

ne/Berlin timezo

QWG 2022 - The 15th International Workshop on Heavy Quarkonium

1

Doubly charmed baryons at LHCb

Tim Gershon University of Warwick On behalf of the LHCb collaboration

QWG 2022, GSI Darmstadt 30 Sept 2022

PRL 119 (2017) 112001

How it started ...

PRL **119**, 112001 (2017)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2017

Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}

R. Aaij et al.*

(LHCb Collaboration)

(Received 6 July 2017; revised manuscript received 2 August 2017; published 11 September 2017)

A highly significant structure is observed in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum, where the Λ_c^+ baryon is reconstructed in the decay mode $pK^-\pi^+$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++} . The difference between the masses of the Ξ_{cc}^{++} and Λ_c^+ states is measured to be 1334.94 \pm 0.72(stat.) \pm 0.27(syst.) MeV/ c^2 , and the Ξ_{cc}^{++} mass is then determined to be $3621.40 \pm 0.72(\text{stat.}) \pm 0.27(\text{syst.}) \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2$, where the last uncertainty is due to the limited knowledge of the Λ_c^+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb⁻¹, and confirmed in an additional sample of data collected at 8 TeV.

DOI: 10.1103/PhysRevLett.119.112001

Summer 2017:

LHCb discovers Ξ_{cc}^{++} in $\Lambda_c^+K^-\pi^+\pi^-$ final state Summer 2022:

What's new since then?

How it's going

- Other decay modes
 - $\Xi_{c}^{(')+}\pi^{+}, D^{+}pK^{-}\pi^{+}$
- Mass, lifetime & production rate measurements
- Searches for double charm partners
 - $\equiv_{cc}^+, \Omega_{cc}^+$
- Searches for other double heavies
 - $\equiv_{bc}^{+/0}$, Ω_{bc}^{0} [in back up, feel free to ask!]

The LHCb experiment

- Huge charm and beauty production cross-section in the forward direction in pp collisions at LHC energies
 - Essentially all hadrons produced
- Require superb detection capability to separate signal from potentially overwhelming background
 - LHCb strengths in vertexing, tracking and charged particle identification
 - Ideal signature:
 - displaced vertex
 - all track final state (no neutral particles to reconstruct)
 - containing at least some protons and/or kaons
 - Capability for online selection (trigger) also crucial

Example:

- $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$
 - $\Lambda_c^+ \rightarrow p K^- \pi^+$
- τ(Ξ_{cc}⁺⁺) ~ O(ps)

$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$

PRL 121 (2018) 162002 JHEP 05 (2022) 038

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ appears as partially reconstructed peak in m($\Xi_{c}^{+}\pi^{+}$) spectrum
 - missing photon from $\Xi_c{}^{`+}$ \rightarrow $\Xi_c{}^+\gamma$ decay
- Reconstruct $\Xi_c{}^+ \to p K^- \pi^+$ decay
 - Cabibbo-suppressed but good efficiency (3 tracks)

- on signal (TOS)
- independent of signal (TIS)

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$$

PRL 121 (2018) 162002 JHEP 05 (2022) 038

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = 0.035 \pm 0.009 \,(\text{stat}) \pm 0.003 \,(\text{syst}).$$

Separate hardware trigger decision samples

- on signal (TOS)
- independent of signal (TIS)

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$$

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{'+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10.$$

Theory predictions range from 0.4 - 7 depending on relative contributions of two amplitudes

$\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

JHEP 10 (2019) 124

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to D^+ p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)} < 1.7 \ (2.1) \times 10^{-2} \ \text{at} \ 90\% \ (95\%) \ \text{CL}$$

Lifetime measurement

PRL 121 (2018) 052002

 $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{-}$ channel Non-trivial decay-time acceptance

• use $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ as control channel

 $\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}$ (stat) ± 0.014 (syst) ps

Mass measurement & production rate

$$\sigma(\Lambda_c^+) = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

• in LHCb acceptance:

4 < pT < 15 GeV/c & 2.0 < y < 4.5

- for pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- assuming central value of $\tau(\Xi_{cc}^{++})$

Both $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$ and $\Xi_c^+ \pi^+$ channels m(Ξ_{cc}^{++}) = 3621.55 ± 0.23 (stat) ± 0.30 (syst) MeV/c² Largest systematic uncertainties from

- momentum scale
- Λ_c^+ and Ξ_c^+ masses

Searches for Ξ_{cc}^+

SCPMA 63 (2020) 221062 JHEP 12 (2021) 107

Search for Ω_{cc}^+

SCPMA 64 (2021) 101062

To the future, and beyond!

- More yet to be learned from the Run 1+2 data sample
- But fundamental limits due to sample size and detector performance
 - improve both in Runs 3 (2022-25) & 4 (2029-32)
 - reasons to be optimistic for further doubly charmed hadron discovery
- No reason to think that should be the end of the road
 - ambitious plans for LHCb Upgrade 2
 - aim for the ultimate LHC flavour experiment
 - reasons to be optimistic for further doubly heavy hadron discovery?

The LHCb detector

The LHCb detector

Use timing to reduce combinatorial background Improve detection capability wherever possible **Higher instantaneous** luminosity → more data

Summary

- We have learned a lot about double charm baryons since the 2017 $\Xi_{cc}{}^{\text{++}}$ discovery
 - e.g. precision mass and lifetime measurements
 - $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \text{ (stat)} \pm 0.30 \text{ (syst)} \text{ MeV/c}^2$
 - $\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}$ (stat) ± 0.014 (syst) ps
- No 5σ discovery of other double heavies yet, but ...
- Great prospects for further discoveries in the near future
 - even more exciting prospects for Upgrade 2

Back it up

LHCb Run 1+2 integrated luminosity

Unprecedented samples of charm and beauty Dependence of production rate on \sqrt{s} means (for LHCb) 2015+16 \approx 2 x Run 1 (2011+12); 2017+18 \approx 2 x 2011–16

HL-LHC schedule

Last updated: January 2022

to be followed by LS5 (1-2 years) and Run 6

JHEP 11 (2020) 095

Search for $\Xi_{bc}^{0} \rightarrow D^{0}pK^{-}$

Limits on ratio R of production cross-section x branching fraction, relative to $\Lambda_{b}^{0} \rightarrow D^{0}pK^{-}$

CPC 45 (2021) 093002

$\Xi_{bc}{}^0 \text{ and } \Omega_{bc}{}^0 \rightarrow \ \Lambda_c{}^+\pi^- \text{ and } \Xi_c{}^+\pi^-$

Limits on ratios R of production crosssection x branching fraction, relative to $\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-$ and $\Xi_b^0 \rightarrow \Xi_c^+\pi^-$

arXiv:2204.09541

