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Content of the lectures

● Why do we believe that multibody hadronic decays 
of heavy flavours may provide a good laboratory to 
search for new sources of CP violation?

● Which decays in particular should we look at?

● What methods can we use to study them?

● What are the difficulties we encounter when trying to 
do the analysis?
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But first, let's look at some experiments
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The Asymmetric B Factories

PEPII at SLAC
9.0 GeV e– on 3.1 GeV e+

KEKB at KEK
8.0 GeV e– on 3.5 GeV e+
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B factories – World Record Luminosities

PEPII~ 490 papers

# papers published or submitted for publication

Combined dataset > 1500 fb–1

2010/1

KEKB~ 360 papers

1011
2.11
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DIRC (PID)
144 quartz bars

11000 PMs

1.5 T solenoid 

EMC
6580 CsI(Tl) crystals

Drift Chamber
40 stereo layers

Instrumented Flux Return
iron / RPCs  (muon / neutral hadrons)

2/6 replaced by LST in 2004
Rest of replacement in 2006

Silicon Vertex Tracker
5 layers, double sided strips

e+ (3.1 GeV)

e- (9 GeV)

BABAR Detector
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μ / KL detection
 14/15 lyr. RPC+Fe

Central Drift Chamber
       small cell +He/C2H6

CsI(Tl) 
   16X0

 Aerogel Cherenkov cnt.
              n=1.015~1.030

Si vtx. det.
- 3 lyr. DSSD
- 4 lyr. since summer 2003

TOF counter

SC solenoid
   1.5T

8 GeV e−

3.5 GeV e+

Belle Detector
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The LHC
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LHC performance 2011

LHCb design luminosity: 2 1032/cm2/s
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What does ∫Ldt = 1/fb mean?

● Measured cross-section, in LHCb acceptance
σ(pp→bbX) = (75.3 ± 5.4 ± 13.0) μb

PLB 694 (2010) 209
● So, number of bb pairs produced

1015 x 75.3 10–6 ~ 1011

● Compare to combined data sample of e+e– “B factories” 
BaBar and Belle of ~ 109 BB pairs

for any channel where the (trigger, reconstruction, stripping, offline) 
efficiency is not too small, LHCb has world's largest data sample

● p.s.: for charm, σ(pp→ccX) = (6.10 ± 0.93) mb
LHCb-CONF-2010-013

–

–

–

–
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The LHCb detector

Precision primary and secondary 
vertex measurements

Excellent K/π separation 
capability
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Lepton vs. hadron colliders

● All these examples can be put into one of two 
categories
● e+e– colliders (KLOE, CLEOc, BES, BaBar, Belle, etc.)

– produce meson-antimeson pair in coherent state
● hadron colliders (NA48, CDF, D0, LHCb, etc.)

– produce hadrons from various mechanisms, such as gluon splitting

● What are relative advantages and disadvantages of the 
two approaches?
● (More specific: in which do you expect the background to be 

lower?)
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What methods can we use to study 
multibody hadronic decays of heavy 

flavours (and search for CP violation)?
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Methods

● Two-sample comparison tests
● To ask: is there CP violation? Yes/No
● (If yes, can extend to ask: where on the Dalitz plot does it 

occur?)

● Quantitative determinations of CP phases
● Model independent approaches
● Amplitude analyses

– suffer from hard-to-quantify model dependence
– improve by using better models …
– … using data to provide insights into hadronic effects
– example: partial wave analysis 
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Example partial wave analysis:
D

s

+→K+K–π+ (BaBar)
φ(1020)

K*0(892)

~101K Events
   96% purity

DDss
++

ππ++
θθKKKK

<<YY00
00>> <<YY11

00>> <<YY22
00>>

Plot Plot m(Km(K++KK--)), weighting events by factors , weighting events by factors 
YYLL

00(cos (cos θθ
ΚΚΚΚ)/)/εε to obtain “ to obtain “moments <Ymoments <YLL

00(m)>(m)>” ” 
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Example partial wave analysis:
D

s

+→K+K–π+ (BaBar)
Ambiguity in φ

SP
 resolved 

by knowledge of φ(1020) 
phase variation

(Approximately) model-independent information 
on the KK S-wave magnitude and phase

From K+K-

cross channel
KK S-wave seems 

process independent?
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Quasi-model-independent partial 
wave analysis

