Experimental review of multiquark states Tim Gershon University of Warwick

5th International Workshop on Heavy Quark Physics Islamabad, Pakistan

12 December 2023

How it started

VOLUME 91, NUMBER 26 PHYSICAL REVIEW LETTERS week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ Decays

S.-K. Choi,⁵ S. L. Olsen,⁶ K. Abe,⁷ T. Abe,⁷ I. Adachi,⁷ Byoung Sup Ahn,¹⁴ H. Aihara,⁴³ K. Akai,⁷ M. Akatsu,²⁰ M. Akemoto,⁷ Y. Asano,⁴⁸ T. Aso,⁴⁷ V. Aulchenko,¹ T. Aushev,¹¹ A. M. Bakich,³⁸ Y. Ban,³¹ S. Banerjee,³⁹ A. Bondar,¹ A. Bozek, ²⁵ M. Bračko, ^{18,12} J. Brodzicka, ²⁵ T. E. Browder, ⁶ P. Chang, ²⁴ Y. Chao, ²⁴ K.-F. Chen, ²⁴ B. G. Cheon, ³⁷ R. Chistov,¹¹ Y. Choi,³⁷ Y. K. Choi,³⁷ M. Danilov,¹¹ L. Y. Dong,⁹ A. Drutskov,¹¹ S. Eidelman,¹ V. Eiges,¹¹ J. Flanagan,⁷ C. Fukunaga,⁴⁵ K. Furukawa,⁷ N. Gabyshev,⁷ T. Gershon,⁷ B. Golob,^{17,12} H. Guler,⁶ R. Guo,²² C. Hagner,⁵⁰ F. Handa,⁴² T. Hara,²⁹ N. C. Hastings,⁷ H. Hayashii,²¹ M. Hazumi,⁷ L. Hinz,¹⁶ Y. Hoshi,⁴¹ W.-S. Hou,²⁴ Y. B. Hsiung,^{24,*} H.-C. Huang,²⁴ T. Iijima,²⁰ K. Inami,²⁰ A. Ishikawa,²⁰ R. Itoh,⁷ M. Iwasaki,⁴³ Y. Iwasaki,⁷ J. H. Kang,⁵² S. U. Kataoka,²¹ N. Katavama,⁷ H. Kawai,² T. Kawasaki,²⁷ H. Kichimi,⁷ E. Kikutani,⁷ H. J. Kim,⁵² Hyunwoo Kim,¹⁴ J. H. Kim,³⁷ S. K. Kim,³⁶ K. Kinoshita,³ H. Koiso,⁷ P. Koppenburg,⁷ S. Korpar,^{18,12} P. Križan,^{17,12} P. Krokovny,¹ S. Kumar,³⁰ A. Kuzmin,¹ J. S. Lange,^{4,33} G. Leder,¹⁰ S. H. Lee,³⁶ T. Lesiak,²⁵ S.-W. Lin,²⁴ D. Liventsev,¹¹ J. MacNaughton,¹⁰ G. Majumder,³⁹ F. Mandl,¹⁰ D. Marlow,³² T. Matsumoto,⁴⁵ S. Michizono,⁷ T. Mimashi,⁷ W. Mitaroff,¹⁰ K. Miyabayashi,²¹ H. Miyake,²⁹ D. Mohapatra,⁵⁰ G. R. Moloney,¹⁹ T. Nagamine,⁴² Y. Nagasaka,⁸ T. Nakadaira,⁴³ T.T. Nakamura,⁷ M. Nakao,⁷ Z. Natkaniec,²⁵ S. Nishida,⁷ O. Nitoh,⁴⁶ T. Nozaki,⁷ S. Ogawa,⁴⁰ Y. Ogawa,⁷ K. Ohmi,⁷ Y. Ohnishi,⁷ T. Ohshima,²⁰ N. Ohuchi,⁷ K. Oide,⁷ T. Okabe,²⁰ S. Okuno,¹³ W. Ostrowicz,²⁵ H. Ozaki,⁷ H. Palka,²⁵ H. Park,¹⁵ N. Parslow,³⁸ L. E. Piilonen,⁵⁰ H. Sagawa,⁷ S. Saitoh,⁷ Y. Sakai,⁷ T. R. Sarangi,⁴⁹ M. Satapathy,⁴⁹ A. Satpathy,^{7,3} O. Schneider,¹⁶ A. J. Schwartz,³ S. Semenov,¹¹ K. Senyo,²⁰ R. Seuster,⁶ M. E. Sevior,¹⁹ H. Shibuya,⁴⁰ T. Shidara,⁷ B. Shwartz,¹ V. Sidorov,¹ N. Soni,³⁰ S. Stanič,^{48,†} M. Starič,¹² A. Sugiyama,³⁴ T. Sumiyoshi,⁴⁵ S. Suzuki,⁵¹ F Takasaki,⁷ K. Tamai,⁷ N. Tamura,²⁷ M. Tanaka,⁷ M. Tawada,⁷ G. N. Taylor,¹⁹ Y. Teramoto,²⁸ T. Tomura,⁴³ K. Trabelsi,⁶ T. Tsukamoto,⁷ S. Uehara,⁷ K. Ueno,²⁴ Y. Unno,² S. Uno,⁷ G. Varner,⁶ K. E. Varvell,³⁸ C. C. Wang,²⁴ C. H. Wang,²⁵ J. G. Wang,⁵⁰ Y. Watanabe,⁴⁴ E. Won,¹⁴ B. D. Yabsley,⁵⁰ Y. Yamada,⁷ A. Yamaguchi,⁴² Y. Yamashita,²⁶ H. Yanai,²⁷ Hevoung Yang,³⁶ J. Ying,³¹ M. Yoshida,⁷ C. C. Zhang,⁹ Z. P. Zhang,³⁵ and D. Žontar^{17,12}

