

Recent results from the B factories on multi-body charmless B decays

Tim Gershon,
University of Warwick
on behalf of the BaBar \& Belle collaborations

CKM2016, 29 ${ }^{\text {th }}$ November 2016

selected results from the B factories on multi-body charmless B decays

Tim Gershon,
University of Warwick
on behalf of the BaBar \& Belle collaborations

CKM2016, 29 ${ }^{\text {th }}$ November 2016

A potential treasure trove

- Multi-body charmless B decays have (in general)
- contributions from both tree and penguin diagrams
- potential for large CP violation effects ...
- ... and for new physics contributions
- various overlapping resonant \& nonresonant structures
- possibility to determine relative phases via amplitude analysis
- not accessible for 2-body decays
- need for accurate modelling of lineshapes
- large samples available, with even more to look forward to soon
- Huge potential ... but equally huge challenges

Snyder-Quinn method for α

Measuring $C P$ asymmetry in $B \rightarrow \rho \pi$ decays without ambiguities
Arthur E. Snyder and Helen R. Quinn
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (Received 24 February 1993)

- Methods to measure α exploit time-dependent $C P$ violation in B_{d} decays via $b \rightarrow u$ transitions (eg. $B_{d} \rightarrow \pi^{+} \pi^{-}$)

PRL 65 (1990) 3381

- Penguin "pollution" can be subtracted using Gronau-London isospin triangles built from $A\left(\pi^{+} \pi^{-}\right), A\left(\pi^{+} \pi^{0}\right), A\left(\pi^{0} \pi^{0}\right)$
- Expect discrete ambiguities in the solution for α
- Ambiguities can be resolved if you measure
 both real and imaginary parts of $\lambda=(q / p)(\overline{\mathrm{A}} / \mathrm{A})$
- ie. measure $\cos (2 \alpha)$ as well as $\sin (2 \alpha)$

Toy model for $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plot Contributions only from $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}$and $\rho^{0} \pi^{0}$

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Belle, 449 M BB̄ pairs: PRL 98 (2007) 221602, PR D77 (2008) 072001
- BaBar, 471 M BB̄ pairs: PR D88 (2013) 012003

${ }^{\text {THE Tim Gershon }}$

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

$\pi^{+} \pi^{-} \pi^{0} \mathbf{U}$ parameters
HFAG
Moriond 2014 PRELIMINARY

-2

$\pi^{+} \pi^{-} \pi^{0}$ I parameters

HFAG
 Moriond 2014 PRELIMINARY

-2
-1
0

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Belle, 449 M BB̄ pairs: PRL 98 (2007) 221602, PR D77 (2008) 072001
- BaBar, 471 M B̄̄ pairs: PR D88 (2013) 012003

THE Tim Gershon
Wcharmesp B decays

$B \rightarrow \pi^{+} \pi^{-} \pi^{0}-B$ factory results

- Results from
- Belle, 449 M B B pairs: PRL 98 (2007) 221602, PR D77 (2008) 072001
- BaBar, 471 M BĒ pairs: PR D88 (2013) 012003

Contour from $B \rightarrow \pi^{+} \pi^{-} \pi^{0}$ only
Σ

"the extraction of α with our current sample size is not robust"

$\mathrm{B} \rightarrow \mathrm{K} \pi \pi$

- Method to constrain y from $B \rightarrow K \pi \pi$ Dalitz plot (DP) analyses
- See PRD 74 (2006) 051301, PRD 75 (2007) 014002

$$
\mathcal{A}_{\frac{3}{2}}\left(K^{*} \pi\right)=\frac{1}{\sqrt{2}} \mathcal{A}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)+\mathcal{A}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)
$$

- Construct pure $I=3 / 2$ amplitude for B and \bar{B}
- Dalitz plot analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$
- Relative phase between B and \bar{B} gives y
- Dalitz plot analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$
- corrections due to electroweak penguins