● Pioneered by E791 (B.Meadows) in D+→K–π+π+

● Describe S-wave by complex spline (many free 
parameters)

● Example: D
s

+→π–π+π+ from BaBar

ff00(980)(980)

ff00(980)(980)

13K events13K events

Symmetrized Dalitz plot
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ππ S-wave comparison

Data points from BaBar
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B→J/ψ Kπ

|S|2

|P|2

δ
S
-δ

P

Similar idea (complicated by spin of J/ψ)
BaBar PRD 71 (2005) 032005

See also Belle PRL 95 (2005) 091601

Essential input to unambiguous measurement of cos(2β) using B→J/ψ K
S
π0
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B
s
→J/ψ KK

Similar idea (complicated by spin of J/ψ)
LHCb arXiv:1202.4717

Physical solution corresponds to ΔΓs>0 
and value of φs consistent with SM

|S|2

|P|2

δ
S
-δ

P
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“Partial wave analysis of J/ψ→ppπ0” 
at BESII 

–

PRD 80 (2009) 052004

An important and interesting amplitude analysis … but not a partial wave 
analysis in the (quasi- model-independent) sense that I have been using 
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What are the difficulties we encounter 
when trying to do the analysis?
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Difficulties, difficulties ...

● Backgrounds
● Efficiency
● Misreconstruction & resolution
● Speed
● Parametrisations and conventions
● Goodness of fit
● Model dependence
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Backgrounds

● Do you expect the background to be lower in 
lepton or hadron colliders?



26

Backgrounds

● Do you expect the background to be lower in lepton or 
hadron colliders?
● It depends (of course …)
● Overall multiplicity much lower in e+e– collisions

– very low backgrounds if you reconstruct everything in the event
– but if signal is, e.g., B meson from Υ(4S) decay, still have 

background from “the rest of the event”
● Particles produced in hadron collisions have high momenta

– can efficiently reduce background using variables related to flight 
distance and transverse momenta

– extreme example: charged kaon beams
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ψ(2S)→γχ
cJ

→γ(4π0) at BESIII

PRD 83 (2011) 012006

χ
c0

χ
c1

χ
c2

N.B. Not Dalitz plots!
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X
b
→X

c
3π at LHCb

PRD 84 (2011) 092001 

D+(3π)– D0(3π)–

D
s

+(3π)– Λ
c

+(3π)–
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B→μ+μ– comparison
CMS JHEP 04 (2012) 033 BaBar PRD 77 (2008) 032007

LHCb arXiv:1203.4493



30

Maximum likelihood fit

L = ∏i=1

N
Pi

−2 ln L = −2∑i=1

N
lnPi

P i = Pi , sigPi , bkg

P i , sig = P i , phys∗Rdet

likelihood can also be “extended” to 
include Poisson probability to observe N 

events

need to obtain background distributions 
and to known background fraction (or 

event-by-event background probability)

convolution with detector response: 
includes efficiency and resolution

P
i,phys

 contains the physics …

but most be coded in a way that allows reliable 
determination of the model parameters 

In the case of a binned fit to data, sum over events is replaced by sum over bins
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Background fractions and distributions

● It is usually possible to determine the background fraction by 
fitting some kinematic variable (e.g. invariant mass)

● Can be done prior to, or simultaneously with, the fit to the Dalitz plot

● The background distribution can then be studied from 
sidebands of this variable

● Care needed: background composition may be different in the signal and 
sideband regions

Belle PRD71 (2005) 092003
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Background distribution issues

● Boundary of Dalitz plot depends on 3-body invariant mass
● To have a unique DP, and to improve resolution for 

substructure, apply 3-body mass constraint
● This procedure distorts the background shape

– noticeable if narrow resonances are present in the sideband
– can be alleviated by averaging upper and lower sidebands (not 

always possible)
– alternative: smart choice of sidebands (not always possible)  

Belle PRD71 (2005) 092003
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Background distribution issues

● In a binned fit, the background can be subtracted

● In an unbinned fit, the background PDF must be 
described, either

● parametrically (usually some smooth function plus 
incoherent sum of narrow states) 

Belle PRD71 (2005) 092003



34

Background distribution issues

● In a binned fit, the background can be subtracted

● In an unbinned fit, the background PDF must be 
described, either

● nonparametrically (usually as a histogram)