BELLE

(Belle Collaboration)

How it's going

How it's going

Content

- Huge progress in hadron spectroscopy in past decade
 - Mostly due to new states with heavy flavours discovered by LHCb
 - Important contributions also from BESIII, Belle, BaBar, CMS, ATLAS, ...
 - Manifestly exotic, potentially exotic and conventional states
- Selected highlights (impossible to cover everything!)
 - $\chi_{c1}(3872)$, $P_{c\bar{c}}$ states, Ξ_{cc}^{++} and partners, T_{cc}^{+} , T_{cs} & $T_{c\bar{s}}$
- Future outlook

Will follow PDG naming scheme as updated for 2023 RPP

https://pdg.lbl.gov/2023/reviews/rpp2023-rev-naming-scheme-hadrons.pdf

The LHCb experiment

- Huge charm and beauty production cross-section in the forward direction in pp collisions at LHC energies
 - Essentially all hadrons produced
- Require superb detection capability to separate signal from potentially overwhelming background
 - LHCb strengths in vertexing, tracking and charged particle identification
 - Capability for online selection (trigger) also crucial
- Two main production mechanisms
 - prompt: highest cross-section, but high backgrounds; only for cleanest channels
 - via B decays: lower rates (cross-section + BF + acceptance), but very clean

Most results shown today exploit production via B decays

Prompt vs. B decays

example with $\mu^+\mu^-$

PRL 120 (2018) 061801

EPJ C77 (2017) 161

$\chi_{c1}(3872)$ in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decays

$\chi_{c1}(3872)$ in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decays

PR D108 (2023) L011103

Signal yield of 6788 ± 117

Clear need for ω contribution, and interference, to fit m($\pi^+\pi^-$) spectrum $_{10}$

$\chi_{c1}(3872)$ in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decays

PR D108 (2023) L011103

$\chi_{c1}(3872)$ production in pp collisions

JHEP 01 (2022) 131

PRL 126 (2021) 092001

Production relative to $\psi(2S)$ studied as a function of p_T and occupancy Studies of production in other environments (pPb, etc.) ongoing

$\chi_{c1}(3872)$: other results and open questions

- Mass : $3871.64 \pm 0.06 \pm 0.01 \text{ MeV/c}^2$
 - obtained from Breit—Wigner fits
 - c.f. DD* threshold $3871.70 \pm 0.11 \text{ MeV/c}^2$
- Lineshape in J/ $\psi\pi^+\pi^-$ studied in detail
 - Improved knowledge of $D\overline{D}\pi$ & $D\overline{D}\gamma$ couplings needed for further progress
- Disagreement on $B(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma)$
 - Seen by BaBar & LHCb; not by Belle & BESIII

Studied in different experiments, different production environments, different decay channels Unique in this respect among

exotic hadrons (so far)

Charmonium pentaquark discovery

PRL 115 (2015) 072001

Almost background-free $\Lambda_b^0 \rightarrow J/\psi p K^-$ sample

Clear structure in $m(J/\psi p)$

Importance of particle identification

LHCb; PRL 115 (2015) 072001

ATLAS-CONF-2019-048

Charmonium pentaquark discovery

PRL 115 (2015) 072001

Charmonium pentaguark discovery

Latest on charmonium pentaquarks

PRL 122 (2019) 222001

Candidates/(0.105×0.045 GeV⁴

10²

10

Latest on charmonium pentaquarks

PRL 122 (2019) 222001

State	M [MeV $]$	Γ [MeV]	(95% CL)	${\cal R}~[\%]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ~ {}^{3.7}_{4.5}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Striking proximity of peaks to $\Sigma_c^+ \overline{D}^{(*)0}$ thresholds \rightarrow Coupled channel analyses of lineshapes may be necessary

> Full amplitude analysis needed to determine quantum numbers (work in progress)

Charmonium pentaquarks \rightarrow open charm?

