

Studying CP Violation via Amplitude Analysis (ii)

Tim Gershon
University of Warwick & CERN

Ferrara International School Niccolò Cabeo Hadronic spectroscopy

24th May 2012

Content of the lectures

 Why do we believe that multibody hadronic decays of heavy flavours may provide a good laboratory to search for new sources of CP violation?

- Which decays in particular should we look at?
- What methods can we use to study them?
- What are the difficulties we encounter when trying to do the analysis?

But first, let's look at some experiments

BESIII Detector

BESIIII detector: all new!

CsI calorimeter

Precision tracking

Time-of-flight + dE/dx PID

The Asymmetric B Factories

PEPII at SLAC 9.0 GeV e⁻ on 3.1 GeV e⁺ KEKB at KEK 8.0 GeV e^- on 3.5 GeV e^+

B factories – World Record Luminosities

BABAR Detector

Rest of replacement in 2006

Belle Detector

The LHC

LHC performance 2011

What does $\int L dt = 1/fb$ mean?

Measured cross-section, in LHCb acceptance

$$\sigma(pp \rightarrow b\overline{b}X) = (75.3 \pm 5.4 \pm 13.0) \mu b$$

PLB 694 (2010) 209

• So, number of bb pairs produced

$$10^{15} \times 75.3 \ 10^{-6} \sim 10^{11}$$

• Compare to combined data sample of e^+e^- "B factories" BaBar and Belle of $\sim 10^9$ BB pairs

for any channel where the (trigger, reconstruction, stripping, offline) efficiency is not too small, LHCb has world's largest data sample

• p.s.: for charm, $\sigma(pp \rightarrow c\overline{c}X) = (6.10 \pm 0.93)$ mb LHCb-CONF-2010-013

Lepton vs. hadron colliders

- All these examples can be put into one of two categories
 - e⁺e⁻ colliders (KLOE, CLEOc, BES, BaBar, Belle, etc.)
 - produce meson-antimeson pair in coherent state
 - hadron colliders (NA48, CDF, D0, LHCb, etc.)
 - produce hadrons from various mechanisms, such as gluon splitting
- What are relative advantages and disadvantages of the two approaches?
 - (More specific: in which do you expect the background to be lower?)

What methods can we use to study multibody hadronic decays of heavy flavours (and search for CP violation)?

Methods

- Two-sample comparison tests
 - To ask: is there CP violation? Yes/No
 - (If yes, can extend to ask: where on the Dalitz plot does it occur?)
- Quantitative determinations of CP phases
 - Model independent approaches
 - Amplitude analyses
 - suffer from hard-to-quantify model dependence
 - improve by using better models ...
 - ... using data to provide insights into hadronic effects
 - example: partial wave analysis

Example partial wave analysis: $D^+ \rightarrow K^+ K^- \pi^+$ (BaBar)

Plot m(K+K-), weighting events by factors $Y_{L}^{0}(\cos \theta_{VV})/\epsilon$ to obtain "moments $< Y_{L}^{0}(m) >$ "

$$\sqrt{4\pi} \langle Y_0^0 \rangle = |S|^2 + |P|^2
\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}} |P|^2,
\sqrt{4\pi} \langle Y_1^0 \rangle = 2|S||P|\cos\phi_{SP}$$

BA**B**AR

1.15

Example partial wave analysis: $D_s^+ \rightarrow K^+ K^- \pi^+$ (BaBar)

Quasi-model-independent partial wave analysis

- Pioneered by E791 (B.Meadows) in D⁺ → K⁻π⁺π⁺
- Describe S-wave by complex spline (many free parameters)
- Example: $D_s^+ \rightarrow \pi^- \pi^+ \pi^+$ from BaBar

ππ S-wave comparison

Data points from BaBar

$B\to J/\psi\ K\pi$

Essential input to unambiguous measurement of cos(2 β) using B \rightarrow J/ ψ K $_{S}^{}$ π^{0}

$B_s \rightarrow J/\psi KK$

Similar idea (complicated by spin of J/ψ) LHCb arXiv:1202.4717

Physical solution corresponds to $\Delta\Gamma$ s>0 and value of ϕ s consistent with SM

"Partial wave analysis of $J/\psi \rightarrow p\overline{p}\pi^{0}$ " at BESII

PRD 80 (2009) 052004

An important and interesting amplitude analysis ... but not a partial wave analysis in the (quasi- model-independent) sense that I have been using²

What are the difficulties we encounter when trying to do the analysis?

Difficulties, difficulties ...

