Methods to determine weak phases from charmless Dalitz plots – an experimental perspective

Tim Gershon 2nd B2TIP meeting; Krakow

29 April 2015

A potential treasure trove

- There is a lot of discussion about discrepancies in flavour physics that may stay or may go with more data
- However, there are (at least three) that will certainly stay
 - The π K puzzle
 - CP violation in B → 3h
 - The B → VV polarisation puzzle
- These can, of course, all be argued away (not explained) by QCD, but let's hope to do better

Contents

- $B \rightarrow \pi\pi\pi$
- $B \rightarrow K\pi\pi$

Snyder-Quinn method for a

PHYSICAL REVIEW D

VOLUME 48, NUMBER 5

1 SEPTEMBER 1993

PRD 48 (1993) 2139

Measuring *CP* asymmetry in $B \rightarrow \rho \pi$ decays without ambiguities

Arthur E. Snyder and Helen R. Quinn

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

(Received 24 February 1993)

- Methods to measure α exploit time-dependent CP violation in B_d decays via b \rightarrow u transitions (eg. B_d \rightarrow $\pi^+\pi^-$)

 PRL 65 (1990) 3381
- Penguin "pollution" can be subtracted using Gronau-London isospin triangles built from A($\pi^+\pi^-$), A($\pi^+\pi^0$), A($\pi^0\pi^0$) $\frac{1}{\sqrt{2}}$ IA... Λ
- Expect discrete ambiguities in the solution for α
- Ambiguities can be resolved if you measure both real and imaginary parts of $\lambda = (q/p)(\overline{A}/A)$
 - ie. measure $cos(2\alpha)$ as well as $sin(2\alpha)$

 $\frac{1}{\sqrt{2}}|A_{+-}|$

Toy model for $B \to \pi^+\pi^-\pi^0$ Dalitz plot

Contributions only from $\rho^+\pi^-$, $\rho^-\pi^+$ and $\rho^0\pi^0$

TABLE I. The time and kinematic dependence of contributions to the distribution of events.