$\mathsf{P}_{c\overline{c}}$ states : open questions

- Determination of quantum numbers
 - Amplitude analysis required
- Decays to final states other than $J/\psi p$
 - Potential to study $\eta_c p$, $\chi_{c1} p$ but larger samples needed
 - Similarly, good long-term prospects to study $\Lambda_c D^{(\star)}, \, \Sigma_c D^{(\star)}$ decays
- Other production mechanisms?
 - Other b decays? Prompt production in pp collisions? Photoproduction?
- What is the relevance of the proximity to $\Sigma_c D^{(*)}$ threshold?

Ξ_{cc}^{++} discovery

PRL 119 (2017) 112001

Subsequently seen also in $\Xi_c^{(\prime)+}\pi^+$ decays

First (so far only) weakly decaying hadron discovered at LHC

Lifetime measurement

PRL 121 (2018) 052002

 $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{-}$ channel Non-trivial decay-time acceptance

• use $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ as control channel

 $\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}$ (stat) ± 0.014 (syst) ps

Mass measurement & production rate

$$\sigma(\Lambda_c^+) = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

• in LHCb acceptance:

 $4 < p_T < 15 \text{ GeV/c} \& 2.0 < y < 4.5$

- for pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- assuming central value of $\tau(\Xi_{cc}^{++})$

Both $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$ and $\Xi_c^+ \pi^+$ channels m(Ξ_{cc}^{++}) = 3621.55 ± 0.23 (stat) ± 0.30 (syst) MeV/c² Largest systematic uncertainties from

- momentum scale
- Λ_c^+ and Ξ_c^+ masses

Searches for Ξ_{cc}^+

SCPMA 63 (2020) 221062 JHEP 12 (2021) 107

Search for Ω_{cc}^+

SCPMA 64 (2021) 101062

Double charm baryons : open questions

- Discover partner states and measure their properties
 - More data, but also better vertexing capability important to improve sensitivity
 - Capability to separate decay position from production vertex crucial to reject
 potentially overwhelming background
- Can we study the spectrum of excited states?
- Can we observe other doubly heavy hadrons?
 - Main focus on $\Xi_{\tt bc}$
 - Ξ_{cc}^{++} could become a tool to discover heavier multiquark states
 - Similarly for T_{cc^+} ...

Double charm tetraquark T_{cc}⁺

Nature Phys. 18 (2022) 751 Nature Comm. 13 (2022) 3351

Clear and narrow peak just above threshold in m(D⁰D⁰π⁺) Below D⁰D^{*0} threshold Study of lineshape (similar methodology to χ_{c1}(3872) study)

Double charm tetraquark T_{cc}⁺

Nature Phys. 18 (2022) 751 Nature Comm. 13 (2022) 3351

Partially reconstructed decays in different DD, DD π and D \overline{D} final states Consistent with isosinglet expectation

T_{cc} : open questions

- T_{cc}^+ observed just above threshold for strong decay
 - Does it imply $T_{\rm bc}$ and $T_{\rm bb}$ are below threshold, and hence weakly decaying?
 - How can we observe these states?
- Properties of production and decay to be studied in detail
 - Narrow width should help theoretical interpretation and understanding of binding mechanism
- Can we study the spectrum of excited states?
 - Is assumption that observed T_{cc}^+ is a ground-state justified?

PR D102 (2020) 112003

Signal yield of 1303 ± 37 (highly pure as optimised for amplitude analysis) Expected to provide clean environment to study $c\bar{c} \rightarrow D^+D^-$ but need exotic contributions

PR D102 (2020) 112003

Expected to provide clean environment to study $c\bar{c} \rightarrow D^+D^-$ but need exotic contributions

Signal yield of 1303 ± 37 (highly pure as optimised for amplitude analysis)

PR D102 (2020) 112003

Need two $T_{cs}(2900)$ states (spin-0 and spin-1) to fit the data First exotic states with open charm

With additional cut to remove cc reflections

PR D102 (2020) 112003

Need two $T_{cs}(2900)$ states (spin-0 and spin-1) to fit the data

PR D102 (2020) 112003

Need two $T_{cs}(2900)$ states (spin-0 and spin-1) to fit the data Masses close to DK* threshold

36

PRL 131 (2023) 041902

PRL 131 (2023) 041902

Decays related by isospin and similar structures seen Motivates simultaneous amplitude analysis to both decays

To the future, and beyond!

