On the Super Flavour Factory Target \mathcal{L}_{int}

or "SuperB with L>50/ab"

partially based on T.G. & A.Soni, hep-ph/0607230, to appear in J.Phys.G

Tim Gershon (Warwick) BNM2006 II

Translations

19th December 2006

Shown in talk of M.Yamauchi (given by Y.Sakai), CKM2006, Nagoya, Dec. 15th 2006

Upgradeable

Main physics channels

- Precision CKM metrology
- Search for inconsistent CPV phenomena in (eg.) b \rightarrow sss
- New FCNCs
- Search for right-handed currents in (eg.) $b \rightarrow s\gamma$
- Inconsistent flavour-mixing (Δm , $\Delta \Gamma$, " ϵ ") in B_d or D^0
- Enhanced v. rare decays, (eg.) $b \rightarrow svv$, $B_{d} \rightarrow \mu\mu$
- Direct CP violation in charm
- т lepton flavour violation &/or CP violation
- •

Operating Energy

- I will stick to the physics at the Y(4S)
- Clearly, much interesting physics at other centre-of-mass energies
- Higher luminosities will help!

- $\beta \equiv \phi_1 \ (b \rightarrow ccs)$
 - J/ψ K⁰
 - systematics limited by ~ 2/ab (Yu.Nakahama @ CKM2006)
 - theory error << limiting experimental systematics
 - LHCb can do it anyway
 - J/ψ K^{*0}
 - Belle [PRL 95 (2005) 091601] N(BB)=275M
 - $sin(2\phi_1) = 0.24 \pm 0.31 \pm 0.05$ $cos(2\phi_1) = 0.56 \pm 0.79 \pm 0.11$
 - $\sigma[\cos(2\phi_1)]_{stat} \sim 0.06$ with 50/ab; systematics???
 - D^(*)D^(*)K⁰
 - hard to quantity theoretical errors

- $\beta \equiv \phi_1 \ (b \rightarrow cud)$
 - Dh^o
 - $\sigma[sin(2\phi_1)]_{stat} \sim 0.04$, $\sigma[cos(2\phi_1)]_{stat} \sim 0.05$ with 50/ab; systematics???
 - $D_{_{CP}}h^0$ will help for $\sigma[sin(2\phi_1)]_{_{stat}}$
 - need to control model error (same problem as for $\gamma \equiv \phi_3$)
 - theory error << limiting experimental systematics
 - LHCb could do $D_{CP}\pi^+\pi^-$ (challenging)

Experiment	$sin(2\beta) \equiv sin(2\phi_1)$	$\cos(2\beta) \equiv \cos(2\phi_1)$	[λ]	Correlations	Reference
BaBar N(BB)=311m	$0.45 \pm 0.36 \pm 0.05 \pm 0.07$	$0.54 \pm 0.54 \pm 0.08 \pm 0.18$	$\begin{array}{r} 0.975 \ ^{+0.093}{0.085} \pm \\ 0.012 \pm 0.002 \end{array}$	0.07 stat between sin(2β) & cos(2β)	hep-ex/0607105
Belle N(BB)=386m	0.78 ± 0.44 ± 0.22	1.87 +0.40 -0.53 +0.22 -0.32			PRL 97, 081801 (2006)
Average	0.57 ± 0.30 $\chi^2 = 0.3/1 \text{ dof (CL=}0.59 \Rightarrow 0.5\sigma)$	1.16 ± 0.42 $\chi^2 = 2.5/1 \text{ dof (CL=0.12} \Rightarrow 1.6\sigma)$		uncorrelated averages	HFAG
		<i>x</i> , , , , , , , , , , , , , , , , , , ,			

19th December 2006

BNM2006 II

- $\alpha \equiv \phi_2$
 - ππ, ρρ (Gronau-London; isospin)
 - theory error few degrees
 - requires modes with multiple $\pi^{0}s$ LHCb not competitive
 - πππ (ρπ) (Snyder-Quinn)
 - isospin only used for neutral penguin smaller theory error
 - only one π^{0} LHCb can do it (challenging)
 - $a_1 \pi$ & others
 - errors associated to SU(3) may be small when |P/T| is small

(see, eg. J.Zupan @ CKM2006)

• all charged tracks in the final state – potentially good for LHCb

- $\bullet \, \gamma \equiv \phi_{_3}$
 - DK (Gronau-London-Wyler; Atwood-Dunietz-Soni; others ...)
 - theory error completely negligible
 - most channels with one or less neutrals good for LHCb

(see M.Patel @ CKM2006)

• LHCb can also do $B \rightarrow D K$ (SFF cannot)

	B mode	D mode	σ(γ)
	B+→DK+	$K\pi + KK/\pi\pi + K3\pi$	5º - 15º
	B+→D*K+	Κπ	Under study
	B+→DK+	$K_s \pi \pi$	<u>8</u> ₀
	B+→DK+	ΚΚππ	15 ⁰
LHCb: DK channels combined sensitivity	B+→DK+	Κπππ	Under study
~ 5° from 2/fb (1 nominal year)	B⁰→DK ^{*0}	$K\pi + KK + \pi\pi$	7º - 10º
19th December 2006 BNM	B⁰→DK ^{*0}	K _s ππ	Under study
	B _s →D _s K	ΚΚπ	13º

