γ (ϕ_3) from B \rightarrow DK and friends – where we are and what's next?

Tim Gershon 2nd B2TIP meeting; Krakow

28 April 2015

Importance of y from B → DK

γ plays a unique role in flavour physics

the only CP violating parameter that can be measured through tree decays •

(*) more-or-less

- A benchmark Standard Model reference point
 - doubly important after New Physics is observed

Variants use different B or D decays require a final state common to both D^0 and \overline{D}^0

The GLW method

Phys. Lett. B 253 (1991) 483, Phys. Lett. B 265 (1991) 172

Common final state for D^0 and \overline{D}^0 – CP eigenstates

- CP even: K^+K^- , $\pi^+\pi^-$
- CP odd: $K_s \pi^0$, $K_s \eta$, $K_s \varphi$ (see later), $K_s \omega$

these are challenging for LHCb

GLW results

Subtleties of GLW

- Over the last few years, considerable effort expended to understand how to deal with % level (or smaller) effects
 - Possible CPV in SCS D decays
 - \rightarrow report results for K+K- and π + π separately
 - Charm mixing effects
 - → understand D decay-time acceptance effects
 - CPV/regeneration effects in K⁰ system
 - → still negligible

- Even if $B \rightarrow D\pi$ does not contribute much statistically to the y combination, it is worth including to ensure control of systematic uncertainties

Can we use more D decays?

- GLW analyses to date have used
 - CP even
 - K+K-, π+π-
 - CP odd
 - $K_s \pi^0$, $K_s \eta$, $K_s \varphi$ (see later), $K_s \omega$
- No other experimentally accessible pure CP eigenstates ...
 - are there "quasi CP eigenstates"?
 - can we handle them with a "quasi GLW analysis"?

$D \to \pi^+ \pi^- \pi^0$

- Seminal Dalitz plot analysis from BaBar (PRL 99 (2007) 251801)
 - Gives the parameter $x_0 = 0.850$ (without uncertainty)
 - Relation to fractional CP-even content: $x_0 = 2F_+ 1$

- Effect of CP-even dominance included in modified GGSZ-type analysis
 - Message that simpler quasi-GLW analysis gives good sensitivity was not clear
- Noted that decay is almost pure isospin 0 (PR D78 (2008) 014015)

$D \rightarrow \pi^{+}\pi^{-}\pi^{0}$ with CLEO-c data

- Exploit Ψ(3770) → DD decays for direct measurement of CP content
- PLB 740 (2015) 1, arXiv:1504.05878

$$F_{+} = 0.973 \pm 0.017$$

Aside on D $\rightarrow \pi^+\pi^-\pi^0$

- It seems remarkable that D → π⁺π⁻π⁰ is so close to pure CP-even
 - no known a priori reason for this to be so
 - n.b. $K \rightarrow \pi^+\pi^-\pi^0$ is ~pure CP-odd (but this is understood)
- How about B $\rightarrow \pi^+\pi^-\pi^0$?
 - if this is almost pure CP-eigenstate, what happens to the Snyder-Quinn method to measure α ?

Can we use more D decays?

- GLW analyses to date have used
 - CP even
 - K+K-, π+π-
 - $\pi^+\pi^-\pi^0$ (F₊ = 0.973 ± 0.017), K⁺K⁻ π^0 (F₊ = 0.732 ± 0.055), $\pi^+\pi^-\pi^+\pi^-$ (F₊ = 0.737±0.028)
 - CP odd
 - $K_s \pi^0$, $K_s \eta$, $K_s \varphi$ (see below), $K_s \omega$
- Other 3 body modes have more complicated CP-content
 - $K_sK^+K^-$, $K_s\pi^+\pi^-$ both have F_+ ~ 0 → GGSZ analysis
 - n.b. $K_sK^+K^-$, has ~50% CP-odd $(K_s\phi)$ + ~50% CP-even (the rest)

First quasi-GLW analysis with $D \rightarrow \pi^{+}\pi^{-}\pi^{0}$ & $K^{+}K^{-}\pi^{0}$

- LHCb-PAPER-2015-014 (arXiv:1504.05442)
 - (see Sneha's talk for details)

Expect these modes to be useful for Belle II

Beyond B → DK

- Attractive feature of B → D*K
 - Effective CP-flip between D^* → $Dπ^0$ and D^* → Dy
 - PRD70 (2004) 091503
 - Additional sensitivity, but also necessitates good separation between the two D* decays
- Attractive feature of B → DK*0
 - Interference between D₂* and K*⁰ resonances resolves ambiguities
 - PRD 79 (2009) 051301(R), PRD 80 (2009) 092002

Extension to $B \rightarrow D\pi K$ decays

TG PRD 79 (2009) 051301(R) TG & M. Williams PRD 80 (2009) 092002

- Powerful extension of the method exploits additional sources of interference that occur in multibody decays
 - $B^0 \rightarrow D(\pi^-K^+)$ decays can have CP violation
 - B^0 → (Dπ-)K+ decays have no CP violation
 - Provides ideal reference amplitude from which to determine relative phases via interference between different resonances on

Extension to $B \rightarrow D\pi K$ decays

TG PRD 79 (2009) 051301(R) TG & M. Williams PRD 80 (2009) 092002

- Powerful extension of the method exploits additional sources of interference that occur in multibody decays
 - B⁰ → D(π -K⁺) decays can have CP violation
 - B^0 → (Dπ-)K⁺ decays have no CP violation

Provides ideal reference amplitude from which to determine relative phases via interference between different resonances on

the Dalitz plot

Toy example containing

 $K*(892)^0$ K₂*(1430)⁰ D₂*(2460)⁻

effects of spin

clearly visible

 $m_{K\pi}^2$ (GeV²)

$B \rightarrow D\pi K$ Dalitz plot

- LHCb-PAPER-2015-017 (arXiv next week)
 - use D → Kπ decays to determine Dalitz plot model for favoured b → c amplitude

n.b. axes flipped c.f. previous slides

The B \rightarrow D π K Dalitz plot method

D⁰ flavour eigenstate

- Basic idea is that pion from D₂* decay tags flavour of that resonance
- Amplitude for B⁰ → D₂*K is same, independent of D decay used
- Allows direct reconstruction of GLW triangle
- How is the sensitivity?
 - PRD 80 (2009) 092002 claims similar to $B \rightarrow DK$
 - will need to wait and see ...

• (n.b.
$$r_B(DK*0) = 0.240^{+0.055} - LHCb PRD 90 (2014) 112002)$$

 $\sqrt{2\mathcal{A}}(B^- \to D_{CP}K^-)$

 $\mathcal{A}(B^- \to D^0K^-$

Summary

- Despite many people thinking about γ for many years, there are still good new ideas emerging
- The best sensitivity comes from combining results from all of B → DK and friends
- Many channels make useful contributions
 - including several that I did not discuss today
 - still a lot of work (potential improvement) to arrive at ultimate precision on γ for both LHCb & Belle II
- Measurements from BESIII on Ψ(3770) → DD are needed

