^{+} l, \\ & \mathrm{~K} \rightarrow \pi \mathrm{vv}, \mathrm{~K} \rightarrow \mu \mu, \end{aligned}$		
		$\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$	$\mathrm{B}_{\mathrm{d}} \rightarrow \mu \mu$	$\mathrm{K}_{\mathrm{L}, \mathrm{S}} \rightarrow \mu \mu$		

A Goldish Mode: $\eta^{\prime} K_{s}$, etc

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

BABAR hep-ex/0609052 N(BB)=384m

CP violation

CP violation has now been seen in

- $K^{0} K^{0}$ mixing $\left(\epsilon_{k}\right)$
- interference between $s \rightarrow$ uud and $s \rightarrow$ ddd decay amplitudes $\left(\epsilon^{\prime}\right)$
- interference between $B^{0} B^{0}$ mixing and
- $b \rightarrow c c s$ decay amplitudes $\left(J / \psi K^{0}\right)$
-b \rightarrow uud decay amplitudes ($\Pi^{+} \Pi^{-}$)
- b \rightarrow sss decay amplitudes ($\eta^{\prime} K^{0}$)
- interference between $b \rightarrow$ uud and $b \rightarrow$ duu decay amplitudes ($\Pi^{+} \pi$)
- interference between $b \rightarrow$ suu and $b \rightarrow$ uus decay amplitudes $\left(K^{+} \pi\right)$ ALL CONSISTENT WITH KM MECHANISM
[Not yet seen in charged particle decays, baryons, leptons, ...]

Hadronic $b \rightarrow s$ penguins

$0.62_{-0.30}^{+0.25} \pm 0.02$
$0.11 \pm 0.46 \pm 0.07$
"The root of all superstition is that men observe when a thing hits,

IIm Gershon, Beauty 2006, September 29
\qquad WE NEED MORE DATA
(s)
Cleo
BaBar
Belle
CDF 355pb-1

Radiative B decays

hep-ex/0607071 (preliminary, sub. to PRL)
Four of Standard Model predictions:

- No tree-level FCNC
- top \& W (Z,H) heaviest particles
- weak interactions are V-A
- only one CP violating phase

Can experimentally probe each and all of these

- rates (new NNLL calculation)
- asymmetries
- direct CP, isospin, forward-backward, time-dependent
- polarization

$A_{\text {ib }}$ in $\mathrm{K}^{*} \mathrm{I}^{+}{ }^{-}$

BaBar, PRD 73, 092001 (2006)

Belle, PRL 96, 251801 (2006)

One of most interesting hints ... NEED MORE DATA!
Inclusive $A_{F B}$ in $\mathrm{X}_{\mathrm{s}}{ }^{+} \mid$l theoretically (even) cleaner

$C P$ in B_{s} mixing

Important measurements:

- $\Delta \Gamma_{s}, \Gamma_{s}, \varphi_{s}, A_{s L}{ }^{s},\left(\Delta m_{s}\right)$

New prediction: $\Delta \Gamma_{s}=(0.090 \pm 0.017) \mathrm{ps}^{-1}$

$$
\mathrm{cf} . \mathrm{T}_{\mathrm{s}}=(1.461 \pm 0.040) \mathrm{ps}
$$

Size of $\Delta \Gamma_{\mathrm{s}}$ crucially important for untagged
measurements of φ_{c} (also possible at $\mathrm{Y}(5 \mathrm{~S})$)

$$
\begin{aligned}
\Gamma\left(B_{s}(t) \rightarrow f\right)= & \mathcal{N}_{f}\left|A_{f}\right|^{2} \frac{1+\left|\lambda_{f}\right|^{2}}{2} e^{-\Gamma t} \\
& \times\left[\cosh \frac{\Delta \Gamma t}{2}+\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos (\Delta m t)+\mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma t}{2}+\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} \sin (\Delta m t)\right] \\
\Gamma\left(\bar{B}_{s}(t) \rightarrow f\right)= & \mathcal{N}_{f}\left|A_{f}\right|^{2} \frac{1+\left|\lambda_{f}\right|^{2}}{2}(1+a) e^{-\Gamma t} \\
& \times\left[\cosh \frac{\Delta \Gamma t}{2}-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos (\Delta m t)+\mathcal{A}_{\left.\Delta \Gamma \sinh \frac{\Delta \Gamma t}{2}-\mathcal{A}_{\mathrm{CP}}^{\text {mix }} \sin (\Delta m t)\right]}\right.
\end{aligned}
$$

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$
NIERSTE, CHEU, BLUSK, CHANDRA, MAGINI

CP in B_{s} mixing

..these are possible now!

