

CP violation and rare decays

Tim Gershon University of Warwick

Blois2015: 27th Rencontres de Blois on "Particle Physics and Cosmology" 4th June 2015

European Research Council

- CKM theory is highly predictive
 - huge range of phenomena over a massive energy scale predicted by only 4 independent parameters (+ $G_F + m_q + QCD$)
- CKM matrix is hierarchical
 - distinctive flavour sector of Standard Model not necessarily replicated in extended theories \rightarrow strong constraints on NP models
- CKM mechanism introduces CP violation
 - only source of CP violation in the Standard Model ($m_v = \theta_{QCD} = 0$)

Two routes to heaven

for quark flavour physics

Loop diagrams for discovery

- Contributions from virtual particles in loops allow to probe far beyond the energy frontier
- History shows this approach to be a powerful discovery tool
- Interplay with high- p_{T} experiments:
 - NP discovered: probe the couplings
 - NP not discovered: explore high energy parameter space
- NP contributions to tree-level processes also possible in some models

Clock from Buras & Girrbach, RPP 77 (2014) 086201

The Unitarity Triangle

• The CKM matrix must be unitary

$$V_{CKM}^+ V_{CKM} = V_{CKM} V_{CKM}^+ = 1$$

• Provides numerous tests of constraints between independent observables, such as

fim Gershon

PV and rare decays

http://ckmfitter.in2p3.fr see also http://www.utfit.org

Consistency of measurements tests the Standard Model and provides model-independent constraints on New Physics

CP violation

Importance of γ from $B \to DK$

• γ plays a unique role in flavour physics

the only CP violating parameter that can be measured through tree decays (*)

(*) more-or-less

- A benchmark Standard Model reference point
 - doubly important after New Physics is observed

Variants use different B or D decays

require a final state common to both D^0 and \overline{D}^0

$D \rightarrow \pi^+ \pi^- \pi^0 - a$ quasi-CP eigenstate

- Seminal Dalitz plot analysis from BaBar
 - Gives the parameter $x_0 = 0.850$ (without uncertainty)
 - Relation to fractional CP-even content: $x_0 = 2F_+ 1$

9

PRL 99 (2007) 251801

New decay modes for γ

arXiv:1504.05442

arXiv:1505.07044

γ status

Tim Gershon
PV and rare decays

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

$$|V_{ub}/V_{cb}|$$
 from $\Lambda_b \rightarrow p\mu\nu/\Lambda_b \rightarrow \Lambda_c\mu\nu$

- $|V_{cb}| = (42.4 \pm 0.9) \times 10^{-3} \text{ (inclusive)} \qquad |V_{ub}| = (4.41 \pm 0.15 \stackrel{+}{}_{-} \stackrel{0.15}{}_{0.17}) \times 10^{-3} \qquad \text{(inclusive)},$ $|V_{cb}| = (39.5 \pm 0.8) \times 10^{-3} \text{ (exclusive)} \qquad |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3} \qquad \text{(exclusive)}.$
- Use of b baryon decays provides complementary alternative to B mesons
- At LHCb, exploit displaced vertex to reconstruct corrected mass

$$M_{corr} = \sqrt{p_{\perp}^2 + M_{
m p\mu}^2} + p_{\perp}$$

n Gersh

and rare decays

Long standing discrepancy between exclusive and inclusive determinations of both V_{ub} and V_{cb}

$|V_{ub}/V_{cb}|$ from $\Lambda_h \rightarrow p\mu\nu/\Lambda_h \rightarrow \Lambda_c\mu\nu$

LHCb

5000

- Can then reconstruct $q^2 = m(\mu \nu)^2$
 - Select events with $q^2 > 15 \text{ GeV}^2$
 - Highest rate, best resolution & most reliable theory (lattice) predictions

Mis-identified

4000

Corrected $p\mu$ mass [MeV/ c^2]

 $\mu^{-}\overline{\nu}$

- Use isolation MVA to suppress background
- Fit M_{corr} to obtain signal yields

Candidates / (50 MeV/ c^2)

Fim Gershon

PV and rare decays

15000

12000

9000

6000

3000

3000

LHCb

 $\Lambda_{c}^{+}\mu^{-}\overline{\nu}$

 $\Lambda_{c}^{*+}\mu^{-}\overline{\nu}$

 $|V_{ub}/V_{cb}|$ from $\Lambda_h \rightarrow p\mu\nu/\Lambda_h \rightarrow \Lambda_c\mu\nu$

arXiv:1504.01568

CPV and rare decays

$sin(2\beta)$

PV and rare decays

At this precision, penguin effects start to be a concern

sin(2β) without penguins

arXiv:1505.04147

16

Possible to measure sin(2 β) from b \rightarrow cud transitions – no penguin possible Yields lower compared to J/ ψ K_s \rightarrow combined BaBar+Belle analysis

Rare (and some not so rare) decays

$B_s \rightarrow \mu^+ \mu^-$

Nature 522 (2015) 68

Year

Killer app. for new physics discovery

1985

Very rare in Standard Model due to

- absence of tree-level FCNC
- helicity suppression
- CKM suppression ... all features which are not necessarily reproduced in extended models

$$B(B_s \rightarrow \mu^+ \mu^-)^{SM} = (3.66 \pm 0.23) \times 10^{-9}$$

Intensively searched for over 30 years!

