Methods to determine weak phases from charmless Dalitz plots an experimental perspective

Tim Gershon $2^{\text {nd }}$ B2TIP meeting; Krakow

29 April 2015

A potential treasure trove

- There is a lot of discussion about discrepancies in flavour physics that may stay or may go with more data
- However, there are (at least three) that will certainly stay
- The πK puzzle
- CP violation in $B \rightarrow 3 h$
- The $\mathrm{B} \rightarrow \mathrm{VV}$ polarisation puzzle
- These can, of course, all be argued away (not explained) by QCD, but let's hope to do better

Contents

- $\mathrm{B} \rightarrow \pi \pi \pi$
- $\mathrm{B} \rightarrow \mathrm{K} \pi \pi$

Snyder-Quinn method for α

Measuring $C P$ asymmetry in $B \rightarrow \rho \pi$ decays without ambiguities
Arthur E. Snyder and Helen R. Quinn
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (Received 24 February 1993)

- Methods to measure α exploit time-dependent $C P$ violation in B_{d} decays via $b \rightarrow u$ transitions (eg. $B_{d} \rightarrow \pi^{+} \pi^{-}$)

PRL 65 (1990) 3381

- Penguin "pollution" can be subtracted using Gronau-London isospin triangles built from $\mathrm{A}\left(\pi^{+} \pi^{-}\right), \mathrm{A}\left(\pi^{+} \pi^{0}\right), \mathrm{A}\left(\pi^{0} \pi^{0}\right)$

- Expect discrete ambiguities in the solution for α
- Ambiguities can be resolved if you measure both real and ${ }^{\mid \pi /}$ imaginary parts of $\lambda=(q / p)(\bar{A} / A)$
- ie. measure $\cos (2 \alpha)$ as well as $\sin (2 \alpha)$

Toy model for $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plot

27 parameters renamed "U" and "l" in commonly used notation

Contributions only from $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}$and $\rho^{0} \pi^{0}$
PRD 48 (1993) 2139
TABLE I. The time and kinematic dependence of contributions to the distribution of events.

