

Experimental Overview Tim Gershon, University of Warwick Heavy Flavour 2023 – Quo Vadis? Ardbeg Distillery, Islay, 20 June 2023

Contents

- Where have we come from and where have we got to?
 - CP violation
 - Rare decays
- Where next?

BaBar Detector

Belle Detector

B factories – world record luminosities ~ 2000 – 2010

~ 711/fb on Y(4S)

Total over 10⁹ BB pairs recorded

sin(2β), 2001

Belle, PRL 87 (2001) 091802

 $\sin 2\phi_1 = 0.99 \pm 0.14 (\text{stat}) \pm 0.06 (\text{syst}).$

sin(2β), 2012

Belle, PRL 108 (2012) 171802

BaBar, PRD 79 (2009) 072009

7

LHCb integrated luminosity ~2010 - 2020

LHCb integrated luminosity ~2010 - 2020

Unprecedented samples of charm and beauty

Dependence of production rate on \sqrt{s} means (for LHCb) 2015+16 \approx 2 x Run 1 (2011+12); 2017+18 \approx 2 x 2011–16

HFLAV world average 2023 (preliminary) sin(2β) = 0.708 ± 0.011

Precision now an order of magnitude better compared to first observations of 2001

 $\sin(2\beta) \equiv \sin(2\phi_1)$

12

y from $B \rightarrow DK$ (GLW), 2003 Belle, PRD 68 (2003) 051101

Events / 10 MeV

Events / 10 MeV

 ΔE (GeV)

12 12 $D_1 = CP$ even final states (a) (b) $B^+ > D_1 K^+$ $B^{-} > D_1 K^{-}$ 10 10 Events / 10 MeV 8 8 $\mathcal{A}_1 = 0.06 \pm 0.19(stat) \pm 0.04(sys),$ 6 $\mathcal{A}_2 = -0.19 \pm 0.17(stat) \pm 0.05(sys)$ 4 2 2 $D_2 = CP$ odd final states 0 -0.20 -0.20-0.100.00 0.20 -0.100.00 0.10 0.20 0.10 ΔE (GeV) ΔE (GeV) 12 12 (d) (c) $B^{-} > D_2 K^{-}$ $B^+ > D_2 K^+$ 10 10 Here, misidentified Events / 10 MeV 8 8 $B \rightarrow D\pi$ peaks at 0; 6 $B \rightarrow DK$ signal 4 peaks at -49 MeV 2 2 0 -0.20-0.100.00 0.10 0.20 -0.20-0.100.00 0.10 0.20

 ΔE (GeV)

y from $B \rightarrow DK$ (BPGGSZ), 2004

Belle, PRD 70 (2004) 072003

γ from B \rightarrow DK (GLW), today

LHCb, JHEP 04 (2021) 081

 $\begin{array}{l} A_{CP}(B^- \rightarrow D_{CP^+}K^-) = 0.136 \pm 0.009 \text{ (stat)} \pm 0.001 \text{ (syst)} \\ \text{ (result also includes } D \rightarrow \pi^+\pi^-) \end{array}$

γ from B \rightarrow DK (ADS), today

LHCb, JHEP 04 (2021) 081

 $A_{CP}(B^- \rightarrow D_{ADS}K^-) = -0.451 \pm 0.026$

y from $B \rightarrow DK$ (BPGGSZ), today

LHCb, JHEP 02 (2021) 169

y now and then

The Unitarity Triangle

http://ckmfitter.in2p3.fr/

2006

Charm mixing, 2007

BaBar, PRL 98 (2007) 211802

Belle, PRL 98 (2007) 211803

Charm mixing, today

LHCb, PR D97 (2018) 031101

LHCb, PR D105 (2022) 092013

Charm mixing, 2021

$$D^0 \rightarrow K_S \pi^+ \pi$$

Charm CP violation

LHCb-PAPER-2022-024 PRL 122 (2019) 211803

Precise diagonal constraint from ΔA_{CP} Observation of charm CP violation at >5 σ Less precise constraints on individual contributions Evidence for CP violation in D⁰ $\rightarrow \pi^{+}\pi^{-}$

 $a^d_{\pi^-\pi^+}$ LHCb combination, 8.7 fb⁻¹ LHCb 0.006 LHCb combination, 3.0 fb⁻¹ No direct CPV + 0.004 0.002 -0.002-0.004contours hold 68%, 95% CL -0.004-0.0020.002 0.004 0 $a^d_{K^-K^+}$

