What We've Learned from Experiments

Tim Gershon

University of Warwick \& CERN

CKM2012, University of Cincinnati $29^{\text {th }}$ September 2012

The most permanent lessons in morals are those which come, not of booky teaching, but of experience.

Mark Twain, A Tramp Abroad

Heavy Flavour

What We've Learned from/Experiments y
Tim Gershon
University of Warwick \& CERN

CKM2012, University of Cincinnati $29^{\text {th }}$ September 2012

First key to success: excellent accelerator performance

FERMILAB'S ACCELERATOR CHAIN

First key to success: excellent accelerator performance

~ 433/fb $\mathrm{e}^{+} \mathrm{e}^{-}$@ $\mathrm{Y}(4 \mathrm{~S})$

~ 711/fb $\mathbf{e}^{+} \mathbf{e}^{-}$@ $\mathbf{Y}(\mathbf{4 S})^{\text {CERN Accelerator Complex }}$

Learned from Experiments

ATLAS \& CMS ~ $6 / \mathrm{fb} 7 \mathrm{TeV}+15 / \mathrm{fb} 8 \mathrm{TeV}$ LHCb ~ 1.2/fb 7 TeV + 1.5/fb 8 TeV pp collisions

Novel detectors \& analysis techniques
 (just some examples from many)

BaBar DIRC detector for K/ π ID

LHCb VErtex LOcator

Heavy flavour triggers at hadron colliders

What do we know about CP violation?

hearnedtrom Experifiens

Observed (5б) CP violation effects

As listed in PDG 2012

- Kaon sector
- $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
- $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.65 \pm 0.26) \times 10^{-3}$
- B sector
$-S_{\psi 0}=+0.679 \pm 0.020$

- $S_{\pi i \pi n}=-0.65 \pm 0.07, C_{\pi i \pi n}=-0.36 \pm 0.06$
$S_{400}=-0.93 \pm 0.15, S_{0,0.0}=-0.98 \pm 0.17, S_{0 \times+0 \times 0}=-0.77 \pm 0.10$
, (uT) $-A_{k 7 \pi I}=-0.087 \pm 0.008$
Cus)
Tim Gershon
Nothing yet in baryons, charm, leptons, ...

Large CP violation effects exist $\sin (2 \beta)$ from $B^{0} \rightarrow J / \Psi K^{0}$ BABAR
 BELLE

PRD 79 (2009) 072009

PRL 108 (2012) 171802

World average: $\sin (2 \beta)=0.679 \pm 0.020$

... and T is also violated, as expected

No significant sign of CPT violation in any test
e.g. $\mathrm{A}_{T}\left(\overline{\mathrm{~B}}^{0} \rightarrow \mathrm{~B}\right)$ between $\left(I^{-} \mathrm{tag}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}, \Delta \mathrm{t}>0\right)$ and (I^{+}tag, $\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}, \Delta \mathrm{t}<0$)
$\sim 1 / 2\left(\Delta \mathrm{~S}_{T}^{+} \sin \left(\Delta \mathrm{m}_{\mathrm{d}} \Delta \mathrm{t}\right)+\Delta \mathrm{C}_{T}^{+} \cos \left(\Delta \mathrm{m}_{\mathrm{d}} \Delta \mathrm{t}\right)\right)$
THE Tim Gershon
Learned from Experiments

Large direct CP violation effects also exist

LHCb-CONF-2012-018

Large CP violation effects with strong variation across the Dalitz plot
Detailed studies will be necessary to understand origin of these effects
New results from LHCb to be presented in WGV
PLB 712 (2012) 203

Is there CP violation in the charm system?

(and if so, where does it come from?)

To reduce systematics and (perhaps) enhance $C P$ violation effect, experiments measure

$$
=\left[a_{C P}^{\mathrm{dir}}\left(K^{-} K^{+}\right)-a_{C P}^{\mathrm{dir}}\left(\pi^{-} \pi^{+}\right)\right]+\frac{\Delta\langle t\rangle}{\tau} a_{C P}^{\mathrm{ind}}
$$

$\triangle \mathrm{A}_{\mathrm{CP}}$ related mainly to direct CP violation (contribution from indirect CPV suppressed by difference in mean decay time)

$$
\Delta \mathrm{a}_{\mathrm{CP}}{ }^{\text {dir }}=(-0.68 \pm 0.15) \%
$$

Naïvely expected to be much smaller in the Standard Model

Must prepare ourselves for \% level measurements
... are we too naïve?
Or can we discover NP by better understanding of QCD?

