What We've Learned from Experiments

Tim Gershon University of Warwick & CERN

CKM2012, University of Cincinnati 29th September 2012

The most permanent lessons in morals are those which come, not of booky teaching, but of experience.

Mark Twain, A Tramp Abroad

Heavy Flavour What We've Learned from Experiments V since CKM2010 Tim Gershon University of Warwick & CERN

CKM2012, University of Cincinnati 29th September 2012

First key to success: excellent accelerator performance

First key to success: excellent accelerator performance

Novel detectors & analysis techniques

(just some examples from many)

BaBar DIRC detector for K/ π ID

Neutral network based event reconstruction in Belle

LHCb VErtex LOcator

Heavy flavour triggers at hadron colliders

What do we know about CP violation?

Observed (5 σ) CP violation effects

As listed in PDG 2012

8

- Kaon sector
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$
 - $\text{Re}(\epsilon' / \epsilon) = (1.65 \pm 0.26) \times 10^{-3}$
- B sector

 ϕ

6

6

 ϕ

6

$$S_{\mu K0} = +0.679 \pm 0.020$$

$$S_{\mu K0} = +0.59 \pm 0.07, S_{\mu K0} = +0.74^{+0.11}_{-0.13}, S_{10K0} = +0.69^{+0.10}_{-0.12}, S_{K+K+K0} = +0.68^{+0.09}_{-0.10}$$

$$S_{\pi + \pi^{-}} = -0.65 \pm 0.07, C_{\pi + \pi^{-}} = -0.36 \pm 0.06$$

$$S_{\mu \pi 0} = -0.93 \pm 0.15, S_{D+D^{-}} = -0.98 \pm 0.17, S_{D++D^{-}} = -0.77 \pm 0.10$$

$$M_{K^{\mp} \pi \pm} = -0.087 \pm 0.008$$

$$S_{L^{1}} = -0.087 \pm 0.008$$

Large CP violation effects exist sin(2 β) from B⁰ \rightarrow J/ ψ K⁰ **BABAR** BELLE

New results from LHCb to be presented in WGIV

... and T is also violated, as expected

BaBar arXiv:1207.5832

Generalisation of usual sin(2β) analysis allowing for separate CP, T and CPT violating terms

No significant sign of CPT violation in any test

Large direct CP violation effects also exist

LHCb-CONF-2012-018

Is there CP violation in the charm system?

(and if so, where does it come from?)

0.0

To reduce systematics and (perhaps) enhance CP violation effect, experiments measure

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+}) = \left[a_{CP}^{\text{dir}}(K^{-}K^{+}) - a_{CP}^{\text{dir}}(\pi^{-}\pi^{+})\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}.$$

 ΔA_{CD} related mainly to direct CP violation (contribution from indirect CPV suppressed by difference in mean decay time)

$$\Delta a_{CP}^{dir} = (-0.68 \pm 0.15)\%$$

Naïvely expected to be much smaller in the Standard Model

Tim Gershon

earned from Experiments

Must prepare ourselves for ‰ level measurements

12

... are we too naïve?

Or can we discover NP by better understanding of QCD?

LHCb PRL 108 (2012) 111602 CDF PRL 109 (2012) 111801 **Belle ICHEP preliminary**

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_d and B_s systems negligibly small in the SM

Results of inclusive dimuon asymmetry analysis 3.9σ from SM

Systematics reduced by magnet polarity inversions, and from use of control samples, such as single muon sample

$$A_{sl}^{b} = (0.594 \pm 0.022) a_{sl}^{d} + (0.406 \pm 0.022) a_{sl}^{s}$$

Constraint in $a_{sl}^{d} - a_{sl}^{s}$ plane obtained from oscillated B_{d} or B_{s} enriched samples (cutting on impact parameter)

Tim Gershon

arned from Experiments

D0 PRD 84 (2011) 052007 arXiv:1207.1769, arXiv:1208.5813 LHCb-CONF-2012-022

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_d and B_s systems negligibly small in the SM

Results of inclusive dimuon asymmetry analysis 3.9σ from SM

Including results on a_{sl}^{d} and a_{sl}^{s} individually (from $D^{(*)^{+}}\mu^{-}\nu X$ and $D_{s}^{+}\mu^{-}\nu X$ samples) puts combination at 2.9 σ from SM D0 PRD 84 (2011) 052007 arXiv:1207.1769, arXiv:1208.5813 LHCb-CONF-2012-022

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_{d} and B_{s} systems negligibly small in the SM

The Unitarity Triangle

Disclaimer (I): other fitter groups are available Disclaimer (ii): other Unitarity Triangles are available (but this one really does deserve to be called "The" Unitarity Triangle)

Tim Gershon

earned from Experiments

 $\alpha \equiv \phi_2$ $\equiv \pi - \beta - \gamma \equiv \pi - \phi_1 - \phi_3$

Constraints from $\pi\pi$, $\rho\pi$, $\rho\rho$ (also $a_1\pi$). Combination dominated by $\rho\rho - strong$ influence of single measurement of $B^+ \rightarrow \rho^+ \rho^0$

18

Tim Gershon

earned from Experiments

Precision on y from tree-level decays ($B \rightarrow DK$) has stubbornly refused to go below 10° despite great efforts

Precise measurements of several key observables now exist ... are we on the verge of more precise knowledge of y?

New results from BaBar & LHCb to be presented in WGV

 $\gamma \equiv \phi_{\gamma}$

Perennial question for CKM workshops: how to extract clean (but still NP sensitive) weak phase information from hadronic B decays?

