

European Research Council

Overview of the CKM Matrix Tim Gershon University of Warwick & CERN

Lepton Photon 2011 The XXV International Symposium on Lepton Photon Interactions at High Energies

27th August 2011

With thanks to numerous contributing experiments, theorists, fitting groups, and especially working group conveners from

The Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

Dirac medal 2010

CKM Matrix Overview

Nobel prize 2008

The Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

- A 3x3 unitary matrix
- Described by 4 parameters allows CP violation
 - PDG (Chau-Keung) parametrisation: θ_{12} , θ_{23} , θ_{13} , δ
 - Wolfenstein parametrisation: λ , A, ρ , η
- Highly predictive

Range of CKM phenomena

Range of CKM phenomena

Outline

- CKM phenomenology
- Measurements of magnitudes of CKM matrix elements
 through tree-level processes
 - $|V_{ud}|$, $|V_{us}|$, $|V_{cd}|$, $|V_{cs}|$, $|V_{cb}|$, $|V_{ub}|$
 - $_{\rm -}$ tree-level measurements of $|V_{_{\rm tx}}|$ covered in top session on Tuesday
 - loop-level level measurements covered in following talks
- Measurements of CP violation in the quark sector
 - Direct CP violation in D & B systems
 - Unitarity Triangle angles: α , β , γ
 - $_{-}$ CP violation in D⁰ and B⁰ oscillations covered in followed talks
- Summary The Tim Gershon OF CKM Matrix Overview

CKM phenomenology

- CKM theory is highly predictive
 - huge range of phenomena over a massive energy scale predicted by only 4 independent parameters
- CKM matrix is hierarchical
 - theorised connections to quark mass hierarchies, or (dis-)similar patterns in the lepton sector
 - origin of CKM matrix from diagonalisation of Yukuwa (mass) matrices after electroweak symmetry breaking
 - distinctive flavour sector of Standard Model not necessarily replicated in extended theories \rightarrow strong constraints on models
- CKM mechanism introduces CP violation
 - only source of CP violation in the Standard Model ($m_v = \theta_{OCD} = 0$)

Wolfenstein parametrisation

Magnitudes of CKM matrix elements (starting with a digression)

|V_{ud}| determination J.C. Hardy, I.S. Towner,

From $0^+ \rightarrow 0^+$ nuclear beta decays Measure

- energy gap Q
- half-life
- branching fraction

$$ft = \frac{K}{2G_F^2 |V_{ud}|^2}$$

Correct for nuclear medium related effects

- radiative and isospin breaking corrections
 - → nucleus-independent quantity Ft confirmed to be constant to $3 \ 10^{-4}$

$$\left|V_{ud}\right| = 0.97425 \pm 0.00022$$

im Gershor KM Matrix Overview

11

PRC 79 (2009) 055502

Alternative approaches to $|V_{ud}|$

- Can also measure $|V_{ud}|$ from
 - alternative nuclear decays ("nuclear mirrors")
 - neutron and pion $\boldsymbol{\beta}$ decay
 - do not require nucleus dependent or isospin breaking corrections
 - pion β decay is a pure vector transition (like $0^+ \rightarrow 0^+$)
 - potential for more precise future measurements

V from semileptonic kaon decays

Comparison with

Tim Gershon

CKM Matrix Overview

- $|V_{\mu\nu}|/|V_{\mu\nu}|$ from leptonic kaon and pion decays (using lattice input on f_{μ}/f_{μ}) • **V**_{ud}
 - PLB 700 (2011) 7

Unitarity holds to better than 10⁻³

Alternative approaches to $|V_{us}|$

- Can also measure $|V_{us}|$ from
 - hyperon decays
 - strange vs. non-strange hadronic tau branching fractions
 A.Pich arXiv:1101.2107
 - $|V_{us}| = 0.2166 \pm 0.0019(\exp) \pm 0.0005(th)$
 - discrepancy from $|V_{us}|$ from kaons: 3.7 σ
 - also discrepant with $|V_{_{US}}|$ from $B(\tau \to K\nu)/B(\tau \to \pi\nu)$ + $f_{_K}/f_{_\pi}$ from lattice
 - several multibody tau decays not measured yet
 - improved measurements urgently needed

$|V_{\rm cd}|$ and $|V_{\rm cs}|$ from charm decays

- Benchmark measurement of $|V_{cd}|$ from charm production in nuclear interactions $|V_{cd}| = 0.230 \pm 0.011$
- Measurements from semileptonic charm decays suffer formfactor uncertainties
 - further improvement in lattice calculations needed

Alternative approaches to $|V_{cd}|$ and $|V_{cs}|$

• Leptonic D^+ and D_{s}^+ decays probe $f_{D}|V_{cx}|$, e.g.

$$\Gamma(D_{s}^{+} \rightarrow l^{+} \nu) = \frac{G_{F}^{2}}{8\pi} f_{D_{s}^{+}}^{2} m_{l}^{2} M_{D_{s}^{+}} \left(1 - \frac{m_{l}^{2}}{M_{D_{s}^{+}}^{2}}\right)^{2} |V_{cs}|^{2}$$