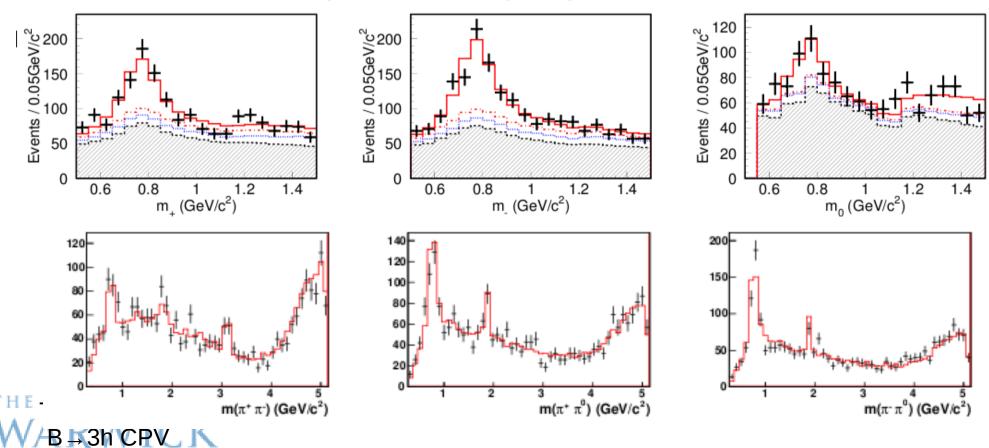
PRD 48 (1993) 2139

Time dependence	Kinematic form	Amplitude measured	α dependence (all P	$P_i = 0$
1	$f^{+}f^{+*}$	$S_3S_3^* + \bar{S}_4\bar{S}_4^*$	1	
$\cos(\Delta Mt)$	f+f+*	$S_3S_3^* - \bar{S}_4\bar{S}_4^*$	1	
$\sin(\Delta Mt)$	$f^{+}f^{+*}$	$\operatorname{Im}(q\overline{S}_4S_3^*)$	$\sin(2\alpha)$	
1	f^-f^{-*}	$S_4S_4^* + \bar{S}_3\bar{S}_3^*$	1	
$\cos(\Delta Mt)$	f^-f^{-*}	$S_4S_4^* - \bar{S}_3\bar{S}_3^*$	1	_
$\sin(\Delta Mt)$	f^-f^{-*}	$\operatorname{Im}(q\overline{S}_3S_4^*)$	$\sin(2\alpha)$	0
1	$f^0 f^{0*}$	$(S_5S_5^* + \overline{S}_5\overline{S}_5^*)/4$	1	(
$cos(\Delta Mt)$	f^0f^{0*}	$(S_5S_5^* - \bar{S}_5\bar{S}_5^*)/4$	1	
$sin(\Delta Mt)$	$f^0 f^{0*}$	$\operatorname{Im}(q\overline{S}_5S_5^*)/4$	$\sin(2\alpha)$	
1	$\operatorname{Re}(f^+f^{-*})$	$\operatorname{Re}(S_3S_4^* + \overline{S}_4\overline{S}_3^*)$	1	
$\cos(\Delta Mt)$	$\operatorname{Re}(f^+f^{-*})$	$\operatorname{Re}(S_3S_4^* - \overline{S}_4\overline{S}_3^*)$	1	
$\sin(\Delta Mt)$	$\operatorname{Re}(f^+f^{-*})$	$Im(q\bar{S}_4S_4^* - q^*S_3\bar{S}_3^*)$	$\sin(2\alpha)$	
1	$\operatorname{Im}(f^+f^{-*})$	$Im(S_3S_4^* + \bar{S}_4\bar{S}_3^*)$	1	
$cos(\Delta Mt)$	$\operatorname{Im}(f^+f^{-*})$	$\operatorname{Im}(S_3S_4^* - \overline{S}_4\overline{S}_3^*)$	1	
$\sin(\Delta Mt)$	$\operatorname{Im}(f^+f^{-*})$	$\operatorname{Re}(q\overline{S}_4S_4^* - q^*S_3\overline{S}_3^*)$	$cos(2\alpha)$	
1	$\operatorname{Re}(f^+f^{0*})$	$Re(S_3S_5^* + \bar{S}_4\bar{S}_5^*)/2$	1	
$cos(\Delta Mt)$	$Re(f^+f^{0*})$	$Re(S_3S_5^* - \bar{S}_4\bar{S}_5^*)/2$	1	
$\sin(\Delta Mt)$	$\operatorname{Re}(f^+f^{0*})$	$Im(q\bar{S}_4S_5^* + q^*S_3\bar{S}_5^*)/2$	$\sin(2\alpha)$	
1	$Im(f^+f^{0*})$	$Im(S_3S_5^* + \bar{S}_4\bar{S}_5^*)/2$	1	
$cos(\Delta Mt)$	$Im(f^+f^{0*})$	$Im(S_3S_5^* - \bar{S}_4\bar{S}_5^*)/2$	1	
$sin(\Delta Mt)$	$Im(f^+f^{0*})$	$\text{Re}(q\bar{S}_4S_5^* - q^*S_3\bar{S}_5^*)/2$	$cos(2\alpha)$	
1	$\operatorname{Re}(f^-f^{0*})$	$Re(S_4S_5^* + \overline{S}_3\overline{S}_5^*)/2$	1	
$cos(\Delta Mt)$	$Re(f^{-}f^{0*})$	$Re(S_4S_5^* - \bar{S}_3\bar{S}_5^*)/2$	1	
$\sin(\Delta Mt)$	$\operatorname{Re}(f^-f^{0*})$	$Im(q\bar{S}_3S_5^* - q^*S_4\bar{S}_5^*)$	$\sin(2\alpha)$	
1	$Im(f^-f^{0*})$	$Im(S_4S_5^* + \bar{S}_3\bar{S}_5^*)/2$	1	
$\cos(\Delta Mt)$	$\operatorname{Im}(f^-f^{0*})$	$Im(S_4S_5^* - \bar{S}_3\bar{S}_5^*)/2$	1	
$\sin(\Delta Mt)$	$Im(f^-f^{0*})$	$\text{Re}(q\bar{S}_3S_5^* - q^*S_4\bar{S}_5^*)/2$	$cos(2\alpha)$	

Note: physical observables depend on either sin(2α) or cos(2α) – never "directly" on α

Results from

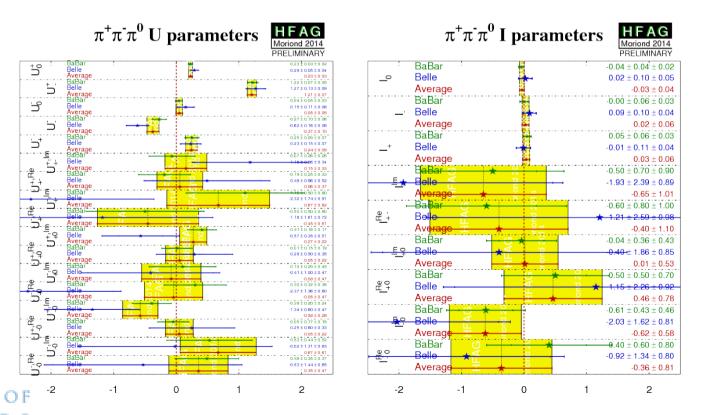
- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003



