Physics at SuperB

Tim Gershon University of Warwick

EPS HEP 2007 Manchester, 20th July 2007

SuperB is

a very high luminosity asymmetric e⁺e⁻ flavour factory

Conceptual design report INFN/AE-07/02, SLAC-R-856, LAL 07-15 http://www.pi.infn.it/SuperB

See also

- SuperKEKB Letter of Intent, KEK Report 04-4
- SuperKEKB Physics Working Group, [arXiv:hep-ex/0406071], update in preparation
- J.L.Hewett, D.Hitlin (ed.), SLAC-R-709, [arXiv:hep-ph/0503261]
- Flavour in LHC Era workshops, yellow book in preparation

Exploration of Two Frontiers

Motivation

• Major challenge for particle physics in the next decade is to go beyond the Standard Model

Sensitivity depends on:

available centre-of-mass energy

knowledge of Standard Model backgrounds New heavy particles produced off mass shell ("virtual")

Sensitivity depends on:

luminosity

"quantum"

knowledge of Standard Model backgrounds 4 Flavour Observables Sensitive to New Physics $\Delta m_{\kappa} \epsilon_{\kappa} \epsilon_{\kappa} \delta(K_{I} \to \pi^{0} \nu \overline{\nu}) B(K^{+} \to \pi^{+} \nu \overline{\nu}) B(K^{+} \to I^{+} \nu)$ $\Delta m_d \quad A_{SI}(B_d) \quad S(B_d \rightarrow J/\psi K_S) \quad S(B_d \rightarrow \phi K_S)$ $\alpha(B \rightarrow \pi \, \pi \, , \rho \, \pi \, , \rho \, \rho) \qquad \gamma(B \rightarrow DK) \qquad \qquad CKM \ fits$ $\Delta m_{s} \quad A_{SI}(B_{s}) \quad S(B_{s} \rightarrow J/\psi\phi) \quad S(B_{s} \rightarrow \phi\phi)$ $B(b \rightarrow s \gamma) \quad A_{CP}(b \rightarrow s \gamma) \quad S(B^{0} \rightarrow K_{S} \pi^{0} \gamma) \quad S(B_{s} \rightarrow \phi \gamma)$ $B(b \rightarrow d\gamma) \quad A_{CP}(b \rightarrow d\gamma) \quad A_{CP}(b \rightarrow (d+s)\gamma) \quad S(B^{0} \rightarrow \rho^{0}\gamma)$ $B(b \rightarrow s I^+ I^-) \quad B(b \rightarrow d I^+ I^-) \quad A_{FB}(b \rightarrow s I^+ I^-) \quad B(b \rightarrow s v \overline{v})$ $B(B_{c} \rightarrow I^{+}I^{-}) \quad B(B_{d} \rightarrow I^{+}I^{-}) \quad B(B^{+} \rightarrow I^{+}\nu)$ $B(\mu \rightarrow e \gamma) \quad B(\mu \rightarrow e^+ e^- e^+) \quad (g-2)_\mu \quad \mu \quad EDM$ $B(\tau \rightarrow \mu \gamma) \quad B(\tau \rightarrow e \gamma) \quad B(\tau^+ \rightarrow I^+ I^- I^+) \quad \tau \quad CPV \quad \tau \quad EDM$ $B(D_{(s)}^+ \rightarrow I^+ v)$ $X_D Y_D$ charm CPV 5 ... add your favourite here ...

Good News and Bad News

Bad news

- no single "golden mode"
- (of course, some channels preferred in certain models)
- Good news
 - very many observables sensitive to new physics
 - maximize sensitivity by combining information
 - correlations between results distinguish models

Super Flavour Factory "treasure chest" of new physics observables

Super Flavour Factory

- Data taken at Y(4S) allows studies of B, tau, charm, charmonia, ISR, yy physics (and more)
- SuperB is designed with flexible running energy
 - charm-tau threshold region
 - other Upsilon resonances including Y(5S) $\Rightarrow can study B_s sector, including \Delta\Gamma_s and \varphi_s (but not \Delta m_s)$
- Considering beam polarization option
 - provides luminosity enhancement
 - significant improvement in sensitivity for τ EDM

see arXiv:0707.1658 and arXiv:0707.2496

Lepton Flavour Violation

 Observable LFV signals predicted in a wide range of models, including those inspired by Majorana neutrinos