$b \rightarrow s\gamma$ decays, 1993

CLEO, PRL 71 (1993) 674

$b \rightarrow sy$ decays, today

CLEO, PRL 71 (1993) 674

LHCb, PRL 123 (2019) 031801

$b \rightarrow sy$ decays, today

$b \rightarrow sl^+l^-$ decays, 2002 and today

Belle, PRL 88 (2002) 021801

LHCb-PAPER-2022-04{5,6}

Rκ

$b \rightarrow sI^+I^-$ decays, today

$b \rightarrow sl^+l^-$ decays, today

LHCb, PRL 125 (2020) 011802

 $B^0 \to K^{\star 0} \mu^+ \mu^-$

$b \rightarrow sl^+l^-$ decays, over time

 $B_{(s)}{}^0 \to \mu^+ \mu^-$

$b \rightarrow sl^+l^-$ decays, today

Quo Vadis?

Quo Vadis?

- Huge progress over past 20 years
 - BaBar and Belle, followed by LHCb
 - At least an order of magnitude gain in sample size every decade
 - An order of magnitude gain in precision in two decades
- Can we continue this for the next two decades?
- Are there areas where progress has not been so rapid, where we might catch up?

Quo Vadis?

- Huge progress over past 20 years
 - BaBar and Belle, followed by LHCb
 - At least an order of magnitude gain in sample size every decade
 - An order of magnitude gain in precision in two decades
- Can we continue this for the next two decades?

- YES

- Are there areas where progress has not been so rapid, where we might catch up?
 - YES

SuperKEKB and Belle II

Belle II Detector

Deal with higher background $(10-20\times)$, radiation damage, higher occupancy,

SuperKEKB Accelerator

• Low emittance ("nano-beam") scheme employed (originally proposed by P. Raimondi)

Over 400 fb⁻¹ recorded since 2020, will increase ×10 in ~5 years

Things to look forward to with Belle II

- Lepton flavour violating τ decays
 - and other precision τ physics
 - (complementing precision µ programme elsewhere)
- Searches for $b \rightarrow sv\overline{v}$ decays
 - (complementing $s \rightarrow dv\overline{v}$ programme elsewhere)
- Time-dependent CP violation in $b \rightarrow sg$
 - $B^0 \rightarrow \phi K_s$, $\eta' K_s$, $K_s \pi^0$, $K_s K_s K_s$, etc. (LHCb not yet competitive)
- Modes with neutrals, allowing flavour symmetries to be exploited
 - B⁰ → K_sπ⁰ (isospin sum rule), J/ψπ⁰ (control penguin pollution in sin(2β)), etc.
- ... much more

$B^+ \rightarrow K^+ \nu \overline{\nu}$ at Belle II

The LHCb detector

Things to look forward to with LHCb Run 3+4

- 2023: complete commissioning & collect first physics data
- 2024+5: collect >10/fb, >double LHCb sample sizes
 - largest gains where trigger efficiency improves most
- 2026-8: LS3
- 2029-32: complete collection of 50/fb sample

Example: $D^0 \rightarrow K_S K_S$

LHCb, PR D104 (2021) L031102

LL = tracks from K_s decays have hits in VELO Hardware trigger efficiency low

180 Candidates / ($0.3 \text{ MeV}/c^2$) $\rightarrow K_{\rm s}^0 K_{\rm s}^0$ 160 140 F DD 120 high-purity 100 LHCb 80 $4 \, \text{fb}^{-1}$ 60 + Data - Total 20 ---- Background 140142 144 146 148 150 152 154 $\Delta m \, [\text{MeV}/c^2]$

DD = tracks from K_s decays do not have hits in VELO Hardware and software trigger efficiencies low

Example: $D^0 \rightarrow K_S K_S$

LHCb, PR D104 (2021) L031102

Hardware trigger efficiency low

Hardware trigger removed

DD = tracks from K_s decays do not have hits in VELO Hardware and software trigger efficiencies low

Potential to improve

First Run 3 data

The LHCb detector

Use timing to reduce combinatorial background Improve detection capability wherever possible **Higher instantaneous** luminosity → more data

Long-term LHC schedule

LHCb Upgrade 2 Integrated Luminosity

LHCb Upgrade II needed to fully exploit HL-LHC

LHCb Upgrade I will get us here

The need for timing

- High LHC luminosity achieved by increasing number of pp interactions per bunch crossing
- Large detector occupancies \rightarrow many possible fake combinations
- But LHC bunches are long (~50 mm); collisions in each bunch crossing occur over ~0.2 ns
- Detection with ~20 ps resolution per track gives new handle to associate hits correctly