> NIERSTE, CHEU, BLUSK, CHANDRA, MAGINI

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$

$B_{s} \rightarrow \mu^{+} \mu$

"God hangs the greatest weights Likelihood Ratio (LLA u pon the smallest wires"

$$
\begin{array}{ll}
\mathrm{B}\left(\mathrm{~B}_{\mathrm{s}} \mu \mu\right)<1.010^{-7} \\
\mathrm{~B}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu\right)<3.010^{-8}
\end{array} \quad \text { Also } \mathrm{IV}(\mathrm{Y}), \| \mathrm{ll}, \mathrm{TT}
$$

Tim Gershon, Beauty 2006, September $29^{\text {th }}$

The Excitement Mounts

- We are reaching the culmination of a long-running saga
- Many books have been written, films have been made
- The journey has not been without thrills and spills
- Millions of people worldwide are eagerly awaiting the outcome

LHC preparation

I will not attempt to summarise details from several excellent status reports
Please refer to slides of

- Burckhart, Eerola, Buchmuller, Schilling, Garrido, Corti, Kirk, Rodrigues, Ruiz
and relevant Tevatron experience in talks of
- Annovi, Bauer, Moulik, and others

Take home message:
Prospects for B physics at the LHC are very exciting but much hard work lies ahead!

LHC(b) Key Measurements

Very rough and incomplete lists

- $\alpha\left(\Pi^{+} \Pi^{-}\right)$
- Y (DK)
- Y (hh' + U-spin)
- $\Delta \Gamma_{s}$

```
\(1^{\text {st }}\) year or so ...
```

- $\mathrm{A}_{\mathrm{SL}}{ }^{\mathrm{s}}$
- $\varphi_{s}\left(B_{s} \rightarrow J / \Psi \varphi\right.$, etc. $)$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi Y$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$
- $\mathrm{B} \rightarrow \mathrm{K}^{(*)} I, \mathrm{~B}_{\mathrm{s}} \rightarrow \varphi \|$
- $\alpha\left(\Pi^{+} \Pi^{\circ} \Pi^{0} \& \rho^{0} \rho^{0}\right)$
- Y (DK)
- $Y\left(D_{s} K\right)$
- $A_{S L}{ }^{s} \quad \ldots$ and later
- $\varphi_{\mathrm{s}}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \varphi\right.$, etc. $)$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \varphi$, etc.
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi Y$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$
- $B \rightarrow K^{(*)} I I, B_{s} \rightarrow \varphi \|$

ROBBE, CARBONE, XIE, SMIZANSKA, DE CAPUA, MAGINI, MUHEIM

Motivation for Super B Factory

- How to beat theoretical (hadronic) uncertainties?
- Measure ratios, asymmetries, etc.
- Exploit flavour symmetries (isospin, U-spin, SU(3))
- these approaches key to LHC(b) program
- Avoid hadrons in the final state
- neutrinos \leftarrow impossible in hadronic environment
- photons \leftarrow difficult in hadronic environment
- charged leptons
$-\mathrm{e}, \mu, \mathrm{T} \quad \leftarrow \mathrm{e}$ difficult, T impossible
- Use inclusive final states
- $X_{s}, X_{d} \quad \leftarrow$ impossible in hadronic environment

Richard Dalitz 1925-2006

Not nearly enough time to discuss all applications of the Dalitz analysis technique
Even a small selection enough to demonstrate the profound usefulness of the method

Will continue to throw light on both strong and weak interactions, and perhaps new physics, into the LHC era, and beyond

Thanks to the Organisers

Andy Carslaw
Sue Geddes (Conference Secretary)
Pete Gronbech
Neville Harnew (Local Chair)
Jim Libby
Jonas Rademacker
Guy Wilkinson

Closing thought

"Reading maketh a full man, conference a ready man, and writing an exact man."

THE END

"Discretion in speech is more than eloquence."