Charm at SuperB

 SuperB uniquely can study the full range of charm phenomena

Two Scenarios

1) LHC discovers new physics

- Can it be flavour blind? (ie. no signals in flavour)
 - No, it must couple to SM, which violates flavour
 - Any TeV scale NP model includes new flavoured particles
- What is the minimal flavour violation? (ie. worst case)
 - NP follows SM pattern of flavour and CP violation
 - SFF detects NP effects for particle masses up to >600 GeV
- What if NP flavour couplings are not suppressed?
 - SFF measures NP flavour couplings and distinguishes models

2) LHC does not discover new physics

- Problem for naturalness?
 - Not really just an order of magnitude argument
- How to probe higher mass scales?
 - NP models with unsuppressed flavour couplings can reach scales of 10s, 100s or even 1000s of TeV 11

Interplay of Energy and Luminosity Frontiers

- Important to note that flavour observables are complementary to those at the energy frontier
 - measure different new physics parameters
 - powerful to distinguish models

Estimated Sensitivities

Observable	B Factories (2 ab ⁻¹)	$SuperB$ (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\cos(2\beta) (J/\psi K^{*0})$	0.30	0.05	$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$sin(2\beta) (Dh^0)$	0.10	0.02	$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$S(J/\psi \pi^0)$	0.10	0.02			
$S(D^{+}D^{-})$	0.20	0.03	$\mathcal{B}(B \rightarrow \tau \nu)$	20%	4% (†)
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \rightarrow \mu\nu)$	visible	5%
$S(\eta' K^{0})$	0.05	0.01 (*)	$\mathcal{B}(B \rightarrow D\tau \mu)$	10%	20%
$S(K_{S}^{0}K_{S}^{0}K_{S}^{0})$	0.15	0.02 (*)	$\mathcal{D}(D \to D T V)$	1070	270
$S(K_{s}^{0}\pi^{0})$	0.15	0.02 (*)	$\mathcal{B}(\mathcal{D} \to \infty)$	150%	20Z (4)
$S(\omega K_s^0)$	0.17	0.03 (*)	$\mathcal{B}(D \rightarrow p\gamma)$ $\mathcal{B}(D \rightarrow p\gamma)$	1070	370 (T) E07
$S(f_0K_s^0)$	0.12	0.02 (*)	$\mathcal{B}(B \rightarrow \omega \gamma)$	30%	0% 0.004 (/)
			$A_{CP}(B \rightarrow K^*\gamma)$	0.007 (†)	0.004 († *)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstates})$	$) \sim 15^{\circ}$	2.5°	$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$\gamma~(B \rightarrow DK, D \rightarrow {\rm suppressed \ stat}$	es) $\sim 12^{\circ}$	2.0°	$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$\gamma~(B \rightarrow DK, D \rightarrow$ multibody stat	es) $\sim 9^{\circ}$	1.5°	$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$	$S(K_s^0 \pi^0 \gamma)$	0.15	0.02(*)
			$S(\rho^0\gamma)$	possible	0.10
$\alpha \ (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°			
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(B \rightarrow K^*\ell\ell)$	7%	1%
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \rightarrow K^* \ell \ell) s_0$	25%	9%
α (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
			$\mathcal{B}(B \rightarrow K \nu \overline{\nu})$	visible	20%
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{s}\pi^{\mp})$	20°	5°	$\mathcal{B}(B \rightarrow \pi \nu \bar{\nu})$	_	possible

