

Inclusive and exclusive $b \rightarrow sl^+l^-$ and $b \rightarrow s\gamma$ decays at BaBar

Tim Gershon University of Warwick

11 September 2014

European Research Council

Outline

- Flavour-changing neutral current B decays are sensitive to physics beyond the Standard Model
- Various observables can be constructed to test the SM: rates, asymmetries (kinematic, isospin, CP)
 - Results can be used to constrain Wilson coefficients
- BaBar collaboration has published many such measurements, but still has a few up its sleeve. Recent results include
 - $B \rightarrow X_s \gamma : A_{CP} \& \Delta A_{CP}$ arXiv:1406.0534 (submitted to PRD)
 - − B → $X_s I^+I^-$: ΔB/Δq² & A_{CP} PRL 112 (2014) 211802

ו Gersho

sl⁺l⁻ & b _

– B \rightarrow K $\pi\pi\gamma$: photon polarisation preliminary (to be submitted to PRD)

2

Context setting – prior results

PRL 109 (2012) 191801 & PR D86 (2012) 112008

PR D86 (2012) 032012

arXiv:1406.0534

CP asymmetries in B \rightarrow X γ

- To study CP asymmetries in B \rightarrow X_sy & B \rightarrow X_dy separately
 - cannot use fully inclusive approach
 - instead, use "semi-inclusive" (i.e. sum of exclusive) technique
 - many modes studies; 10 B⁺ & 6 B⁰ decays used for final measurement (marked with *)
 - require

im Gershor

sl⁺l⁻ & b → s

- 0.6 < m(X_s) < 2.0 GeV
 - -corresponds ~ to B rest frame cut of $E_y > 2.3$ GeV
- |ΔE| < 0.15 GeV
- MVA to reject $q\overline{q}$ background

$1 \checkmark B^+ \rightarrow K_S \pi^+ \gamma$	$20 B^{\circ} \to K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
$2 \checkmark B^+ \rightarrow K^+ \pi^0 \gamma$	$21 B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
$3 \checkmark B^0 \rightarrow K^+ \pi^- \gamma$	22 $B^0 \rightarrow K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
$4 B^0 \rightarrow K_S \pi^0 \gamma$	$23 \checkmark B^+ \rightarrow K^+ \eta \gamma$
$5 \checkmark B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$	$24 B^0 \rightarrow K_S \eta \gamma$
$6^{\clubsuit} B^+ \rightarrow K_S \pi^+ \pi^0 \gamma$	25 $B^+ \rightarrow K_S \eta \pi^+ \gamma$
$7 \checkmark B^+ \rightarrow K^+ \pi^0 \pi^0 \gamma$	$26 B^+ \rightarrow K^+ \eta \pi^0 \gamma$
8 $B^0 \rightarrow K_S \pi^+ \pi^- \gamma$	$27^{\bullet} B^0 \rightarrow K^+ \eta \pi^- \gamma$
$9 \checkmark B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$	28 $B^0 \rightarrow K_S \eta \pi^0 \gamma$
$10 B^0 \rightarrow K_S \pi^0 \pi^0 \gamma$	29 $B^+ \rightarrow K^+ \eta \pi^+ \pi^- \gamma$
$11 \checkmark B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \gamma$	$30 B^+ \rightarrow K_S \eta \pi^+ \pi^0 \gamma$
$12 \triangleright B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31 $B^0 \rightarrow K_S \eta \pi^+ \pi^- \gamma$
$13 \checkmark B^+ \rightarrow K_S \pi^+ \pi^0 \pi^0 \gamma$	$32 B^0 \rightarrow K^+ \eta \pi^- \pi^0 \gamma$
$14 \checkmark B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \gamma$	$33 \clubsuit B^+ \rightarrow K^+ K^- K^+ \gamma$
15 $B^0 \rightarrow K_S \pi^0 \pi^+ \pi^- \gamma$	$34 B^0 \rightarrow K^+ K^- K_S \gamma$
$16 \checkmark B^0 \rightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$	$35 B^+ \rightarrow K^+ K^- K_S \pi^+ \gamma$
17 $B^+ \rightarrow K^+ \pi^+ \pi^- \pi^+ \pi^- \gamma$	$36 B^+ \rightarrow K^+ K^- K^+ \pi^0 \gamma$
18 $B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	$37 \checkmark B^0 \rightarrow K^+ K^- K^+ \pi^- \gamma$
19 $B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	$38 B^0 \rightarrow K^+ K^- K_S \pi^0 \gamma$