$|V_{cb}|$ from semileptonic B decays

• Both exclusive and inclusive approaches

Searches for charged Higgs in $B \to D^{(*)} \tau \nu$

Branching fraction ratio ($R^{(*)}$) relative to $B \rightarrow D^{(*)} Iv$ predicted in the Standard Model with reduced form-factor uncertainty

$|V_{ub}|$ from semileptonic B decays

• Both exclusive and inclusive approaches

|V_{ub}| from semileptonic B decays

- Another tension between exclusive and inclusive
 - PDG2010 quotes

 $|V_{ub}|(excl) = (3.38 \pm 0.36) \times 10^{-3}$ $|V_{ub}|(incl) = (4.27 \pm 0.38) \times 10^{-3}$

• A distinguished theorist recently said:

arXiv:1108.3514

- "... this tension may be due to the fact that over the last 30 years hundreds of theory papers have been devoted to the determination of V_{ub} with each author claiming that his/her work led to a decrease of the theoretical error ..."
- In my view more, not less, theoretical attention is required
 - e.g. SIMBA collaboration to improve understanding of inclusive decays

arXiv:1101.3310

• N.B. $|V_{\mu\nu}|$ from leptonic decays covered in rare decays talk

CP violation

CP violation and the matterantimatter asymmetry

- Two widely known facts
 - 1) CP violation is one of 3 "Sakharov conditions" necessary for the evolution of a baryon asymmetry in the Universe
 - 2) The Standard Model (CKM) CP violation is not sufficient to explain the observed asymmetry
- Therefore, there must be more sources of CP violation in nature ... but where?
 - extended quark sector, lepton sector (leptogenesis), supersymmetry, anomalous gauge couplings, extended Higgs sector, quark-gluon plasma, flavour-diagonal phases, ...
- Testing the consistency of the CKM mechanism provides the best chance to find new sources of CP violation today

Observations of CP violation

- Still a rare phenomenon:
 - only seen (>5 σ) in K⁰ and B⁰ systems
- In B system, only
 - $_$ sin(2 β) in B⁰ \rightarrow J/ ψ K_{s.L} (etc.) BaBar & Belle
 - S(B⁰ \rightarrow $\eta'K_{s,L}$) (etc.) BaBar & Belle
 - $S(B^0 \rightarrow \pi^+\pi^-)$ BaBar & Belle
 - $C(B^0 \rightarrow \pi^+\pi^-) Belle$

−
$$A_{CP}(B^0 \rightarrow K^+\pi^-)$$
 − BaBar, Belle & LHCb

Unitarity Triangles

PLB 680 (2009) 328

Build matrix of phases between pairs of CKM matrix elements

 Φ_{ii} = phase between remaining elements when row i and column j removed

unitarity implies sum of phases in any row or column = $180^{\circ} \rightarrow 6$ unitarity triangles

CP violation null tests: charm decays

- All (almost) CP violation effects in the charm system expected to be negligible
 - searches for direct CP violation (see also talk on mixing)

sin(2 β) from B⁰ \rightarrow J/ ψ K_{S,L} (etc.)

Checking the quality of gold

2000

1500

1000

500

adldbribelorg

• $B^0 \rightarrow J/\psi K_s$ is a golden mode for sin(2 β)

- Can check purity using flavour symmetries
 - $B^0 \rightarrow J/\psi \pi^0$ (related by SU(3)

 $- B_s^{0} → J/Ψ K_s$ (related by U spin)

Other approaches to $sin(2\beta)$

• Compare $b \rightarrow c\bar{c}s$ transitions (e.g. $B^0 \rightarrow J/\psi K_s$) with

$b \rightarrow s\bar{s}s$ (e.g. B	$B^0 \rightarrow \eta' K_s), b \rightarrow c \overline{c} d (b)$	e.g. $B^0 \rightarrow D^+D^-$, or $b \rightarrow c\overline{u}d$ (e.g.	$B^0 \rightarrow D_{CP} \pi^0$
-----------------------------------	--	-------------------------------	---	--------------------------------