Nature 522 (2015) 68

Combination of CMS and LHCb data results in first observation of $B_s \rightarrow \mu^+ \mu^-$ and first evidence for $B^0 \rightarrow \mu^+ \mu^-$

Results consistent with SM at 2σ level

6

0.6

8

0.8

$B \to D^{(\star)} \tau \nu$

- Powerful channel to test lepton universality
 - ratios R(D^(*)) = B(B → D^(*)τν)/B(B → D^(*)μν) could deviate from SM values, e.g. in models with charged Higgs

PRL 109 (2012) 101802

& PRD 88 (2013) 072012

- Heightened interest in this area
 - anomalous results from BaBar
 - other hints of lepton universality violation, e.g. R_{κ} , $H \rightarrow \tau \mu$

$B \rightarrow D^* \tau \nu$ at LHCb

LHCb-PAPER-2015-025

Data

- Identify $B \rightarrow D^*\tau v$, $D^* \rightarrow D\pi$, $D \rightarrow K\pi$, $\tau \rightarrow \mu v \overline{v}$
 - Similar kinematic reconstruction to $\Lambda_b^{} \rightarrow p \mu \nu$
 - Assume $p_{B,z} = (p_{D^*} + p_{\mu})_z$ to calculate $M_{miss}^2 = (p_B p_{D^*} p_{\mu})^2$
 - Require significant B, D, τ flight distances & use isolation MVA
- Separate signal from background by fitting in M_{miss}^2 , q^2 and E_{μ}
 - Shown below high q² region only (best signal sensitivity)

$B \rightarrow D^{(*)}\tau\nu$ at Belle

Belle preliminary

- Reconstruct one B in $Y(4S) \rightarrow B\overline{B}$ event
 - Look for signal in the recoil
 - several D & D* decay modes; $\tau \rightarrow \mu \nu \overline{\nu}$ or $e \nu \overline{\nu}$
 - Use low M_{miss}^2 region to separate $D^{(*)}\tau\nu$ from $D^{(*)}l\nu$
 - For $M_{miss}^2 > 0.85$ GeV², use neural network to separate D^(*)TV from D^{**}TV
 - NN inputs include $M_{miss}{}^2$, $q^2,\,p_I,\,E_{ECL},\,N(\pi^{_0})$

Full angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

LHCb-CONF-2015-002

- $B^0 \rightarrow K^{*0}\mu^+\mu^-$ provides superb laboratory to search for new physics in $b \rightarrow sI^+I^-$ FCNC processes
 - rates, angular distributions and asymmetries sensitive to NP
 - experimentally clean signature
 - many kinematic variables ... with clean theoretical predictions
- Full set of observables measured only a subset shown

Tension in P₅

- Dimuon pair is predominantly spin-1
 - either vector (V) or axial-vector (A)
- There are 6 non-negligible amplitudes
 - 3 for VV and 3 for VA

Tim Gershon

and rare decays

- expressed as $A^{L,R}_{0,\perp,\parallel}$ (transversity basis)
- P_5' related to difference between relative phase of longitudinal (0) and perpendicularly ($^{\perp}$) polarised amplitudes for VV and VA
 - constructed so as to minimise form-factor uncertainties

 $P_5' = \sqrt{2} \frac{\operatorname{Re} \left(A_0^{\mathrm{L}} A_{\perp}^{\mathrm{L}*} - A_0^{\mathrm{R}} A_{\perp}^{\mathrm{R}*} \right)}{\sqrt{\left(|A_0^{\mathrm{L}}|^2 + |A_0^{\mathrm{R}}|^2 \right) \left(|A_{\parallel}^{\mathrm{L}}|^2 + |A_{\parallel}^{\mathrm{R}}|^2 + |A_{\perp}^{\mathrm{L}}|^2 + |A_{\perp}^{\mathrm{R}}|^2 \right)}}$

Sensitive to NP in V or A couplings (Wilson coefficients $C_{9}^{(i)} \& C_{10}^{(i)}$)

 $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$

• Full angular analysis performed

Fim Gershon

PV and rare decays

- Not self-tagging \rightarrow complementarity to $K^{*0}\mu^{+}\mu^{-}$
 - only a subset of many observables shown

Tension in branching fraction, but angular observables consistent with SM

Consistent picture in b \rightarrow sl⁺l⁻ branching fractions

The holy grail of kaon physics: $K \to \pi \nu \nu$

Next generation experiments should measure these decays for the 1st time

- $K^+ \rightarrow \pi^+ \nu \nu$ (NA62, CERN)
- $K^0 \rightarrow \pi^0 \nu \nu$ (K0T0, J-PARC)

Tim Gershon

Experimental outlook

Data taking May 2013, ended by radiation incident

Allows first results & detailed background studies

Data taking restarted April 2015, expect large improvement with 2015 data

500

450

Observed

• Summary of #BG inside the signa	al box	5
BG source	#BG	leV/
Hadron interaction events	0.18±0.15] <u>₹</u>
Kaon decay events	0.11±0.04	
Upstream events	0.06±0.06	
Sum	0.36± 0.16	
		-

Sensitivity of the 1st physics run $= 1.29 \times 10^{-8}$ (cf) S.E.S. of KEK E391a: 1.11×10-8

Observed 1 event in the box (consistent with BG expectation)

Summary

- Huge range of results in quark flavour physics
 - Impossible to cover everything sorry for omissions
- Several interesting "tensions" to keep an eye on
 - Inclusive vs. exclusive $|V_{ub}|$
 - Hints of lepton non-universality in R(D) & R(D*)
 - Rates in b \rightarrow sl⁺l⁻ & P₅'
- Much to look forward to
 - NA62 & KOTO
 - More results from LHC Run I & II (LHCb & ATLAS & CMS)
 - LHCb upgrade & Belle II