5

CP asymmetries in $B \rightarrow X_{s}\gamma$

- Raw asymmetry (from fitted yields) corrected for
 - Detection asymmetry, taken from sidebands
 - $(-1.4 \pm 0.7)\%$
 - Possible asymmetry from peaking backgrounds

arXiv:1406.0534

CP asymmetries in B $\rightarrow X_{s}\gamma$

Results

$$A_{CP}(B^{+} \rightarrow X_{s}^{+}\gamma) = (+4.23 \pm 2.93 \pm 0.95)\%$$
$$A_{CP}(B^{0} \rightarrow X_{s}^{0}\gamma) = (-0.74 \pm 2.57 \pm 1.10)\%$$

→ Average

 $A_{CP}(B \rightarrow X_{s}\gamma) = (+1.7 \pm 1.9 \pm 1.0)\%$

→ Difference

Differential branching fraction and CP asymmetries in B $\rightarrow X_s I^+I^-$

- Similar "semi-inclusive" approach, but smaller set of modes used (since fewer events)
 - $$\begin{split} &-X_{s}=\{\mathsf{K}^{+},\,\mathsf{K}^{+}\pi^{0},\,\mathsf{K}^{+}\pi^{-},\,\mathsf{K}^{+}\pi^{-}\pi^{0},\,\mathsf{K}^{+}\pi^{-}\pi^{+},\,\mathsf{K}_{s},\,\mathsf{K}_{s}\pi^{0},\,\mathsf{K}_{s}\pi^{+},\\ &-\mathsf{K}_{s}\pi^{+}\pi^{0},\,\mathsf{K}_{s}\pi^{+}\pi^{-}\};\,\mathsf{m}(\mathsf{X}_{s})<\mathsf{1.8~GeV} \end{split}$$
 - expected to account for ~70% of the rate (after correcting for $K_s \leftrightarrow K_L$ and $K_s \rightarrow \pi^0 \pi^0$)
 - only self-tagging modes used for $A_{\rm CP}$ measurement
 - $|+| = \{e^+e^-, \mu^+\mu^-\};$ fit in bins of $m^2(|+|) = q^2$
 - require -0.1 (-0.05) < ΔE < 0.05 GeV for I+I- = e+e- (μ + μ -)

Differential branching fraction and CP asymmetries in B \rightarrow X I^+I^-

- Simultaneous fit to m_{FS} and likelihood ratio variable L
- Example plots for lowest q^2 bin; $e^+e^- \& \mu^+\mu^-$

sl⁺l⁻ & b → sy

Differential branching fraction and CP asymmetries in B $\rightarrow X_s I^+I^-$

Results

CP asymmetry consistent with zero. Integrated value $(q^2 > 0.1 GeV^2)$

 $A_{CP} = 0.04 \pm 0.11 \pm 0.01$

Photon polarisation in $B \to K \pi \pi \gamma$

- Photon polarisation in $b \to s \gamma$ transitions excellent probe for physics beyond SM
- Powerful method from time-dependent asymmetries of B^o (also B_s^o) decays
 - if photon 100% polarised (~ as in SM), B and \overline{B} give different final states → no interference: S = 0
 - if less polarised, interference term appears: $S \sim sin(2\psi) sin(\Phi)$
 - ψ ~ polarisation; Φ ~ CP violation (PRL 79 (1997) 185, PRD71 (2005) 076003)
- Problem to accumulate enough statistics for a sensitive measurement
 - results from both BaBar and Belle on $B^{0}\!\rightarrow\!(K_{s}\pi^{0})_{\!\mathsf{K}^{*}}\gamma$
 - desirable to add more final states, e.g. $B^0 \rightarrow K_s \rho^0 \gamma$

Photon polarisation in $B \to K \pi \pi \gamma$

- Due to width of ρ meson, necessary to determine dilution factor
 - due to contributions from flavour-specific $B \to K^*\pi\gamma$ amplitude
 - $D_{K\rho\gamma} = S_{K\rho\gamma}/S_{K\pi\pi\gamma} = 0.549 + 0.096_{-0.094}$ (obtained from B⁺ \rightarrow K⁺ $\pi^+\pi^-\gamma$ decays)

Aside: $K\pi\pi$ hadronic system

- Increasing number of channels analysed where understanding of the ${\sf K}\pi\pi$ hadronic system is important
 - $B \rightarrow (K\pi\pi) \pi$ BaBar PR D81 (2010) 052009
 - $B \rightarrow (K\pi\pi) J/\psi \text{ Belle} \qquad \text{PR D83 (2011) 032005}$
 - $B \rightarrow (K\pi\pi) D$ LHCb LHCb-CONF-2012-021
 - $B \rightarrow (K\pi\pi) \gamma$ BaBar preliminary
 - $B \rightarrow (K\pi\pi) \gamma$ LHCb PRL 112 (2014) 161801
 - $B \rightarrow (K\pi\pi) \mu\mu$ LHCb 1408.1137
- Possible benefit from developing common tools to handle hadronic system?
 - (same also true for the $\ensuremath{\mathsf{K}}\pi$ system)