The need for timing

- High LHC luminosity achieved by increasing number of pp interactions per bunch crossing
- Large detector occupancies \rightarrow many possible fake combinations
- But LHC bunches are long (~50 mm); collisions in each bunch crossing occur over ~0.2 ns
- Detection with ~20 ps resolution per track gives new handle to associate hits correctly

Vertex detector (VELO)

- Candidate sensors
 - thin planar, LGAD, 3D
- Candidate ASICs (28 nm technology)
 - VeloPix2, Timespot
- Mechanical design challenges
 - cooling, module replacement, minimisation of material (RF foil), vacuum compatibility
- Fast tracking, tagging also important for kaon experiments (NA62/HIKE)
 - maybe also for neutrino experiments?
 (see EPJ C82 (2022) 465)

MAPS tracker

- Central region of SciFi tracking stations to be replaced with silicon detectors
- Use MAPS technology, also for Upstream Tracker (UT)
 - Can meet radiation requirement (3×10¹⁵ n_{eq}/cm² at UT)
 - First large scale tracking detector with this technology
 - Building on experience from STAR, ALICE, ATLAS and mu3e

Electromagnetic calorimeter

- LHCb ECAL not replaced (except electronics) in Upgrade I
 - in Run 3 will operate at 25× its design luminosity!
- Proposal for crystal fibres (SpaCal) in central region + Shashlik (outer region)
 - timing information ($\sigma_t \sim 20$ ps) used to help suppress background

TORCH detector

- Highly-polished quartz plate used as Cherenkov radiator: 1 cm thick (~10% X_0)
- Photons transported by internal reflection + focusing optics to photon detectors. Arrival time and position of photons measured precisely
- Measured Cherenkov angle is used to correct for dispersion in the quartz: TOF+RICH → TORCH
- At ~10m downstream of collision point, require per track resolution of 15 ps for $3\sigma \text{ K/}\pi$ separation \rightarrow per photon resolution of 70 ps.
- "Start time" $t_{\mbox{\tiny 0}}$ can be determined from timing of other tracks from primary vertex
 - Associate tracks to correct vertices
 - Reject "ghost" tracks

Performance demonstrated in test beam with half-size module: NIM A961 (2020) 163671

LHCb Upgrade II physics impact

LHCB-TDR-023

Observable	Current LHCb	Upgrade I		Upgrade II
	$(up to 9 fb^{-1})$	$(23{\rm fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests				
$\gamma \ (B \to DK, \ etc.)$	4° 9,10	1.5°	1°	0.35°
$\phi_s \ \left(B^0_s \to J/\psi \phi \right)$	32 mrad 8	$14\mathrm{mrad}$	$10 \mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% 29,30	3%	2%	1%
$a_{\rm sl}^d \ (B^0 \to D^- \mu^+ \nu_\mu)$	36×10^{-4} 34	8×10^{-4}	5×10^{-4}	2×10^{-4}
$a_{\rm sl}^s \left(B_s^0 \to D_s^- \mu^+ \nu_\mu \right)$	33×10^{-4} 35	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm				
$\Delta A_{CP} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	29×10^{-5} 5	13×10^{-5}	8×10^{-5}	$3.3 imes 10^{-5}$
$A_{\Gamma} \left(D^0 \rightarrow K^+ K^-, \pi^+ \pi^- \right)$	11×10^{-5} 38	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$	18×10^{-5} 37	$6.3 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$
Rare Decays				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu$	$^{-})$ 69% $[40, 41]$	41%	27%	11%
$S_{\mu\mu} \left(B_s^0 \to \mu^+ \mu^- \right)$				0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10 52	0.060	0.043	0.016
$A_{\rm T}^{\rm Im} \ (B^0 \to K^{*0} e^+ e^-)$	0.10 52	0.060	0.043	0.016
$\mathcal{A}^{\Delta\Gamma}_{\phi\gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$ 51	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \to \phi\gamma)$	0.32 51	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ 53	0.148	0.097	0.038
Lepton Universality Tests				
$R_K \left(B^+ \to K^+ \ell^+ \ell^- \right)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12 61	0.034	0.022	0.009
$R(D^*) \ (B^0 o D^{*-} \ell^+ u_\ell)$	0.026 $62, 64$	0.007	0.005	0.002

54

Last words

- Heavy flavour physics remains an extremely exciting field
 - We have been spoiled by the richness of the data available to us, and can hope for this to continue
 - (Even if we can be impatient during the occasional lulls)
- Despite a few exciting anomalies, no clear indication for BSM at present
 - Several theoretically clean observables remain to be pursued
 - Many possibilities to constrain theory from experiment

Much to do!

Let's get on with business