- Backgrounds
- Efficiency
- Misreconstruction & resolution
- Speed
- Parametrisations and conventions
- Goodness of fit
- Model dependence

Backgrounds

 Do you expect the background to be lower in lepton or hadron colliders?

Backgrounds

- Do you expect the background to be lower in lepton or hadron colliders?
 - It depends (of course ...)
 - Overall multiplicity much lower in e⁺e⁻ collisions
 - very low backgrounds if you reconstruct everything in the event
 - but if signal is, e.g., B meson from Y(4S) decay, still have background from "the rest of the event"
 - Particles produced in hadron collisions have high momenta
 - can efficiently reduce background using variables related to flight distance and transverse momenta
 - extreme example: charged kaon beams

$\psi(2S) \rightarrow \gamma \chi_{c,l} \rightarrow \gamma(4\pi^0)$ at BESIII

PRD 83 (2011) 012006

N.B. **Not** Dalitz plots!

$X_b \rightarrow X_c 3\pi \ at \ LHCb$

PRD 84 (2011) 092001

$B \rightarrow \mu^{+}\mu^{-}$ comparison

CMS JHEP 04 (2012) 033

BaBar PRD 77 (2008) 032007

Maximum likelihood fit

$$L = \prod_{i=1}^{N} P_{i}$$

$$-2 \ln L = -2 \sum_{i=1}^{N} \ln(P_{i})$$

$$P_{i} = P_{i,sig} + P_{i,bkg}$$

$$P_{i,sig} = P_{i,phys} * R_{det}$$

likelihood can also be "extended" to include Poisson probability to observe N events

need to obtain background distributions and to known background fraction (or event-by-event background probability)

convolution with detector response: includes efficiency and resolution

 $P_{i,phys}$ contains the physics ...

but most be coded in a way that allows reliable determination of the model parameters

Background fractions and distributions

- It is usually possible to determine the background fraction by fitting some kinematic variable (e.g. invariant mass)
 - Can be done prior to, or simultaneously with, the fit to the Dalitz plot
- The background distribution can then be studied from sidebands of this variable
 - Care needed: background composition may be different in the signal and sideband regions
 Belle PRD71 (2005) 092003

Background distribution issues

- Boundary of Dalitz plot depends on 3-body invariant mass
 - To have a unique DP, and to improve resolution for substructure, apply 3-body mass constraint
 - This procedure distorts the background shape
 - noticeable if narrow resonances are present in the sideband
 - can be alleviated by averaging upper and lower sidebands (not always possible)

- alternative: smart choice of sidebands (not always possible) Belle PRD71 (2005) 092003 $\begin{array}{c} V_1 = V_2 \\ V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_2 = V_3 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_2 \\ \hline \end{array}$ $\begin{array}{c} V_1 = V_1 \\$

Background distribution issues

- In a binned fit, the background can be subtracted
- In an unbinned fit, the background PDF must be described, either
 - parametrically (usually some smooth function plus incoherent sum of narrow states)

Background distribution issues

- In a binned fit, the background can be subtracted
- In an unbinned fit, the background PDF must be described, either
 - nonparametrically (usually as a histogram)
 - since background tends to cluster near DP boundaries, advantageous to use "square Dalitz plot"

Detector response – efficiency

- Key point:
 - If the efficiency is uniform across the phase-space, we can ignore
 it in the maximum likelihood fit
- Efficiency non-uniformity must be accounted for
 - Choose selection variables to minimise effect
 - Determine residual variation from Monte Carlo simulation (validated/corrected using data where possible)
 - Can either
 - explicitly correct for efficiency (event-by-event)
 - usually implemented as a histogram (using square DP or otherwise)
 - determine overall effect from MC simulation with same model parameters
 - only viable approach for high-dimensional problems

Example of efficiency variation

Visualisation of the Dalitz plot

- Obviously important to present the data to the world
- How to present it?
 - 2D scatter plot of events in the signal region
 - unbinned, hence most information
 - but contains background and not corrected for efficiency
 - Binned 2D (or 1D) projections
 - can correct for background and efficiency
 - · sPlots is a useful tool
 - but tend to wash out some of the fine structure

Resolution and misreconstruction

- Key point:
 - If resolution is << width of narrowest structure on the Dalitz plot, we can ignore it
- Applying 3-body mass constraint helps, but
 - Some Dalitz plots contain narrow structures (ω, φ, D*)
 - Misreconstruction effects ("self-cross-feed") can lead to significant non-Gaussian tails
 - complicated smearing of events across the Dalitz plot
 - hard to model
 - relies on Monte Carlo simulation hard to validate with data
 - significant for states with multiple soft particles at B factories