Photon polarisation in $B \rightarrow K\pi\pi\gamma$

• Fit to $B^0 \rightarrow K_s \pi^+\pi^-\gamma$ sample

THE Tim Gershon OF WAb→sl⁺h&b→sv

14

Summary

- BaBar continues to produce important results searching for new physics in FCNCs
 - several novel approaches investigated
- All results consistent with SM
- All statistically limited
 - expect that this work will be pursued by future experiments

Differential branching fraction and CP asymmetries in B $\rightarrow X_s^{I^+I^-}$

• Results

Bin	Range	$B \rightarrow X_s e^+ e^-$	$B \rightarrow X_s \mu^+ \mu^-$	$B \rightarrow X_s \ell^+ \ell^-$	$A_{CP B \rightarrow X_s \ell + \ell}$
q_{0}^{2}	$1.0 < q^2 < 6.0$	$1.93^{+0.47}_{-0.45}{}^{+0.21}_{-0.16} \pm 0.18$ (1.71)	$0.66^{+0.82}_{-0.76}{}^{+0.30}_{-0.24} \pm 0.07 \ (1.78)$	$1.60^{+0.41}_{-0.39}{}^{+0.17}_{-0.13}\pm0.18$	$-0.06 \pm 0.22 \pm 0.01$
q_{1}^{2}	$0.1 < q^2 < 2.0$	$3.05^{+0.52}_{-0.49}^{+0.29}_{-0.21} \pm 0.35$ (1.96)	$1.83^{+0.90}_{-0.80}_{-0.24} \pm 0.20$ (2.02)	$2.70^{+0.45+0.21}_{-0.42-0.16} \pm 0.35$	$-0.13 \pm 0.18 \pm 0.01$
q_{2}^{2}	$2.0 < q^2 < 4.3$	$0.69^{+0.31}_{-0.28}^{+0.11}_{-0.07} \pm 0.07 (1.73)$	$-0.15^{+0.50}_{-0.43} + 0.01_{-0.14} \pm 0.01_{-0.180}$	$0.46^{+0.26}_{-0.23}^{+0.10}_{-0.06} \pm 0.07$	$0.42 + 0.50 \\ -0.42 \pm 0.01$
q_{3}^{2}	$4.3 < q^2 < 6.8$	$0.69^{+0.31+0.13}_{-0.29-0.10} \pm 0.05$ (1.53)	$0.34^{+0.54}_{-0.50}$ $^{+0.19}_{-0.15} \pm 0.03 (1.59)$	$0.60^{+0.27+0.10}_{-0.25-0.08} \pm 0.05$	$-0.45^{+0.44}_{-0.57} \pm 0.01$
q_{4}^{2}	$10.1 < q^2 < 12.9$	$1.14^{+0.42+0.22}_{-0.40-0.10} \pm 0.04$ (1.16)	$0.87^{+0.51}_{-0.47}^{+0.51}_{-0.08} \pm 0.03$ (1.18)	$1.02^{+0.32}_{-0.30}_{-0.07} \pm 0.04$	
q_{5}^{2}	$14.2 < q^2$	$0.56^{+0.19}_{-0.18}^{+0.03}_{-0.03} \pm 0.00 (1.02)$	$0.60^{+0.31}_{-0.29}^{+0.05}_{-0.04} \pm 0.00 (1.02)$	$0.57^{+0.16}_{-0.15}^{+0.03}_{-0.02} \pm 0.00$	
q_{45}^2	$q_4^2 \cup q_5^2$	—	—	—	$0.19 \ ^{+0.18}_{-0.17} \pm 0.01$
$m_{X_s,1}$	$0.4 < m_{X_s} < 0.6$	$0.69^{+0.18}_{-0.17}^{+0.04}_{-0.03} \pm 0.00 \ (1.00)$	$0.74^{+0.25}_{-0.23}^{+0.04}_{-0.04} \pm 0.00$ (1.00)	$0.71^{+0.15}_{-0.14}^{+0.03}_{-0.03} \pm 0.00$	
$m_{X_s,2}$	$0.6 < m_{X_s} < 1.0$	$1.20^{+0.34}_{-0.33}^{+0.10}_{-0.07} \pm 0.00 (1.00)$	$0.76^{+0.44}_{-0.40}^{+0.08}_{-0.07} \pm 0.00 (1.00)$	$1.02^{+0.27}_{-0.25}^{+0.06}_{-0.05} \pm 0.00$	
$m_{X_s,3}$	$1.0 < m_{X_s} < 1.4$	$1.60^{+0.72+0.27}_{-0.69-0.19} \pm 0.05$ (1.18)	$0.65^{+1.16}_{-1.08}^{+0.27}_{-0.25} \pm 0.02$ (1.18)	$1.32^{+0.61}_{-0.58}^{+0.19}_{-0.15} \pm 0.05$	
$m_{X_s,4}$	$1.4 < m_{X_s} < 1.8$	$1.88^{+0.76}_{-0.73}^{+0.71}_{-0.47} \pm 0.12$ (1.91)	$0.19^{+1.35}_{-1.25}^{+0.70}_{-0.50} \pm 0.10$ (1.91)	$1.36^{+0.67}_{-0.63}{}^{+0.50}_{-0.34}\pm0.12$	
Total	$0.1 < q^2$	$7.69^{+0.82}_{-0.77}{}^{+0.50}_{-0.33}\pm0.50$	$4.41^{+1.31}_{-1.17}{}^{+0.57}_{-0.42} \pm 0.27$	$6.73^{+0.70}_{-0.64}{}^{+0.34}_{-0.25}\pm0.50$	$0.04 \pm 0.11 \pm 0.01$