LHCb-CONF-2012-007

Suggestion in arXiv:1205.4948 to combine information in $B \rightarrow \pi\pi$ with $Bs \rightarrow K^{+}K^{-}$ – blurs boundary between α and γ

β_s from $B_s \rightarrow J/\psi \phi \& J/\psi \pi \pi$

The sides of the UT

Continued progress on measurements sensitive to $|V_{ub}|$, $|V_{cb}|$, $|V_{td}| \& |V_{ts}|$

$|V_{ub}|$ from {in,ex}clusive semileptonic decays

lattice uncertainty

PBFLB based on BaBar PRD 83 (2011) 052011 & PRD 83 (2011) 032007 Belle PRD 83 (2011) 071101(R)

Tim Gershon

earned from Experiments

Some tension between exclusive and inclusive results. PBFLB concludes:

$$|V_{\rm ub}|_{\rm excl} = [3.23 \ (1 \pm 0.05_{\rm exp} \pm 0.08_{\rm th})] \times 10^{-3}$$
$$|V_{\rm ub}|_{\rm incl} = [4.42 \ (1 \pm 0.045_{\rm exp} \pm 0.034_{\rm th})] \times 10^{-3}.$$

This average has a probability of $P(\chi^2) = 0.003$. Thus we scale the error by $\sqrt{\chi^2} = 3.0$ and arrive at

 $|V_{\rm ub}| = [3.95 \ (1 \pm 0.096_{\rm exp} \pm 0.099_{\rm th})] \times 10^{-3}$

Similar tension also for |V_{ch}|

Better understanding needed to reduce uncertainty

$B \rightarrow \tau \nu \& B \rightarrow D(*)\tau \nu$

BaBar PRL 109 (2012) 101802 Belle PRD82 (2010) 072005

What do we know about rare decays?

Two routes to heaven

250th google image hit for "Higgs boson for heavy quark flavour physics SM **CP** violation Rare decays (strong theoretical arguments) (extra sources must exist) But But • No guarantee of the scale How high is the NP scale? No guarantee of effects in Why have FCNC effects not the quark sector been seen? • Realistic prospects for CPV measurement in vs due to large θ_{13} 25 Ś, 1.1 SL 20 z 1.05 .0.1 0.15 EH1 EH2 0.95 EH3 0.9 0 0.4 0.6 0.8 1.2 1.4 1.6 1.8 Weighted Baseline [km] Tim Gershon

earned from Experiments

Data 9011 and 9019

order polynomia

Sig + Bkg inclusive fit (m_u = 126.5 GeV)

s = 7 TeV, Ldt = 4.8 fb

2000

1800

$b \rightarrow S\gamma$

The archetypal FCNC decay New results on both inclusive properties and exclusive modes

BaBar arXiv:1207.5772

earned from Experiments

LHCb arXiv:1209.0313

>15 year old hint for NP in $b \rightarrow sy$ long since gone but still interesting possibilities for NP searches

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb-CONF-2012-008 **BaBar Lake Louise** preliminary, also **CDF ICHEP preliminary**

15

15

20

20

 $q^2 \,[{\rm GeV}^2/c^4]$

 $q^2 \,[\text{GeV}^2/c^4]$

 $A_{FB}(B^0 \rightarrow K^{*0}\mu^+\mu^-)$

LHCb-CONF-2012-008

First measurement of the zero-crossing point of the forward-backward asymmetry $q_0^2 = (4.9^{+1.1}_{-1.3}) \text{ GeV}^2$ (SM predictions in the range 4.0 – 4.3 GeV²) 29 Learned from Experiments

Updates hotly anticipated

 $B_s^{\ 0} \to \mu^+ \mu^-$

CMS (5/fb) JHEP 04 (2012) 033

ATLAS (2.4/fb) PLB 713 (2012) 387

Tim Gershon

Learned from Experiments

Events per 24 MeV/c²

0

Events per 24 MeV/c²

Don't forget the bread and butter

- Most hadron collider heavy flavour results are ratios
 - e.g. $B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = B(B^{+} \rightarrow J/\psi K^{+}) \times B(J/\psi \rightarrow \mu^{+}\mu^{-}) \times f_{s}/f_{d} \times \{ [N(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})/\epsilon(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})] / [N(B^{+} \rightarrow J/\psi K^{+})/\epsilon(B^{+} \rightarrow J/\psi K^{+})] \}$
 - where

 $f_{s}/f_{d} = \{ [N(B_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}X)/\epsilon(B_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}X)] / [N(B^{0} \rightarrow D^{-}\mu^{+}X)/\epsilon(B^{0} \rightarrow D^{-}\mu^{+}X)] \} x$ $[\tau(B^{0})/\tau(B_{s}^{0})] \times [B(D^{-} \rightarrow K^{+}\pi^{-}\pi^{-})/B(D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-})]$

(simplified expressions given here; other methods to determine f_s/f_d also rely on $B(D_s^- \rightarrow K^+K^-\pi^-)$

- Limiting factor will become uncertainty on $B(D_s^- \rightarrow K^+K^-\pi^-)$
- Improved measurements of basic quantities can have significant impact

Belle Charm 2012 preliminary (spin-off of
$$D_s \rightarrow \tau v$$
 analysis)

Some morals

- Worship the accelerator gods
- Investment in detectors & techniques brings rewards
- Interesting effects might be very big ...
 - ... or very small \rightarrow be prepared to be precise
 - ... but it seems like there are no O(1) deviations from the SM
- Clean theoretical predictions are to be treasured ...
 - ... data-driven methods to control uncertainties also to be valued
- 3σ often goes away, but 5σ seems to stay
 - ... but investigating anomalies is worth the effort
 - sure to learn something (about physics, systematics or statistics)
- Bread and butter can be needed before a feast
- New physics just might be around the corner ...

... plenty to look forward to in CKM2012 ... and beyond