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_{d} and B_{s} systems negligibly small in the $S M$
D0 PRD 84 (2011) 052007
arXiv:1207.1769, arXiv:1208.5813
LHCb-CONF-2012-022
Results of inclusive dimuon asymmetry analysis 3.9σ from SM

Systematics reduced by magnet polarity inversions, and from use of control samples, such as single muon sample
$\mathrm{A}_{\mathrm{sl}}{ }^{\mathrm{b}}=(0.594 \pm 0.022) \mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{d}}+(0.406 \pm 0.022) \mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{s}}$
Constraint in $\mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{d}}-\mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{s}}$ plane obtained from oscillated B_{d} or B_{s} enriched samples (cutting on impact parameter)

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_{d} and B_{s} systems negligibly small in the $S M$

$$
\begin{gathered}
\text { D0 PRD } 84 \text { (2011) } 052007 \\
\text { arXiv:1207.1769, arXiv:1208.5813 } \\
\text { LHCb-CONF-2012-022 }
\end{gathered}
$$

Results of inclusive dimuon asymmetry analysis 3.9σ from SM

Including results on $\mathrm{a}_{\mathrm{sl}}{ }^{d}$ and $\mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{s}}$ individually (from $D^{(*)+} \mu^{-} v X$ and $D_{s}^{+} \mu^{-} v X$ samples) puts combination at 2.9σ from SM

Is there CP violation in B mixing?

Semileptonic asymmetries in both B_{d} and B_{s} systems negligibly small in the $S M$
D0 PRD 84 (2011) 052007
arXiv:1207.1769, arXiv:1208.5813
LHCb-CONF-2012-022
Results of inclusive dimuon asymmetry analysis 3.9 σ from SM

Including results on $\mathrm{a}_{\mathrm{sl}}{ }^{d}$ and $\mathrm{a}_{\mathrm{sl}}{ }^{\mathrm{s}}$ individually (from $D^{(*)+} \mu^{-} v X$ and $D_{s}^{+} \mu^{-} v X$ samples) puts combination at 2.9σ from SM

Including B factory $\mathrm{a}_{\mathrm{sl}}{ }^{d}$ and LHCb $\mathrm{a}_{\mathrm{sl}}{ }^{s}$ results give average 2.4 σ from the SM

Situation unclear improved measurements needed

Must prepare ourselves for \% level measurements

> New results from BaBar to be presented in WGIV

The Unitarity Triangle

Disclaimer (I): other fitter groups are available Disclaimer (ii): other Unitarity Triangles are available (but this one really does deserve to be called "The" Unitarity Triangle)

$\alpha \equiv \varphi_{2}$

 $\equiv \pi-\beta-\gamma \equiv \pi-\varphi_{1}-\varphi_{3}$Constraints from $\pi \pi, \rho \pi, \rho \rho$ (also $a_{1} \pi$). Combination dominated by $\rho \rho-$ strong influence of single measurement of $\mathrm{B}^{+} \rightarrow \rho^{+} \rho^{0}$

How well do we really know α ?

New results from BaBar to be presented in ${ }^{0.8}$-WGIV

Precision on y from tree-level decays ($B \rightarrow D K$) has stubbornly refused to go below 10° despite great efforts

Precise measurements of several key observables now exist ... are we on the verge of more precise knowledge of y ?

Perennial question for CKM workshops: how to extract clean (but still NP sensitive) weak phase information from hadronic B decays?
$A_{C P}\left(K^{-} \pi^{+}\right)-A_{C P}\left(K^{-} \pi^{0}\right) \neq 0$ puzzle persists

CDF note 10726

LHCb PRL 108 (2012) 201601

LHCb-CONF-2012-007

The sides of the UT

Continued progress on measurements sensitive to $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|,\left|\mathrm{V}_{\text {td }}\right|$ \& $\left|\mathrm{V}_{\mathrm{ts}}\right|$

$\left|\mathrm{V}_{\text {ub }}\right|$ from $\{\mathrm{in}, \mathrm{ex}\} \mathrm{clusive}$ semileptonic decays

PBFLB based on
BaBar PRD 83 (2011) 052011 \&
PRD 83 (2011) 032007
Belle PRD 83 (2011) 071101(R)

Some tension between exclusive and inclusive results. PBFLB concludes:

$$
\begin{aligned}
\left|V_{\mathrm{ub}}\right|_{\text {excl }} & =\left[3.23\left(1 \pm 0.05_{\exp } \pm 0.08_{\text {th }}\right)\right] \times 10^{-3} \\
\left|V_{\mathrm{ub}}\right|_{\text {incl }} & =\left[4.42\left(1 \pm 0.045_{\exp } \pm 0.034_{\text {th }}\right)\right] \times 10^{-3} .
\end{aligned}
$$

This average has a probability of $P\left(\chi^{2}\right)=0.003$. Thus we scale the error by $\sqrt{\chi^{2}}=3.0$ and arrive at

$$
\left|V_{\mathrm{ub}}\right|=\left[3.95\left(1 \pm 0.096_{\exp } \pm 0.099_{\mathrm{th}}\right)\right] \times 10^{-3}
$$