Photon polarisation in $B \to K \pi \pi \gamma$

Mode	$\frac{\mathcal{B}(B^+ \to \text{Mode}) \times}{\mathcal{B}(K_{\text{res}} \to K^+ \pi^+ \pi^-) \times 10^{-5}}$	$_{-6}$ $\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$	PDG values $(\times 10^{-6})$
Inclusive $B^+ \to K^+ \pi^+ \pi^- \gamma$		$27.2 \pm 1.0^{+1.1}_{-1.3}$	27.6 ± 2.2
$K_1(1270)^+\gamma$	$14.5^{+2.0+1.1}_{-1.3-1.2}$	$44.0^{+6.0}_{-4.0}{}^{+3.5}_{-3.7}\pm4.6$	43 ± 13
$K_1(1400)^+\gamma$	$4.1^{+1.9+1.3}_{-1.2-0.8}$	$9.7^{+4.6+3.1}_{-2.9-1.8}\pm0.6$	$<15~\mathrm{CL}{=}90\%$
$K^*(1410)^+\gamma$	$9.7\substack{+2.1+2.4\\-1.9-0.7}$	$23.8^{+5.2}_{-4.6}{}^{+5.9}_{-1.4}\pm2.4$	Ø
$K_2^*(1430)^+\gamma$	$1.5^{+1.2+0.9}_{-1.0-1.4}$	$10.4^{+8.7}_{-7.0}{}^{+6.3}_{-9.9}\pm0.5$	14 ± 4
$K^*(1680)^+\gamma$	$17.0^{+1.7}_{-1.4}{}^{+3.5}_{-3.0}$	$71.7^{+7.2+15}_{-5.7-13}\pm 5.8$	<1900 CL= $90%$
	$\mathcal{P}(\mathbf{P}^{\pm} \rightarrow \mathbf{M}_{odo})$		DDC reduce
Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times \mathcal{B}(R \to hh) \times 10^{-6}$	$\mathcal{B}(B^+ \to \mathrm{Mode}) \times 10^{-6}$	$(\times 10^{-6})$
Inclusive $B^+ \to K^+ \pi^+ \pi^- \gamma$		$27.2 \pm 1.0^{+1.1}_{-1.3}$	27.6 ± 2.2
$K^{*0}(892)\pi^+\gamma$	$17.3\pm0.9^{+1.2}_{-1.1}$	$26.0^{+1.4}_{-1.3}{\pm}1.8$	20^{+7}_{-6}
$K^+\rho(770)^0\gamma$	$9.1^{+0.8}_{-0.7}{\pm}1.3$	$9.2^{+0.8}_{-0.7}{\pm}1.3\pm0.02$	<20 CL= $90%$
$(K\pi)_0^{*0}\pi^+\gamma$	$11.3 \pm 1.5 \substack{+2.0 \\ -2.6}$		Ø
$(K\pi)^0_0\pi^+\gamma~({\rm NR})$		$10.8^{+1.4+1.9}_{-1.5-2.5}$	< 9.2 CL= $90%$
$K_{0}^{*}(1430)^{0}\pi^{+}\gamma$	$0.51\pm0.07^{+0.09}_{-0.12}$	$0.82\pm0.11^{+0.15}_{-0.19}\pm0.08$	Ø

Tim Gershon b→sl⁺l⁻&b→sy