Still only a few measurements systematics (†) or theoretically (*) limited

Leptonic B Decays

MSSM + Generic Squark Mass Matrices

Red areas show $\delta > 3\sigma$ from zero with SuperB precision

Hadronic b→s Penguins

Current B factory hot topic

		sin($(2\beta^{ef})$	^{ĭf})≡	sin(2 ø	eff 1) Moria	DIMINARY
b→c	CS	World Aver	age			1	0.0	68 ± 0.03
		BaBar		-	<u>+ <mark>5</mark>8</u> -	1	0.12 ± 0.3	31 ± 0.10
	Ř	Belle			₹ ₽.		0.50 ± 0.2	21 ± 0.06
	÷	Average					0.3	39 ± 0.18
		BaBar					0.58 ± 0.1	10 ± 0.03
Ϋ́		Belle			4		0.64 ± 0.7	10 ± 0.04
_ ۲		Average					0.0	61 ± 0.07
	Ľ.	BaBar			C i	-	0.71 ± 0.2	24 ± 0.04
	Ł	Belle			_ ∠_?		0.30 ± 0.3	32 ± 0.08
	ž	Average			.		0.9	58 ± 0.20
. v		BaBar			- <mark>CR</mark>		0.33 ± 0.2	26 ± 0.04
S S		Belle					0.33 ± 0.3	35 ± 0.08
ĸ		Average			포운		0.3	33 ± 0.21
	ř	BaBar		A	7 7		0.20 ± 0.	52 ± 0.24
L	ಿ	Average			<u>.</u>		0.2	20 ± 0.57
ι σ		BaBar			छ २	-	0.62 +0	.30 ± 0.02
X		Belle					0.11 ± 0.4	46 ± 0.07
		Average					0.4	48 ± 0.24
	Q.,	BaBar			<mark>ଏ</mark> ଲା-	•	0.0	62 ± 0.23
	×	Belle		•			0.18 ± 0.2	23 ± 0.11
	÷	Average					0.4	42 ± 0.17
<u>~</u>		BaBar	Ă	D D			-0.72 ± 0.1	71 ± 0.08
		Average		5			-0.3	72 ± 0.71
F	Ъ.	BaBar Q2E	5			0.41	$\pm 0.18 \pm 0.0$	07 ± 0.11
	¥	Belle			1	→ 0.	.68 ± 0.15 ±	0.03 -0.13
:	Ť.	Average					0.9	58 ± 0.13
-3		-2	-1	C)	1	2	3

Many channels can be measured with $\Delta S \sim (0.01-0.04)$

Observable	B Factories (2 ab^{-1})	Sup	erB	
$S(\phi K^0)$	0.13	0.02~(*)	[0.030]	
$S(\eta' K^0)$	0.05	0.01 (*)	[0.020]	
$S(K^0_s K^0_s K^0_s)$	0.15	0.02 (*)	[0.037]	
$S(K^0_s\pi^0)$	0.15	$0.02 \; (*)$	[0.042]	
$S(\omega K^0_{s})$	0.17	0.03~(*)		
$S(f_0K_s^0)$	0.12	$0.02\;(*)$		

Summary

- The case for flavour physics in the LHC era is compelling
- SuperB a high-luminosity asymmetric e⁺e[−]
 Super Flavour Factory is the ideal tool
 - significant breakthrough in collider design
- Conceptual Design Report exists
 - clear road ahead to explore the flavour treasure chest by mid-2010s
- See talk by M.Giorgi in EPS-ECFA session for more details of the project

Back Up

Estimated Sensitivities

Observable	Super Flavour Factory sensitivity
$\sin(2\beta) \left(J/\psi K^0\right)$	0.005-0.012
$\gamma (B \to D^{(*)} K^{(*)})$	$1-2^{\circ}$
$\alpha \left(B \to \pi \pi, \rho \rho, \rho \pi \right)$	$1-2^{\circ}$
$ V_{ub} $ (exclusive)	3-5%
$ V_{ub} $ (inclusive)	2-6%
$\bar{\rho}$	1.7-3.4%
$\bar{\eta}$	0.7 - 1.7%
$S(\phi K^0)$	0.02-0.03
$S(\eta' K^0)$	0.01-0.02
$S(K^0_S K^0_S K^0_S)$	0.02-0.04
$\mathcal{B}(B \to \tau \nu)$	3-4%
$\mathcal{B}(B \to \mu \nu)$	5-6%
$\mathcal{B}(B \to D \tau \nu)$	2 - 2.5%
$\mathcal{B}(B \to \rho \gamma) / \mathcal{B}(B \to K^* \gamma)$	3-4%
$A_{CP}(b \rightarrow s\gamma)$	0.004 - 0.005
$A_{CP}(b \rightarrow (s+d)\gamma)$	0.01
$S(K_s^0\pi^0\gamma)$	0.02 - 0.03
$S(ho^0\gamma)$	0.08 - 0.12
$A^{\rm FB}(B \to X_s \ell^+ \ell^-) s_0$	4-6%
$\mathcal{B}(B \to K \nu \bar{\nu})$	16-20%
$\mathcal{B}(\tau \to \mu \gamma)$	$2-8 \times 10^{-9}$
$\mathcal{B}(au o \mu \mu \mu)$	$0.2-1 \times 10^{-9}$
$\mathcal{B}(\tau \to \mu \eta)$	$0.4 - 4 \times 10^{-9}$