Time dependence	Kinematic form	Amplitude measured	α dependence (all $P_{i}=0$)
1	$f^{+} f^{+*}$	$S_{3} S_{3}^{*}+\bar{S}_{4} \bar{S}_{4}^{*}$	1
$\cos (\Delta M t)$	$f^{+} f^{+*}$	$S_{3} S_{3}^{*}-\bar{S}_{4} \bar{S}_{4}^{*}$	1
$\sin (\Delta M t)$	$f^{+} f^{+*}$	$\operatorname{Im}\left(q \bar{S}_{4} S_{3}^{*}\right)$	$\sin (2 \alpha)$
1	$f^{-} f^{-*}$	$S_{4} S_{4}^{*}+\bar{S}_{3} \bar{S}_{3}^{*}$	1
$\cos (\Delta M t)$	$f^{-} f^{-*}$	$S_{4} S_{4}^{*}-\bar{S}_{3} \bar{S}_{3}^{*}$	1
$\sin (\Delta M t)$	$f^{-} f^{-*}$	$\operatorname{Im}\left(q \bar{S}_{3} S_{4}^{*}\right)$	$\sin (2 \alpha)$
1	$f^{0} f^{0 *}$	$\left(S_{5} S_{5}^{*}+\bar{S}_{5} \bar{S}_{5}^{*}\right) / 4$	1
$\cos (\Delta M t)$	$f^{0} f^{0}$	$\left(S_{5} S_{5}^{*}-\bar{S}_{5} \bar{S}_{5}^{*}\right) / 4$	1
$\sin (\Delta M t)$	$f^{0} f^{0 *}$	$\operatorname{Im}\left(q \bar{S}_{5} S_{5}^{*}\right) / 4$	$\sin (2 \alpha)$
1	$\operatorname{Re}\left(f^{+} f^{-*}\right)$	$\operatorname{Re}\left(S_{3} S_{4}^{*}+\bar{S}_{4} \bar{S}_{3}^{*}\right)$	1
$\cos (\Delta M t)$	$\operatorname{Re}\left(f^{+} f^{-*}\right)$	$\operatorname{Re}\left(S_{3} S_{4}^{*}-\bar{S}_{4} \bar{S}_{3}^{*}\right)$	1
$\sin (\Delta M t)$	$\operatorname{Re}\left(f^{+} f^{-*}\right)$	$\operatorname{Im}\left(q \bar{S}_{4} S_{4}^{*}-q^{*} S_{3} \bar{S}_{3}^{*}\right)$	$\sin (2 \alpha)$
1	$\operatorname{Im}\left(f^{+} f^{-*}\right)$	$\operatorname{Im}\left(S_{3} S_{4}^{*}+\bar{S}_{4} \bar{S}_{3}^{*}\right)$	1
$\cos (\Delta M t)$	$\operatorname{Im}\left(f^{+} f^{-*}\right)$	$\operatorname{Im}\left(S_{3} S_{4}^{*}-\bar{S}_{4} \bar{S}_{3}^{*}\right)$	1
$\sin (\Delta M t)$	$\operatorname{Im}\left(f^{+} f^{-*}\right)$	$\operatorname{Re}\left(q \bar{S}_{4} S_{4}^{*}-q^{*} S_{3} \bar{S}_{3}^{*}\right)$	$\cos (2 \alpha)$
1	$\operatorname{Re}\left(f^{+} f^{0 *}\right)$	$\operatorname{Re}\left(S_{3} S_{5}^{*}+\bar{S}_{4} \bar{S}_{5}^{*}\right) / 2$	1
$\cos (\Delta M t)$	$\operatorname{Re}\left(f^{+} f^{0 *}\right)$	$\operatorname{Re}\left(S_{3} S_{5}^{*}-\bar{S}_{4} \bar{S}_{5}^{*}\right) / 2$	1
$\sin (\Delta M t)$	$\operatorname{Re}\left(f^{+} f^{0 *}\right)$	$\operatorname{Im}\left(q \bar{S}_{4} S_{5}^{*}+q^{*} S_{3} \bar{S}_{5}^{*}\right) / 2$	$\sin (2 \alpha)$
1	$\operatorname{Im}\left(f^{+} f^{0 *}\right)$	$\operatorname{Im}\left(S_{3} S_{5}^{*}+\bar{S}_{4} \bar{S}_{5}^{*}\right) / 2$	1
$\cos (\Delta M t)$	$\operatorname{Im}\left(f^{+} f^{0 *}\right)$	$\operatorname{Im}\left(S_{3} S_{5}^{*}-\bar{S}_{4} \bar{S}_{5}^{*}\right) / 2$	1
$\sin (\Delta M t)$	$\operatorname{Im}\left(f^{+} f^{0 *}\right)$	$\operatorname{Re}\left(q \bar{S}_{4} S_{5}^{*}-q^{*} S_{3} \bar{S}_{5}^{*}\right) / 2$	$\cos (2 \alpha)$
1	$\operatorname{Re}\left(f^{-} f^{0 *}\right)$	$\operatorname{Re}\left(S_{4} S_{5}^{*}+\bar{S}_{3} \bar{S}_{5}^{*}\right) / 2$	1
$\cos (\Delta M t)$	$\operatorname{Re}\left(f^{-} f^{0 *}\right)$	$\operatorname{Re}\left(S_{4} S_{5}^{*}-\bar{S}_{3} \bar{S}_{5}^{*}\right) / 2$	1
$\sin (\Delta M t)$	$\operatorname{Re}\left(f^{-} f^{0 *}\right)$	$\operatorname{Im}\left(q \bar{S}_{3} S_{5}^{*}-q^{*} S_{4} \bar{S}_{5}^{*}\right)$	$\sin (2 \alpha)$
1	$\operatorname{Im}\left(f^{-} f^{0 *}\right)$	$\operatorname{Im}\left(S_{4} S_{5}^{*}+\bar{S}_{3} \bar{S}_{5}^{*}\right) / 2$	1
$\cos (\Delta M t)$	$\operatorname{Im}\left(f^{-} f^{0 *}\right)$	$\operatorname{Im}\left(S_{4} S_{5}^{*}-\bar{S}_{3} \bar{S}_{5}^{*}\right) / 2$	1
$\underline{\underline{\sin (\Delta M t)}}$	$\operatorname{Im}\left(f^{-} f^{0 *}\right)$	$\operatorname{Re}\left(q \bar{S}_{3} S_{5}^{*}-q^{*} S_{4} \bar{S}_{5}^{*}\right) / 2$	$\cos (2 \alpha)$

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Results from
- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003

V/B $\leftrightarrows 3 h C P V$

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Results from
- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Results from
- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003