- More yet to be learned from the Run 1+2 data sample
- But fundamental limits due to sample size and detector performance
 - improve both in Runs 3 (2022-25) & 4 (2029-32)
 - reasons to be optimistic for further discovery of multiquark states
- No reason to think that should be the end of the road
 - ambitious plans for LHCb Upgrade 2
 - aim for the ultimate LHC flavour experiment
 - reasons to be optimistic for even more discoveries of multiquark states

LHCb Upgrade I

Pixel VELO

Identification of displaced vertices crucial to identify B decays at hadron colliders

-200

Beamspot RF foils -2x/mm 12 /mm

200

z/mm

400

600

43

Commissioning ongoing!

Data processing at 30 MHz

Traditional HEP trigger model: – select interesting events with loose criteria for later offline analysis

At high luminosity, every pp bunch-crossing contains a potentially interesting event

Need a new paradigm

- full software trigger
- first level trigger (HLT1) implemented in GPUs
- offline quality reconstruction: calibration and alignment performed before HLT2

select relevant information in each event to store for offline analysis

data rate from LHCb detector (32 Tb/s) global internet traffic 2022 (997 Tb/s)

Up to 100 HLT2 sub-farms (4000 servers)

n.b:

Why stop there?

The need for timing

- High LHC luminosity achieved by increasing number of pp interactions per bunch crossing
- Large detector occupancies \rightarrow many possible fake combinations
- But LHC bunches are long (~50 mm); collisions in each bunch crossing occur over ~0.2 ns
- Detection with ~20 ps resolution per track gives new handle to associate hits correctly

The need for timing

- High LHC luminosity achieved by increasing number of pp interactions per bunch crossing
- Large detector occupancies \rightarrow many possible fake combinations
- But LHC bunches are long (~50 mm); collisions in each bunch crossing occur over ~0.2 ns
- Detection with ~20 ps resolution per track gives new handle to associate hits correctly

Summary

- Hard to predict what new discoveries will be coming
 - But certain that new discoveries will be coming

Back it up

LHCb Run 1+2 integrated luminosity

Unprecedented samples of charm and beauty Dependence of production rate on \sqrt{s} means (for LHCb) 2015+16 \approx 2 x Run 1 (2011+12); 2017+18 \approx 2 x 2011–16

HL-LHC schedule

Last updated: January 2022

to be followed by LS5 (1-2 years) and Run 6

$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$

PRL 121 (2018) 162002 JHEP 05 (2022) 038

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ appears as partially reconstructed peak in m($\Xi_{c}^{+}\pi^{+}$) spectrum
 - missing photon from $\Xi_c{}^{`+}$ \rightarrow $\Xi_c{}^+\gamma$ decay
- Reconstruct $\Xi_c{}^+ \to p K^- \pi^+$ decay
 - Cabibbo-suppressed but good efficiency (3 tracks)

- on signal (TOS)
- independent of signal (TIS)

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$$

PRL 121 (2018) 162002 JHEP 05 (2022) 038

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = 0.035 \pm 0.009 \,(\text{stat}) \pm 0.003 \,(\text{syst}).$$

Separate hardware trigger decision samples

- on signal (TOS)
- independent of signal (TIS)

$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{(')+}\pi^{+}$$

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{'+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10.$$

Theory predictions range from 0.4 - 7 depending on relative contributions of two amplitudes

$\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

JHEP 10 (2019) 124

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to D^+ p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)} < 1.7 \ (2.1) \times 10^{-2} \ \text{at} \ 90\% \ (95\%) \ \text{CL}$$

Charmonia decaying to D⁺D⁻

Structure around 3930 MeV seen in $D\overline{D}$ and J/ $\psi\omega$ previously assumed to be J^P = 2⁺ state, i.e. $\chi_{c2}(2P)$

LHCb analysis shows there to be two states in that region, with $J^{P} = 0^{+}$ and 2^{+}

Resonance	Mass (GeV/ c^2)	Width (MeV)	
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$	
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$	

PR D102 (2020) 112003

Charmonia decaying to $D_s^+D_s^-$

arXiv:2211.05034 to appear in PRD

 $B^+ \rightarrow D_s^+ D_s^- K^+$

arXiv:2210.15153 to appear in PRL

Striking low-mass enhancement + interference dip near J/ $\psi \phi$ threshold 59 [modelled here with interfering spin-0 resonances]

Charmonia decaying to $D_s^+D_s^-$

arXiv:2211.05034 to appear in PRD

 $B^+ \rightarrow D_s^+ D_s^- K^+$

arXiv:2210.15153 to appear in PRL

LHCb Data 9 fb⁻¹ Total fit 40 *K*-matrix $\psi(4260)$ $\psi(4660)$ 20 10 4.0 4.2 4.4 4.6 4.8 $m(D_s^+D_s^-)$ [GeV]

Striking low-mass enhancement + interference dip near J/ψφ threshold ₆₀ [modelled here with K matrix]