Results from

Tim Gershon
B 3h CPV

- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003



Results from

- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003

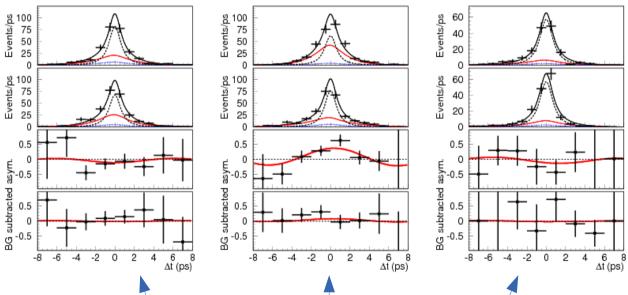
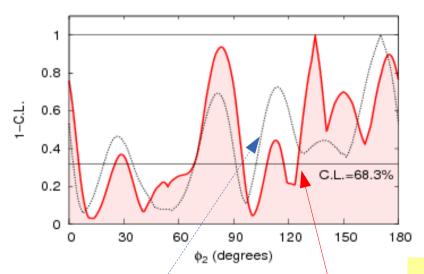


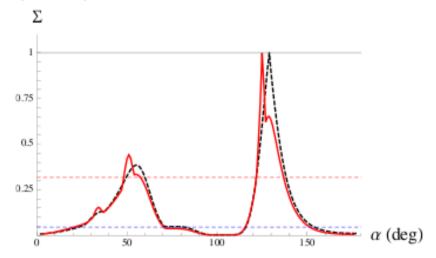
FIG. 10: Proper time distributions of good tag (r > 0.5) regions for $f_{\text{tag}} = B^0$ (upper) and $f_{\text{tag}} = \overline{B}^0$ (middle upper), in $\rho^+\pi^-$ (left), $\rho^-\pi^+$ (middle), $\rho^0\pi^0$ (right) enhanced regions, where solid (red), dotted, and dashed curves correspond to signal, continuum, and $B\overline{B}$ PDFs. The middle lower and lower plots show the background-subtracted asymmetries in the good tag (r > 0.5) and poor tag (r < 0.5) regions, respectively. The significant asymmetry in the $\rho^-\pi^+$ enhanced region (middle) corresponds to a non-zero value of U^- .

 $\rho^+\pi^ \rho^0\pi^0$

Results from

- Belle, 449 M BB pairs: PRL 98 (2007) 221602, PRD 77 (2008) 072001
- BaBar, 471 M BB pairs: PRD 88 (2013) 012003





"the extraction of α with our current sample size is not robust"

Contour from B $\rightarrow \pi^+\pi^-\pi^0$ only

Comment on $B \rightarrow \pi^{+}\pi^{-}\pi^{0}$

- It is not clear (to me) whether the current sensitivity to α can be extrapolated
 - are we just measuring fluctuations?
- It has been observed that $D\to \pi^+\pi^-\pi^0$ is close to pure CP-even
 - maybe there is a fundamental reason for this
 - maybe it is relevant also for B $\rightarrow \pi^+\pi^-\pi^0$?
 - if so, what is the impact on the Snyder-Quinn method to measure α?