Unitarity Triangle

Convenient method to illustrate (dis-)agreement $\bar{\eta} \quad$ of observables with CKM prediction

KM Prediction

The ambiguity - J/ $\Psi \mathrm{K}^{*}$

$$
J / \psi \mathbf{K}^{*} \cos (2 \beta) \equiv \cos \left(2 \phi_{1}\right) \underset{\substack{\text { HF AGEP 2006 } \\ \text { IRELIMINARY }}}{\text { HF }}
$$

The ambiguity - $\mathrm{D}^{* *} \mathrm{~h}^{0}$

$$
\mathbf{D}^{(*)} \mathbf{h}^{0} \cos (2 \beta) \equiv \cos \left(2 \phi_{1}\right) \underset{\substack{\text { ICHEP AOO6 } \\ \text { PRELIMINARY }}}{\text { HFAG }}
$$

Also constraints on $\sin (2 \beta)$ [testing $\arg (\mathrm{b} \rightarrow \mathrm{cud})=\arg (\mathrm{b} \rightarrow \mathrm{ccs})$]

- measurements with $\mathrm{D} \rightarrow \mathrm{CP}$ eigenstates will improve this test

BaBar confirm Belle's observation of large CP violation in $B \rightarrow \pi^{+} \pi$ Additionally Belle observe large direct CP violation, not confirmed (nor refuted) by BaBar $\Delta t(\mathrm{ps})$

Tim Gershon, Beauty 2006, September 29 ${ }^{\text {th }}$
$\alpha \equiv \varphi_{2}-\pi \Pi$ Isospin analysis

Input from HFAG - rare decays

$$
\begin{array}{l|c}
\operatorname{BR}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=5.2 \pm 0.2 & \\
B R\left(B^{+} \rightarrow \pi^{+} \Pi^{0}\right)=5.7 \pm 0.4 & \text { ACP }\left(B^{+} \rightarrow \pi^{+} \Pi^{0}\right)=0.04 \pm 0.05 \\
B R\left(B^{0} \rightarrow \pi^{0} \Pi^{0}\right)=1.3 \pm 0.2 & A C P\left(B^{0} \rightarrow \pi^{0} \Pi^{0}\right)=0.36^{+0.33}-0.31
\end{array}
$$

$$
\begin{aligned}
& A\left(B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=f_{+} A\left(\rho^{+} \pi^{-}\right)+f_{-} A\left(\rho^{-} \pi^{+}\right)+f_{0} A\left(\rho^{0} \pi^{0}\right) \\
& \tilde{A}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=f_{+} \tilde{A}\left(\rho^{+} \pi^{-}\right)+f_{-} \tilde{A}\left(\rho^{-} \pi^{+}\right)+f_{0} \tilde{A}\left(\rho^{0} \pi^{0}\right)
\end{aligned}
$$

$\mathrm{a} \equiv \varphi_{2}-\Pi^{+} \Pi^{\circ} \Pi^{0}$ Dalitz plot analysis

$-L_{1}$

$\pi^{+} \pi^{-} \pi^{0}$ I parameters $\underset{\substack{\text { ICHFP } 2006}}{\mathrm{HFAG}}$
 ICHEP 2006

Belle constraint improved using "isospin pentagon"

DCPV in 3 body B decay

- Dalitz analysis \rightarrow measure hadronic parameters
- Search for DCPV in $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$ Belle, hep-ex/0512066

Dalitz analysis \rightarrow
Clear asymmetry in the ρ region enhanced sensitivity to CPV

$$
A_{c P}\left(\rho K^{+}\right)=\left(30 \pm 11 \pm 2_{-4}^{+11}\right) \% \quad 3.9 \sigma \text { significance }
$$

first evidence for CPV in any charged particle!

Luminosity trends

Asymmetric B Factories

PEPII at SLAC
9.0 $\mathrm{GeV} \mathrm{e}^{-}$on 3.1 $\mathrm{GeV} \mathrm{e}^{+}$

KEKB at KEK 8.0 GeV e on $3.5 \mathrm{GeV} \mathrm{e}^{+}$

Tim Gershon, Beauty 2006, September $29^{\text {th }}$

BaBar Detector

Belle Detector

Aerogel Cherenkov

 cnt.
Central Drift
 Chamber
 $+\mathrm{He} / \mathrm{miql}_{6}$ cell

Si vtx. det.

- 3 lyr. DSSD

2\#dyr. since summer
μ / K_{L} detection
14/15 lyr. RPC+Fe
Tim Gershon, Beauty 2006, September 29 $^{\text {th }}$

"Unified and Unbiased Attack on New Physics"

ν experiments, $g_{\mu}-2, \mu \rightarrow e \gamma, \mathrm{EDM}, \cdots$
v mass and mixing CPV and LFV

Super B factory, LHCb, K experiments ...