FIG. 10: Proper time distributions of good tag ($r>0.5$) regions for $f_{\text {tag }}=B^{0}$ (upper) and $f_{\text {tag }}=\bar{B}^{0}$ (middle upper), in $\rho^{+} \pi^{-}$(left), $\rho^{-} \pi^{+}$(middle), $\rho^{0} \pi^{0}$ (right) enhanced regions, where solid (red), dotted, and dashed curves correspond to signal, continuum, and $B \bar{B}$ PDFs. The middle lower and lower plots show the background-subtracted asymmetries in the good tag $(r>0.5)$ and poor tag $(r<0.5)$ regions, respectively. The significant asymmetry in the $\rho^{-} \pi^{+}$enhanced region (middle) corresponds to a non-zero value of U_{-}^{-}.

$$
\rho^{+} \pi^{-} \quad \rho^{-} \pi^{+} \quad \rho^{0} \pi^{0}
$$

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Results from
- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003

"the extraction of α with our
Contour from $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$ only
current sample size is not robust"

Comment on $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- It is not clear (to me) whether the current sensitivity to α can be extrapolated
- are we just measuring fluctuations?
- It has been observed that $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is close to pure CP-even
- maybe there is a fundamental reason for this
- maybe it is relevant also for $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$?
- if so, what is the impact on the Snyder-Quinn method to measure α ?

$\mathrm{B} \rightarrow \mathrm{K} \pi \pi$

- PRD 74 (2006) 051301, PRD 75 (2007) 014002

$$
\mathcal{A}_{\frac{3}{2}}\left(K^{*} \pi\right)=\frac{1}{\sqrt{2}} \mathcal{A}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)+\mathcal{A}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right) .
$$

- Construct pure $I=3 / 2$ amplitude for B and \bar{B}
- Dalitz plot analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$
- Relative phase between B and \bar{B} gives y
- Dalitz plot analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$
- corrections due to electroweak penguins

BaBar PRD83 (2011) 112010

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$

Isospin triangles drawn to scale of experimental results but without uncertainties

Cancellation makes pure $\mathrm{I}=3 / 2$ amplitude small - impossible to determine its relative phase

Method may work better for $\mathrm{\rho K}$ amplitudes - but current uncertainty is large

The $\mathrm{B} \rightarrow \mathrm{K} \pi$ puzzle

- QCD may also be a cause of apparently anomalous CP violation effects

$$
\Delta A_{\mathrm{CP}}(\mathrm{~K} \pi)=\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{-}\right)-\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{0}\right) \neq 0 \quad 10 \text { HFAG averages }
$$

- Look for similar effects in $\mathrm{K}^{*} \pi$ \& $\mathrm{K} \rho$ systems

$$
\begin{aligned}
& \text { Interesting pattern } \\
& \text { emerging? Need } \\
& \text { new results from } \\
& \text { Belle \& LHCb }
\end{aligned}
$$

-0.23 ± 0.06	-0.39 ± 0.13
e.g. BaBar PR D83	e.g. BaBar
(2011) 112010	arXiv:1501.00705
$+0.20 \pm 0.11$	$+0.37 \pm 0.11$
e.g. BaBar PR D83	BaBar PR D78 (2008)
(2011) 112010 012004 \& Belle PRL 96 $(2006) 251803$	

$$
-0.39 \pm 0.13
$$

e.g. BaBar
arXiv:1501.00705

$$
+0.37 \pm 0.11
$$

BaBar PR D78 (2008)
(2006) 251803

$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K} \pi \pi$?

- Same method works, in principle, for $\mathrm{Bs}^{0} \rightarrow \mathrm{~K} \pi \pi$
- Yields available are, however, small

Observation of $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$

$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{KK} \pi$?

- Similar method works, in principle, for $B_{s}{ }^{0} \rightarrow K K \pi$
- Reasonable yields available, but tagged time-dependent analysis necessary

Observation of $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{K}^{+-} \pi^{-+}$

$B \rightarrow 3 h$

- Experimentally, the most accessible decays are those with three final state tracks
- There is much literature on the possibility to measure weak phases through interference between charmless and charmonium contributions (however, not clean theoretically)
- Possibilities to use U-spin to relate decays
- model-independent approaches
- how to relate points in two different Dalitz plots?

$C P$ violation in $B \rightarrow 3 h$

PRL 111 (2013) 101801

PRL 112 (2014) 011801

Tim Gershon
Large CPV effects not associated with resonances ${ }^{18}$
QCD effects to be understood

Summary

- Much physics potential in charmless hadronic decays ...
- and in three-body decays in particular
- Need smart methods to overcome hadronic uncertainties
- These often involve analyses of >1 Dalitz plot
- much work needed!
- Some ideas for model-independent analyses
- good DP modelling is nevertheless essential
- Many modes where sensitivity of Belle II is expected to surpass that of LHCb (but don't be complacent)