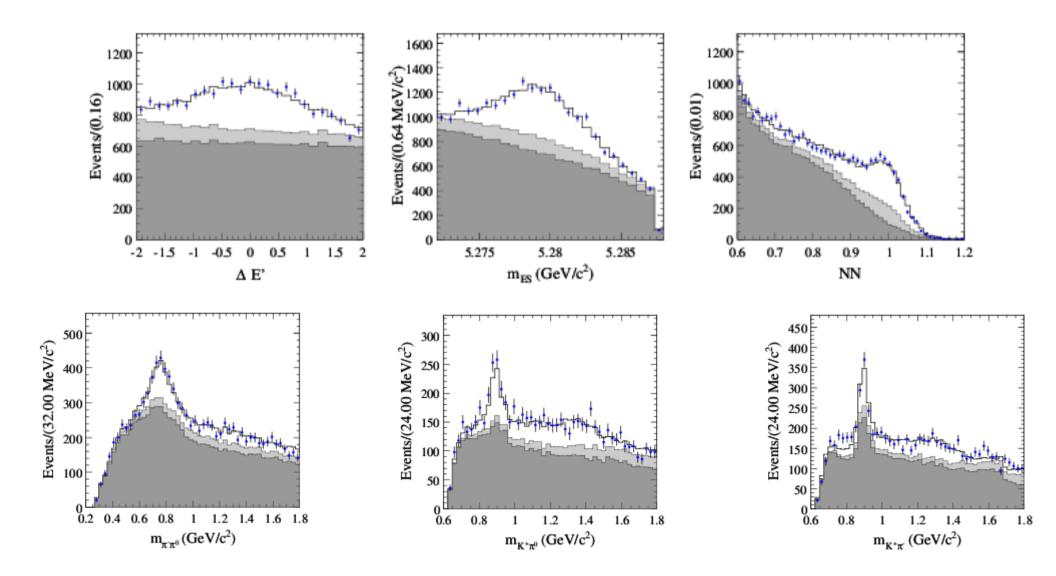
$B \rightarrow K\pi\pi$

• PRD 74 (2006) 051301, PRD 75 (2007) 014002

$$\mathcal{A}_{\frac{3}{2}}(K^*\pi) = \frac{1}{\sqrt{2}}\mathcal{A}(B^0 \to K^{*+}\pi^-) + \mathcal{A}(B^0 \to K^{*0}\pi^0).$$

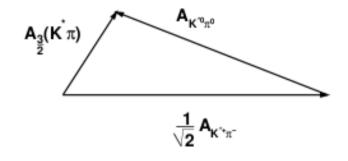
- Construct pure I=3/2 amplitude for B and \overline{B}
 - Dalitz plot analysis of $B^0 \rightarrow K^+\pi^-\pi^0$
- Relative phase between B and B gives y
 - Dalitz plot analysis of $B^0 \to K_s \pi^+ \pi^-$
 - corrections due to electroweak penguins

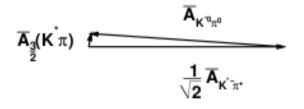
$B^0 \to K^+ \pi^- \pi^0$

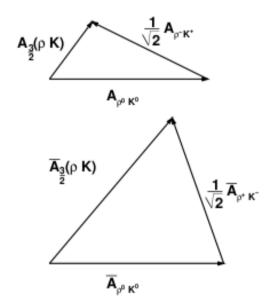


$$B^0 \to K^+ \pi^- \pi^0$$

Isospin triangles drawn to scale of experimental results but without uncertainties







Cancellation makes pure I=3/2 amplitude small – impossible to determine its relative phase

Method may work better for ρK amplitudes – but current uncertainty is large

The $B \rightarrow K\pi$ puzzle

 QCD may also be a cause of apparently anomalous CP violation effects

$$\Delta A_{CP}(K\pi) = A_{CP}(K^{+}\pi^{-}) - A_{CP}(K^{+}\pi^{0}) \neq 0$$

-0.082 ± 0.006 e.g. LHCb PRL 110 (2013) 221601 +0.040 ± 0.021 e.g. Belle PR D87 (2013) 031103

HFAG averages most precise single measurement

• Look for similar effects in $K*\pi$ & Kp systems

Interesting pattern emerging? Need new results from Belle & LHCb

Κ*π

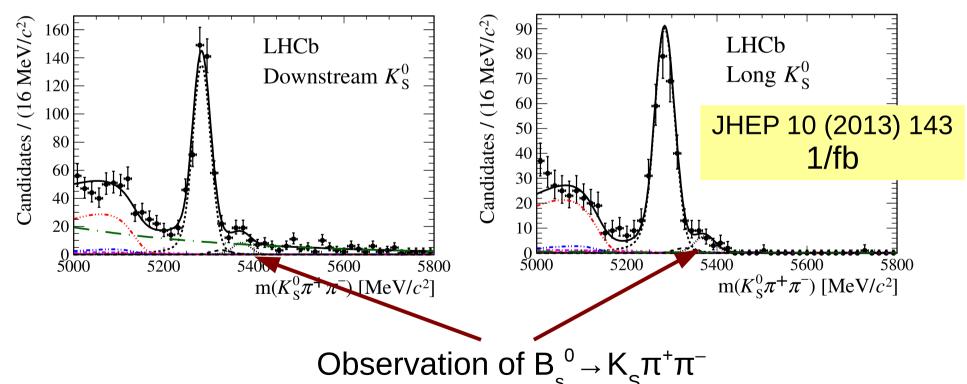
-0.23 ± 0.06 e.g. BaBar PR D83 (2011) 112010 -0.39 ± 0.13 e.g. BaBar arXiv:1501.00705

Κρ

+0.20 ± 0.11 e.g. BaBar PR D83 (2011) 112010 +0.37 ± 0.11
BaBar PR D78 (2008)
012004 & Belle PRL 96
(2006) 251803

$$B_s^0 \to K\pi\pi$$
 ?