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$

454 M B \bar{B} pairs

- Signal yield of $3670 \pm 96 \pm 94$ decays
- separated from background with $\Delta E^{\prime}, m_{E S}$ and neural network (NN)
- n.b.: $\Delta \mathrm{E}$ ' modified version of standard $\Delta \mathrm{E}$ ' variable; removes dependence on π^{0} energy \& hence DP position
- Branching fraction measured
- $B\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}\right)=[38.5 \pm 1.0($ stat. $) \pm 3.9$ (syst.) $] \times 10^{-6}$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$

Results need to construct isospin triangles			
Isobar	$\mathcal{B}\left(\times 10^{-6}\right)$	$\bar{\Phi}\left[^{\circ}\right]$	$\Phi\left[^{\circ}\right]$

$\rho(770)^{-} K^{+}$	$6.6 \pm 0.5 \pm 0.8$	0 (fixed)	0 (fixed)	$0.20 \pm 0.09 \pm 0.08$
$\rho(1450)^{-} K^{+}$	$2.4 \pm 1.0 \pm 0.6$	$75 \pm 19 \pm 9$	$126 \pm 25 \pm 26$	$-0.10 \pm 0.32 \pm 0.09$
$\rho(1700)^{-} K^{+}$	$0.6 \pm 0.6 \pm 0.4$	$18 \pm 36 \pm 16$	$50 \pm 38 \pm 20$	$-0.36 \pm 0.57 \pm 0.23$
$K^{*}(892)^{+} \pi^{-}$	$8.0 \pm 1.1 \pm 0.8$	$33 \pm 22 \pm 20$	$39 \pm 25 \pm 20$	$-0.29 \pm 0.11 \pm 0.02$
$K^{*}(892)^{0} \pi^{0}$	$3.3 \pm 0.5 \pm 0.4$	$29 \pm 18 \pm 6$	$17 \pm 20 \pm 8$	$-0.15 \pm 0.12 \pm 0.04$
$(K \pi)_{0}^{*+} \pi^{-}$	$34.2 \pm 2.4 \pm 4.1$	$-167 \pm 16 \pm 37$	$-130 \pm 22 \pm 22$	$0.07 \pm 0.14 \pm 0.01$
$(K \pi)_{0}^{* 0} \pi^{0}$	$8.6 \pm 1.1 \pm 1.3$	$13 \pm 17 \pm 12$	$10 \pm 17 \pm 16$	$-0.15 \pm 0.10 \pm 0.04$
NR	$2.8 \pm 0.5 \pm 0.4$	$48 \pm 14 \pm 6$	$90 \pm 21 \pm 15$	$0.10 \pm 0.16 \pm 0.08$

$$
\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{*^{+}} \pi^{-}\right)=-0.24 \pm 0.07 \text { (stat.) } \pm 0.02 \text { (syst.) }[3.1 \sigma]
$$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$

Isospin triangles drawn to scale of experimental results (without uncertainties)

Cancellation makes pure $\mathrm{I}=3 / 2$ amplitude small - impossible to determine its relative phase

Method may work better for pK amplitudes - but current uncertainty is large

The $\mathrm{B} \rightarrow \mathrm{K} \pi$ puzzle

- QCD may also be a cause of apparently anomalous CP violation effects

$$
\begin{aligned}
\Delta A_{\mathrm{CP}}(\mathrm{~K} \pi)= & \mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{-}\right)-\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{0}\right) \neq 0 \\
& -0.082 \pm 0.006 \\
\text { e.g. LHCb PRL } 110 & \text { e.g. Belle PR D87 } \\
& \text { (2013) } 221601
\end{aligned}
$$

- Look for similar effects in $\mathrm{K}^{*} \pi$ \& $\mathrm{K} \rho$ systems

Precision of PV modes often worse as all available data not yet analysed

$K * \pi$ $K \rho$

$$
-0.23 \pm 0.06
$$

e.g. BaBar PR D83 (2011) 112010

$$
-0.39 \pm 0.13
$$

e.g. BaBar
arXiv:1501.00705
$+0.37 \pm 0.11$
e.g. BaBar PR D83 BaBar PR D78 (2008) (2011) $112010 \quad 012004$ \& Belle PRL 96
(2006) 251803

$$
\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}
$$

- Signal yield of 1014 ± 60 decays
- Separated from background with $\Delta E, m_{E S}$ and boosted decision tree (BDT) output
- Simultaneous fit with Dalitz plot distribution
- Dependence of $\Delta \mathrm{E}$ on π^{0} energy treated with conditional PDF