– since background tends to cluster near DP boundaries, 
advantageous to use “square Dalitz plot”

BaBar PRD 76 (2007) 012004
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Detector response – efficiency

● Key point: 
● If the efficiency is uniform across the phase-space, we can ignore 

it in the maximum likelihood fit

● Efficiency non-uniformity must be accounted for
● Choose selection variables to minimise effect
● Determine residual variation from Monte Carlo simulation 

(validated/corrected using data where possible)
● Can either

– explicitly correct for efficiency (event-by-event)
● usually implemented as a histogram (using square DP or otherwise)

– determine overall effect from MC simulation with same model parameters 
● only viable approach for high-dimensional problems
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Example of efficiency variation

BaBar B→π+π–π0 PRD 76 (2007) 012004
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Visualisation of the Dalitz plot

● Obviously important to present the data to the world
● How to present it?

● 2D scatter plot of events in the signal region
– unbinned, hence most information
– but contains background and not corrected for efficiency

● Binned 2D (or 1D) projections
– can correct for background and efficiency

● sPlots is a useful tool
– but tend to wash out some of the fine structure

Belle PRD71 (2005) 092003 BaBar PRD 79 (2009) 072006
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Resolution and misreconstruction

● Key point:
● If resolution is << width of narrowest structure on the 

Dalitz plot, we can ignore it

● Applying 3-body mass constraint helps, but
● Some Dalitz plots contain narrow structures (ω, φ, D*)
● Misreconstruction effects (“self-cross-feed”) can lead to 

significant non-Gaussian tails
– complicated smearing of events across the Dalitz plot
– hard to model
– relies on Monte Carlo simulation – hard to validate with data
– significant for states with multiple soft particles at B factories
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Example SCF fraction

BaBar B→K+π–π0 PRD 78 (2008) 052005
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Parametrisations

● Fit parameters are complex coefficients of the contributing 
amplitudes
● allowing for CP violation, 4 parameters for each

– usually necessary to fix (at least) two reference parameters
● many possible parametrisations

– r exp(iδ) → (r±Δr) exp(i(δ±Δδ))
– r exp(iδ) → r exp(iδ) (1±Δρ exp(iΔφ))
– x+iy →(x±Δx)+i(y±Δy)

● there is no general best choice of “well-behaved parameters”

– unbiased, Gaussian distributed, uncertainties independent of other parameters
– (correlations allowed in Gaussian limit – important to report full covariance 

matrix)
● some partial solutions available, but often not applicable

– e.g. Snyder-Quinn parametrisation for B→π+π–π0

● #parameters explodes for >3 resonances
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Conventions

● There are many different ways to write the 
lineshapes, spin factors, etc.
● choice of normalisation is important

● Even if all code is bug-free, it is very hard to 
present unambiguously all information necessary 
to allow the Dalitz plot model to be reproduced

● Important to present results in convention-
independent form (as well as other ways)
● e.g. fit fractions and interference fit fractions
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Example fit fraction matrix
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Goodness of fit

● How do I know that my fit is good enough?
● You don't (sorry) … but some guidelines can tell you if there are serious 

problems
● Is your fit model physical?

– sometimes there may be little choice but to accept this 

● Do you get an acceptable χ2/n.d.f. for various projections (1D and 2D)?
– if no, is the disagreement localised in the Dalitz plot?
– with high statistics it is extremely difficult to get an acceptable p-value; check if the 

disagreement is compatible with experimental systematics
– some unbinned goodness-of-fit tests are now becoming available

● Do you get an excessive sum of fit fractions?
– values >100% are allowed due to interference, but very large values are usually indicative of 

unphysical interference patters (possibly because the model is not physical)
● Do you think you have done the best that you possibly can?

– eventually it is better to publish with an imperfect model than to suppress the data
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Summary

● It must be clear by now that Dalitz plot analyses are 
extremely challenging 
● both experimentally and theoretically

● So let's recall that the motivation justifies the effort
● hadronic effects: improved understanding of QCD, including 

possible exotic states
● CP violation effects: potential sensitivity to discover new sources 

of matter-antimatter asymmetry

● We have an obligation to exploit the existing and coming 
data to the maximum of our abilities
● and if that is not enough, we will have to improve our abilities!
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THE END
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ππ S-wave comparison

Data points from BaBar

Prediction from theory: 
Kaminski et al. PRD77:054015,2008
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