		PRELIMINARY		Sm(- p)	PRELIMINARY
→cċs	World Average	0.68 ± 0.02	b→ccs S	World Average	0.68±0.0
يح	Belle	0.90 +0.09		BaBar PPL 101 (2008) 021801	1.23 ± 0.21 ± 0.0
.	Average	0.56 +0.16	ိုလ	Belle	$9 \frac{5}{2}$ 0.65 ± 0.21 ± 0.0
×.	BaBar Balla	$0.57 \pm 0.08 \pm 0.02$	Ψ	PRD 77 (2008) 0717011	
-	Average	$0.64 \pm 0.10 \pm 0.04$ 0.59 ± 0.07	, J	HFAG correlated average	
× °	BaBar		ь.	BaBar PRD 79, 032002 (2009)	0.65 ± 0.36 ± 0.0
\mathbf{x}_{∞}	Belle 🖌 🛨	- 1 0.30 ± 0.32 ± 0.08	S	Belle EPS 2011 preliminary	1.06 ± 0.21 ± 0.0
×°	Average	0.74 ± 0.17		Average	0.96 ± 0.1
<	Balla	$0.55 \pm 0.20 \pm 0.03$		HFAG correlated average BaBar	
	Average	0.57 ± 0.17	S C	PRD 79, 032002 (200 9)	
S	BaBar 🛏 🗡 🕁	0.\$5 ^{+0.26} ± 0.06 ± 0.03	*	EPS 2011 preliminary	$0.79 \pm 0.13 \pm 0.0$
× ×		0.64 +0.19 ± 0.09 ± 0.10	*	Average HFAG correlated average	0.77 ± 0.1
	Average		+	BaBar BBD 70, 022002 (1000	0.63 ± 0.21 ± 0.0
S	Belle	0.55 -0.29 ± 0.02	S +	<u>Belle</u>	0.55 ± 0.39 ± 0.1
3	Average	0.45 ± 0.24	L L L L L L L L L L L L L L L L L L L	PRL 93 (2004) 201802	0.61 + 0.1
. so	BaBar - 🖯	0.60 +0.16	à	AFAG ⁹	0.01 ± 0.1
t₀ ×	Belle	0.63 ±0.19	ω [†]	PRD 79, 032002 (2009)	0.74 ± 0.23 ± 0.0
	BaBar	$0.62_{-0.13}$	+ D	Belle PBL 93 (2004) 201802	0.96 ± 0.43 ± 0.1
<u>~</u>	Belle -	0.68 ± 0.15 ± 0.03 +0.21	+*	Average	0.79 ± 0.2
¥ :	Average	0.82 ± 0.07		НГАЦ	

Hints of deviations in $b \rightarrow s\overline{s}s$ diminished

Belle update on $B^0 \rightarrow D^+D^-$

α from $B \to \pi\pi, \, \rho\pi, \, \rho\rho$ systems

Fim Gershon

M Matrix Overview

- Awaiting final results from both BaBar and Belle on
 - $B^0 \rightarrow \pi^+ \pi^-$
 - $B^0 \rightarrow (\rho \pi)^0$
 - $B^0 \rightarrow \rho^+ \rho^-$
- World average

$$\alpha = (89.0^{+4.4}_{-4.2})^{\circ}$$

- dominated by $B \to \rho \rho$
- strong influence of single (BaBar) measurement of $B(B^+ \rightarrow \rho^+ \rho^0)$

• Is α = 90°?

$\gamma \ from \ B \rightarrow D^{(*)}K \ decays$

Tree-level determination of y from interference of $B \rightarrow DK$ (b $\rightarrow c\overline{u}s$) and $B \rightarrow \overline{D}K$ (b $\rightarrow u\overline{c}s$) amplitudes

• need D and \overline{D} to decay to common final state

colour allowed

im Gersho

Matrix Overviev

• final state contains D^0

- colour suppressed
- final state contains $\overline{D}^{\,0}$

γ from B \rightarrow DK, D \rightarrow CP eigenstate (GLW)

y from $B \rightarrow DK$, $D \rightarrow suppressed$ states (ADS)

Tim Gershon

CKM Matrix Overview

ADS suppressed mode now clearly established very promising for γ determination

γ from B \rightarrow D^{*}K, D \rightarrow suppressed states (ADS)

Belle experiment BELLE-CONF-1112

Tim Gershon

CKM Matrix Overview

Suppressed modes also appearing in D*K?

NEW

γ from B \rightarrow DK, D \rightarrow multibody states (GGSZ)

Study of D $\rightarrow K_s \pi^+\pi^-$ Dalitz plot distribution provides good statistical sensitivity to γ but with model dependence

Model independent (binned) approach exploiting $\Psi(3770) \rightarrow D\overline{D}$ data

Belle experiment

arXiv:1106.4046

 $(77+15\pm 4\pm 4)$

35

γ from $B_{S} \rightarrow D_{S}K$

LHCb experiment LHCb-CONF-2011-057

 γ can be extracted from time-evolution of $B_{\sc s} \rightarrow D_{\sc s} K$ decays

first stage: establish signals & measure branching fraction yields split by magnet polarity

NEW

Alternative ways to measure y

- Test Standard Model by comparing y from tree-level processes to y from loop-dominated amplitudes
 - various approaches exploiting flavour symmetries
 - $B^0 \rightarrow K^+\pi^-$ (see rare decays talk)
 - $B_s^0 \rightarrow K^+K^- \& B^0 \rightarrow \pi^+\pi^-$ (see LHCb talk)

$$- B^0 \rightarrow K_s \pi^+ \pi^- \& B^0 \rightarrow K^+ \pi^- \pi^0$$

250

200

150

100

50

0.6

0.8

Events/(24.00 MeV/c²)

Global CKM fits

Does not include new results on y shown today

CKM Matrix Overview

Overall good consistency with the Standard Model

Future projects

Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere

Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere
- Will we be top of the world ... ?

Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere
- Will we be top of the world ... ?

 \ldots or do we have to wait for the historic achievement? $_{\rm 42}$