Example SCF fraction

BaBar B \rightarrow K⁺ π ⁻ π ⁰ PRD 78 (2008) 052005

Parametrisations

- Fit parameters are complex coefficients of the contributing amplitudes
 - allowing for CP violation, 4 parameters for each
 - usually necessary to fix (at least) two reference parameters
 - many possible parametrisations
 - r exp(iδ) → (r±Δr) exp(i(δ±Δδ))
 - r exp(iδ) → r exp(iδ) (1±Δρ exp(iΔφ))
 - $x+iy \rightarrow (x\pm\Delta x)+i(y\pm\Delta y)$
 - there is no general best choice of "well-behaved parameters"
 - unbiased, Gaussian distributed, uncertainties independent of other parameters
 - (correlations allowed in Gaussian limit important to report full covariance matrix)
 - some partial solutions available, but often not applicable
 - e.g. Snyder-Quinn parametrisation for $B \to \pi^+\pi^-\pi^0$
 - #parameters explodes for >3 resonances

Conventions

- There are many different ways to write the lineshapes, spin factors, etc.
 - choice of normalisation is important
- Even if all code is bug-free, it is very hard to present unambiguously all information necessary to allow the Dalitz plot model to be reproduced
- Important to present results in conventionindependent form (as well as other ways)
 - e.g. fit fractions and interference fit fractions

Example fit fraction matrix

TABLE I: Fit fractions matrix of the best fit. The diagonal elements F_{kk} correspond to component fit fractions shown in the paper in Table I. The off-diagonal elements give the fit fractions of the interference terms defined as $F_{kl} = 2\Re \int \mathcal{M}_k \mathcal{M}_l^* ds_{23} ds_{13} / \int |\mathcal{M}|^2 ds_{23} ds_{13}$.

$F_{kl} \times 100\%$	φ	$f_0(980)$	$X_0(1550)$	$f_0(1710)$	χε0	NR
φ	$11.8 \pm 0.9 \pm 0.8$	$-0.94 \pm 0.18 \pm 0.11$	$-1.71 \pm 0.36 \pm 0.24$	$0.01 \pm 0.10 \pm 0.03$	$0.11 \pm 0.02 \pm 0.05$	$3.54 \pm 0.38 \pm 0.40$
$f_0(980)$		$19 \pm 7 \pm 4$	$53 \pm 12 \pm 7$	$-4.5 \pm 2.9 \pm 1.2$	$-0.9 \pm 0.2 \pm 0.5$	$-85 \pm 21 \pm 14$
$X_0(1550)$			$121~\pm~19~\pm~6$	$-30 \pm 11 \pm 4$	$-1.1 \pm 0.3 \pm 0.5$	$-140 \pm 26 \pm 7$
$f_0(1710)$				$4.8 \pm\ 2.7 \pm 0.8$	$-0.10 \pm 0.07 \pm 0.07$	$4 \pm 6 \pm 3$
χ_{c0}					$3.1 \pm 0.6 \pm 0.2$	$3.9 \pm 0.4 \pm 1.9$
NR						$141 \pm 16 \pm 9$

Goodness of fit

- How do I know that my fit is good enough?
- You don't (sorry) ... but some guidelines can tell you if there are serious problems
 - Is your fit model physical?
 - sometimes there may be little choice but to accept this
 - Do you get an acceptable $\chi^2/n.d.f.$ for various projections (1D and 2D)?
 - if no, is the disagreement localised in the Dalitz plot?
 - with high statistics it is extremely difficult to get an acceptable p-value; check if the disagreement is compatible with experimental systematics
 - some unbinned goodness-of-fit tests are now becoming available
 - Do you get an excessive sum of fit fractions?
 - values >100% are allowed due to interference, but very large values are usually indicative of unphysical interference patters (possibly because the model is not physical)
 - Do you think you have done the best that you possibly can?
 - eventually it is better to publish with an imperfect model than to suppress the data

Summary

- It must be clear by now that Dalitz plot analyses are extremely challenging
 - both experimentally and theoretically
- So let's recall that the motivation justifies the effort
 - hadronic effects: improved understanding of QCD, including possible exotic states
 - CP violation effects: potential sensitivity to discover new sources of matter-antimatter asymmetry
- We have an obligation to exploit the existing and coming data to the maximum of our abilities
 - and if that is not enough, we will have to improve our abilities!

THE END

ππ S-wave comparison