Evidence for CP violation in $\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+} \pi^{0}$

$B^{+} \rightarrow K_{s} \pi^{+} \pi^{0}$

arXiv:1501.00705

Evidence for CP violation in $\mathrm{B}^{+} \rightarrow \mathrm{K}^{++} \pi^{0}$	
Decay channel	$A_{C P}$
$K^{0} \pi^{+} \pi^{0}$	$0.07 \pm 0.05 \pm 0.03_{-0.03}^{+0.02}$
$K^{*}(892)^{0} \pi^{+}$	$-0.12 \pm 0.21 \pm 0.08_{-0.11}^{+0.0}$
$K^{*}(892)^{+} \pi^{0}$	$-0.52 \pm 0.14 \pm 0.04_{-0.02}^{+0.04}$
$K_{0}^{*}(1430)^{0} \pi^{+}$	$0.14 \pm 0.10 \pm 0.04_{-0.05}^{+0.13}$
$K_{0}^{*}(1430)^{+} \pi^{0}$	$0.26 \pm 0.12 \pm 0.08_{-0.0}^{+0.12}$
$\rho(770)^{+} K^{0}$	$0.21 \pm 0.19 \pm 0.07_{-0.19}^{+0.23}$

471 M B \bar{B} pairs

Summary

- Much physics potential in charmless hadronic decays ...
- and in three-body decays in particular
- Need smart methods to overcome hadronic uncertainties
- These often involve analyses of >1 Dalitz plot
- cannot rely on only all-charged final states
- need modes with K_{s} \&/or π^{0} too
- often highly challenging but have been successfully analysed
- Despite many publications, there is still untapped potential in existing data samples
- even more soon to come with Belle II

B factory
 Dalitz plot analyses

$\mathrm{K}^{+} \mathrm{K}^{+} \mathrm{K}^{-}$	PR D85 (2012) 112010	PR D71 (2005) 092003
$\mathrm{K}^{+} \mathrm{K}^{+} \mathrm{K}_{\mathrm{s}}$	PR D85 (2012) 112010	PR D82 (2010) 073011
$\mathrm{K}^{+} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	PR D85 (2012) 112010	No amplitude analysis
$\mathrm{K}_{s} \mathrm{~K}_{s} \mathrm{~K}_{s}$	PR D85 (2012) 054023	No amplitude analysis
$\mathrm{K}^{+} \pi^{+} \pi^{-}$	PR D78 (2008) 012004	PRL 96 (2006) 251803
$\mathrm{K}_{s} \pi^{+} \pi^{-}$	PR D80 (2009) 112001	PR D79 (2009) 072004
$\mathrm{K}^{+} \pi^{-} \Pi^{0}$	PR D83 (2011) 112010	No amplitude analysis
$\mathrm{K}_{s} \pi^{+} \pi^{0}$	arXiv:1501.00705	No amplitude analysis
$\pi^{+} \pi^{+} \pi^{-}$	PR D79 (2009) 072006	No amplitude analysis
$\pi^{+} \pi^{+} \pi^{0}$	PR D88 (2013) 012003	PR D77 (2008) 072001

[^0]

Aside: $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$?

- Similar method works, in principle, for $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$
- Tagged time-dependent analysis not possible at B-factories, but could be done at LHCb
- Yields available are, however, small

Aside: $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{KK} \pi$?

- Similar method works, in principle, for $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{KK} \pi$
- Tagged time-dependent analysis not possible at B-factories, but could be done at LHCb
- Reasonable yields available, but low tagging power
$-\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{K}^{+-} \pi^{-+}$requires double Dalitz plot analysis (two final states)

Observation of $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{K}^{+-} \pi^{-+}$

[^0]: All modes with 0,1 or 3 kaons $\left(K^{ \pm}\right.$or $\left.K_{s}\right)$ \& 0 or $1 \pi^{0}$