- |V_{ub}|
 - already theory dominated
 - do not expect any significant contribution from LHCb
 - more data from SFF will help, but improvements will be slow and hard

B $\rightarrow \pi \mathbf{I} \mathbf{v}$ Form Factor and $|V_{ub}|$

T.Onogi, CKM2006 WG2 Summary talk

j		stat+syst errors				
	QCD calculation	χ^2	$Prob(\chi^2)$ (%)			
	ISGW2 [7]	34.1	0.07			
	Ball-Zwicky [6]	13.0	37.2			
	FNAL $[4]$	12.5	41.0			
	HPQCD [3]	10.2	60.2			

		q^2 (GeV ²)	$\Delta \zeta \ (\mathrm{ps}^{-1})$	$ V_{ub} \ (10^{-3})$					
	HPQCD $[3]$	> 16	1.46 ± 0.35	$4.1 \pm 0.2 \pm 0.2 \stackrel{+0.6}{_{-0.4}}$					
BNM2	FNAL $[4]$	> 16	1.83 ± 0.50	$3.7 \pm 0.2 \pm 0.2 \stackrel{+0.6}{_{-0.4}}$					
	LCSR [5]	< 16	5.44 ± 1.43	$3.6 \pm 0.1 \pm 0.1 \stackrel{+0.6}{_{-0.4}}$					
	ISGW2 [6]	0-26.4	9.6 ± 4.8	$3.2 \pm 0.1 \pm 0.1 \stackrel{+1.3}{_{-0.6}}$					

- Precision measurements of the UT undoubtedly extremely important
- LHCb can do the angles
- Improvement in $|V_{\mu\nu}|$ limited by theoretical uncertainties
- SFF can contribute and make improvements in all measurements

not enough to motivate a major upgrade

• Does not tell us what luminosity to aim for!

BNM2006 II

J.Libby, Daresbury, April 2005

Super Flavour Factory & LHCb Upgrade

Warning: can only be used as a guideline

Guesstimates based on

- 10/fb LHCb
- 50/ab Super B Factory

COMPLEMENTARITY

LHCb good for

- Bs decays & oscillations
- All charged track final states
- Super Flavour Factory best for
 - Inclusive measurements
 - Modes with neutrals

Key Measurements (Physics Case for SBF in 1 Slide)

Hadronic b→s Penguins

- Cleanest modes are ϕK^0 , $\eta' K^0 \& K K K^0_{s s_{\phi} K^0 S_{CP} vs C_{CP}}$
 - theory errors ~ few degrees

Hadronic b→s Penguins

- Naïve scaling of current experimental errors
 - N(BB) required to reach theory error:
 - ~ 10^{10} for $\eta' K^0$
 - ~ 5 x 10¹⁰ for ϕK^0
 - ~ 5 x 10^{10} for $K_{s}K_{s}K^{0}$
 - Beyond naïve scaling?
 - time-dependent Dalitz plot analysis of K⁺K⁻K⁰ (BaBar; hep-ex/0607112)
 - larger $f_{\Omega}K^{0}$ contribution under $\phi K^{0} \Rightarrow$ error on S *in*creases
 - Improvements in theory uncertainties?
 - likely to be data driven
 - eg. SU(3) relations, understanding η' form factor (B $\rightarrow \eta' lv$)
 - unlikely to go below 1% level

- Key to NP sensitivity : measure the photon polarization
 - Many approaches proposed
 - time-dependent asymmetry in $K^*\gamma$, $K_{s}\pi^{0}\gamma$, etc.

only approach attempted to date!

- interferences between resonances in $K\pi\pi\gamma$
- conversions in $K^*\gamma \to K^*e^+e^-$
- study of radiative $\Lambda_{_{\!\!\!h}}$ decays
- angular distributions in $K\phi\gamma$, etc.

see talk of A.Soni in this workshop

- Naïve scaling of current experimental errors
 - Assuming theory uncertainties of few % due to higher order corrections

see talk of A.Soni in this workshop

- N(BB) required to reach theory error:
 - ~ 5 x 10¹⁰ for $K_{s}\pi^{0}\gamma$

- only mode for which measurements currently exist
- Improvements in theory uncertainties?
 - in this case there is a data driven method to reduce the error
 - \Rightarrow study dependence of polarization on hadronic final state
 - eg. S($K_s \pi^0 \gamma$) vs. m($K_s \pi^0$), S($K_s \pi^0 \gamma$) with S($K_s \eta \gamma$), etc.
 - \Rightarrow much larger data samples necessary