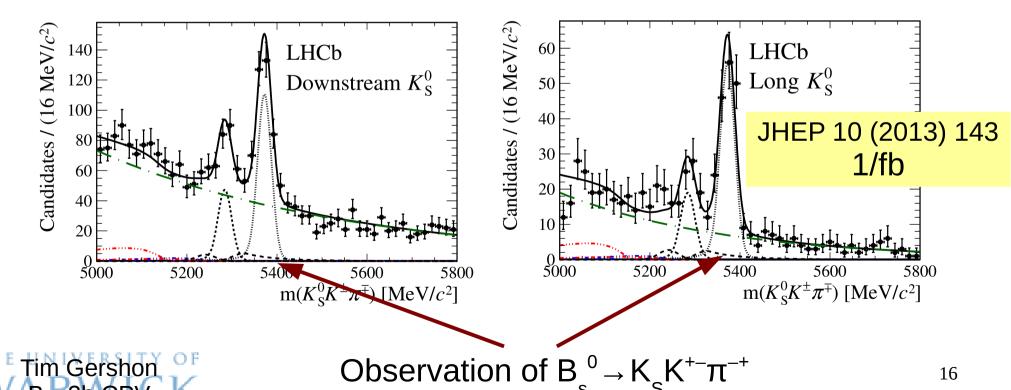
- Same method works, in principle, for $B_{s}{}^{0} \to K\pi\pi$
- Yields available are, however, small



$$B_s^0 \rightarrow KK\pi$$
?

- Similar method works, in principle, for $B_s^0 \to KK\pi$
- Reasonable yields available, but tagged time-dependent analysis necessary

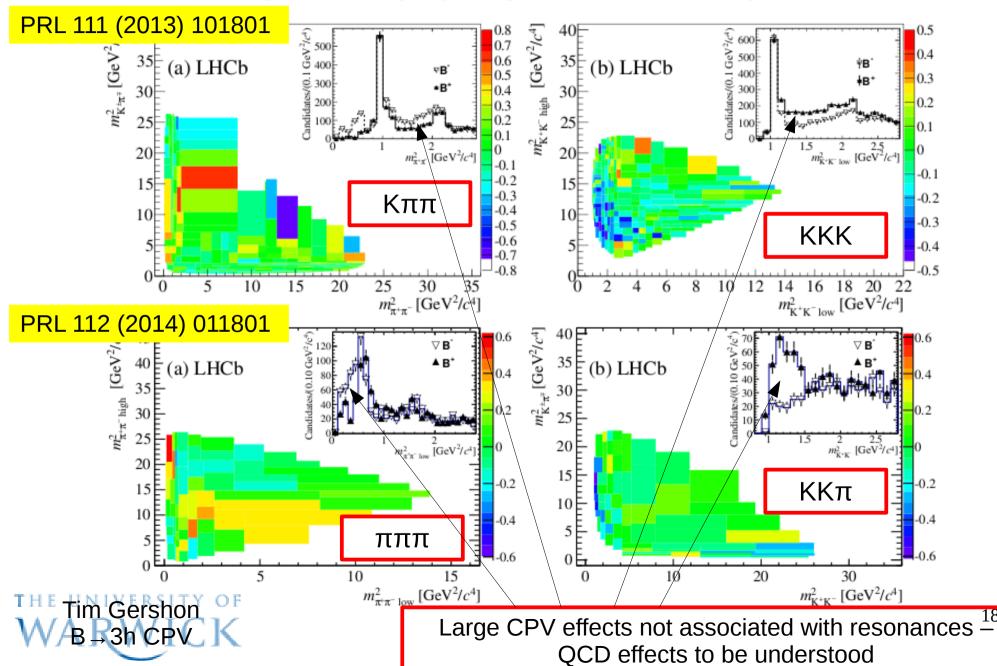
→3h CPV



$B \rightarrow 3h$

- Experimentally, the most accessible decays are those with three final state tracks
- There is much literature on the possibility to measure weak phases through interference between charmless and charmonium contributions (however, not clean theoretically)
- Possibilities to use U-spin to relate decays
 - model-independent approaches
 - how to relate points in two different Dalitz plots?

CP violation in B → 3h



Summary

- Much physics potential in charmless hadronic decays ...
 - and in three-body decays in particular
- Need smart methods to overcome hadronic uncertainties
- These often involve analyses of >1 Dalitz plot
 - much work needed!
- Some ideas for model-independent analyses
 - good DP modelling is nevertheless essential
- Many modes where sensitivity of Belle II is expected to surpass that of LHCb (but don't be complacent)