Similar tension also for $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Better understanding needed to reduce uncertainty

$B \rightarrow T V \& B \rightarrow D(*) T V$

BaBar arXiv:1207.0698 Belle arXiv:1208.4678 M. Nakao @ ICHEP

BaBar (2010) semilep-tag BaBar (2012) hadronic-tag BaBar (combined) with correlations Belle (2010) [657M] (2010) semilep-tag Belle (2012) hadronic-tag Belle (combined) with correlations W.A. private average (MN)

Tim Gershon
Learned from/Experiment

Significance (from 0) below the usual threshold to claim observation

BaBar PRL 109 (2012) 101802 Belle PRD82 (2010) 072005

$\square \bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau} \quad \square \bar{B} \rightarrow D \ell^{-} \bar{\nu}_{\ell} \quad \square \bar{B} \rightarrow D^{* *}\left(\ell^{-} / \tau^{-} \bar{\nu}\right.$
$\square \bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau} \quad \otimes \bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell} \quad \square$ Backgromad

What do we know about rare decays?

héanned front Experivinens

Two routes to heaven

for heavy quark flavour physics

Rare decays
(strong theoretical arguments)
But

- How high is the NP scale?
- Why have FCNC effects not been seen?

b \rightarrow sy

The archetypal FCNC decay

New results on both inclusive properties and exclusive modes

BaBar arXiv:1207.5772

LHCb arXiv:1209.0313

... but still interesting possibilities for NP searches

$\mathrm{A}_{\mathrm{FB}}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu^{+} \mu^{-}\right)$

LHCb-CONF-2012-008

First measurement of the zero-crossing point of the forward-backward asymmetry

$$
\mathrm{q}_{0}^{2}=\left(4.9_{-1.3}^{+1.1}\right) \mathrm{GeV}^{2}
$$

(SM predictions in the range $4.0-4.3 \mathrm{GeV}^{2}$)
$\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mu^{+} \mu^{-}$
Updates hotly anticipated

CMS (5/fb) JHEP 04 (2012) 033

ATLAS B $\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<2.2(1.9) \times 10^{-8} @ 95 \%(90 \%)$ CL CMS B $\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)<7.7(6.4) \times 10^{-9} @ 95 \%(90 \%) \mathrm{CL}$

Learned from/Experiment

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$

LHCb (1/fb) PRL 108 (2012) 231801

Standard Model expectation, e.g. $(3.2 \pm 0.3) \times 10^{-9}$
Buras et al, arXiv:1208.0934
N.B. Should be corrected up by 9\% since time-integrated branching fraction is measured (arXiv:1204.1737)

Don't forget the bread and butter

- Most hadron collider heavy flavour results are ratios
- e.g.

$$
\begin{aligned}
& B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}\right)=B\left(\mathrm{~B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}\right) \times B\left(\mathrm{~J} / \Psi \rightarrow \mu^{+} \mu^{-}\right) \times \mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}} \mathrm{x} \\
& \quad\left\{\left[\mathrm{~N}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}\right) / \varepsilon\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}\right)\right] /\left[\mathrm{N}\left(\mathrm{~B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}\right) / \varepsilon\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}\right)\right]\right\}
\end{aligned}
$$

- where

$$
\begin{aligned}
& f_{s} / f_{d}=\left\{\left[N\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} X\right) / \varepsilon\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} X\right)\right] /\left[N\left(B^{0} \rightarrow D^{-} \mu^{+} X\right) / \varepsilon\left(B^{0} \rightarrow D^{-} \mu^{+} X\right)\right]\right\} \times \\
& \quad\left[\tau\left(B^{0}\right) / \tau\left(B_{s}^{0}\right)\right] \times\left[B\left(D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}\right) / B\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)\right]
\end{aligned}
$$

(simplified expressions given here; other methods to determine $f_{s}^{f} f_{d}$ also rely on $B\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)$

- Limiting factor will become uncertainty on $B\left(D_{s}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{-}\right)$
- Improved measurements of basic quantities can have significant impact

Belle Charm 2012 preliminary (spin-off of $D_{s} \rightarrow T V$ analysis)

Some morals

- Worship the accelerator gods
- Investment in detectors \& techniques brings rewards
- Interesting effects might be very big ...
... or very small \rightarrow be prepared to be precise
... but it seems like there are no O(1) deviations from the SM
- Clean theoretical predictions are to be treasured ...
... data-driven methods to control uncertainties also to be valued
- 3σ often goes away, but 5σ seems to stay
... but investigating anomalies is worth the effort
- sure to learn something (about physics, systematics or statistics)
- Bread and butter can be needed before a feast
- New physics just might be around the corner .
... plenty to look forward to in CKM2012 ... and beyond