- Observables sensitive to new physics fall into two categories:
 - (CKM favoured) x (helicity suppressed)
 - eg. $S(B_d \rightarrow K_s \pi^0 \gamma) \sim sin(2\beta) \times (2m_s/m_b) \sim sin(2\phi_1) \times (2m_s/m_b)$
 - SM uncertainty few %
 - requires new RH current but <u>does not require new CP phase</u>
 - (CKM suppressed) x (helicity suppressed)
 - eg. $S(B_s \rightarrow \phi \gamma) \sim sin(\phi_s) \times (2m_s/m_b)$
 - tiny SM uncertainty (extremely clean null test)
 - requires new RH current and new CP phase

 Observables sensitive to new physics fall into two categories:

(CKM favoured) x (helicity suppressed)

• eg.
$$S(B_{d} - K_{s} n^{0} \gamma) \sim sin(2\beta) \times (2m_{s}/m_{b}) \sim sin(2\phi_{1}) \times (2m_{s}/m_{b})$$

SM uncertainty few %
requires new RH current but does not require new CP phase

- (CKM suppressed) x (helicity suppressed)
 - eg. $S(B_s \rightarrow \phi \gamma) \sim sin(\phi_s) \times (2m_s/m_b)$
 - tiny SM uncertainty (extremely clean
 - requires new RH current and new CP phase

19th December 2006

Essential to reduce the SM error

Can be done with data

Requires > 50/ab

A Word on b \rightarrow d Penguins

- To get required N(BB) for $b \rightarrow d$ penguins
 - 1) Take b→s number and scale: N(BB)[b→s] / $|V_{td}/V_{ts}|^2$
 - 2) Scale from existing measurements, eg. $\sigma[S(K_sK_s)]_{stat} \sim 0.07 @ 50/ab$
 - 3) Guesstimate based on measurements, $\sigma[S(\rho\gamma)]_{stat} \sim 0.07 @ 50/ab$

theory uncertainties due to c- and u- penguin contributions

Experiment	S _{CP} (K _S K _S)				C _{CP} (K _S K _S)				Correlation		Reference	
BaBar N(BB)=350m	-1.28 +0.80 -0.73 +0.11 -0.16				$-0.40 \pm 0.41 \pm 0.06$;	-0.32	hep-ex/0608036		
You selected the following table or plot entries:												
RPP#	RPP# Mode PDG2		006 Avg. H		BABAR		Belle		CLE	EO	D New Avg.	
$226 \qquad \rho^0 \gamma \qquad <$			0.4	$0.77^{+0.21}_{-0.19} \pm 0.07$ 1.25			1.25^{+0}_{-9}	0.37 + 0.07 0.33 - 0.06	< 1	7	$0.91\substack{+0.19\\-0.18}$	
References for the data: PDG2006: WM. Yao <i>et al.</i> , I. Phys. Lett. G 33, 1 (2006).			~40 events in 350M BB									
Babar Collaboration <u>hep-ex/0607099</u> Belle Collaboration <u>Phys. Rev. Lett. 96, 221601</u> CLEO Collaboration <u>Phys. Rev. Lett. 94, 221601</u>		1601 (2006) 282 (2000)				~20 events in 3			BOM BB			
CLEO Conaboration	1 <u>FHys. Rev. Lett. 04, 3</u> 2	203 (2000)				~100 events/ab \Rightarrow 5000 events in				s in 50/ab		
19th December 2006			BNM2006 II							21		

More Penguins

- $b \rightarrow sll$ also very important probe of new physics
 - eg. forward-backward asymmetry in $B \rightarrow K^* I^+ I^-$

... but this is a very good channel for LHCb

- LHCb cannot do fuly inclusive modes: $X_s I^+I^-$, $X_s \gamma$ also $X_{s+d} \gamma$, etc.
 - theoretically cleaner
 - requires full reconstruction
 - much larger data samples, typically > 100/ab

see also talk by M.Nakao

• Can also study inclusive hadronic final states

Lepton Flavour Violation

- Importance recently emphasised by many people
- No SM background $\Leftrightarrow \ensuremath{\mathcal{L}_{\mathrm{int}}}$ as high as possible

Leptonic Decays

• Assume $B \rightarrow \tau v$ will hit limits by 50/ab 300 • |V_{ub}| • f_R (lattice) Belle #12+100 BB (05:50 C.L.) 250 experimental systematics see talk by T.lijima 🖗 200 • $B \rightarrow \mu v \& B \rightarrow ev$ require more data , ™ 120 Some uncertainties can be reduced or removed using ratios • $B \rightarrow D^{(*)} \tau v$ provides additional observables and requires larger \mathcal{L}_{int} Tevatron Run I 100 Excluded (95% C.L.) • $B \rightarrow \mu \mu \& B \rightarrow ee$ will be done by LHCb LEP Excluded (95% C.L.) B→TT only at SFF, requires huge L_{int} 50 80 20 40 60 100 0 tan β

Summary

- Of the main channels that motivate a Super Flavour Factory
 - CPV in hadronic b \rightarrow s penguins hits theory limit at about 50/ab
 - almost everything else will not be limited

better to aim for a rounder number?

- Of the interesting channels
 - most do not require time-dependent analysis
 - many require full reconstruction
 - \Rightarrow smaller energy asymmetry (but with good vertexing)
 - \Rightarrow hermetic detector

The FCNC Matrix