Range of estimated sensitivities from SuperB CDR and SuperKEKB Lol

A Completely New Accelerator Design

Attempts to upgrade PEP-II and KEKB with high current hit limitations due to beam instabilities, backgrounds and power

- ⇒ Approach with small emittance bunches (SuperB)
 - initially inspired by ILC damping rings
 - large Piwinski angle ($\varphi = \theta \sigma_{T} / \sigma_{x}$)
 - "crab waist"
- → High luminosity
- → Low currents
- Small backgrounds
- Stable dynamic aperture
- → Wall plug power ~30 MW

Maximize beam overlap with finite crossing angle

Backgrounds and Detectors

- Backgrounds depend on various factors
 - luminosity
 - radiative BhaBha scattering
 - e⁺e⁻ pair production
 - currents
 - synchrotron radiation
 - beam-gas interaction
 - beam size
 - Touschek scattering
 - beam-beam interactions

main problem for SuperKEKB: beam backgrounds ~ 20 x today

possible problem for SuperB: motivates smaller beam asymmetry (7 GeV on 4 GeV)

- For either SuperKEKB or SuperB:
 - interaction point design & shielding requires care
 - detector can be based on existing BaBar / Belle 21

Detector R&D

- Detector R&D required for the several subsystems
 - vertex detector
 - first layer close (~1cm) to beam spot
 - use pixels or striplets to cope with occupancy
 - particle identification

improvements in hermeticity important improved readout for barrel (DIRC) for many measurements

- forward PID device (focussing RICH?)
- calorimeter
 - CsI(TI) too slow for endcaps \rightarrow pure CsI? LSO?
- electronics, trigger, DAQ & offline computing
 - need to deal with high physics trigger rate

SuperB Detector

Potential SuperB site on the University of Rome Tor Vergata campus

Comparison between SuperB and SuperKEKB

		SuperB	SuperKEKB		
Emittance	ε _x	0.8	9	nm	smaller than SuperKEKB
Horizontal beta	β_x^*	20	200	mm	A De se de la constance de la c
Vertical beta	β_y^*	0.2	3	mm	-10
Horizontal beam size	σ_x^{*}	• Basic Co 4 • Paramet High-Dis	42	μm	
Vertical beam size	$\sigma_y^{\ *}$	20	367	nm	
Bunch length	σ _z	6 • Optimiza • Status of	rs (Mar. 2006) on of the SuperB 3 (m(Nov. 2007) the SuperB collaboration	mm	
Half crossing angle	φ _x	+ Where w 17 - Conclusio	en and how to build the SuperB ns 15	mrad	
Piwinski angle	φ	25.5	1	rad	
Current(LER/HER)	l _b	3.95/2.17	10.4/4.4	Α	MARCI 6
Luminosity (x10 ³⁵)	L	24	8.25	cm ⁻² s ⁻¹	
AC Plug Power	Ρ	35	83	MW	- ANT

Backgrounds

- Dominated by QED cross section
 - Low currents / high luminosity
 - Beam-gas are not a problem
 - SR fan can be shielded

	Cross section	Evt/bunch xing	Rate	
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz	
e⁺e⁻ pair production	~7.3 mbarn	~15	7GHz	<i>p</i>
Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz	
Ύ(4S)	O(10 ⁻⁶) mbarn	~2/million	I KHz	p_+

Interaction Region Design

Some Key Measurements

Couplings and Scales

$$L = L_{SM} + \sum_{k=1} \left(\sum_{i} c_{i}^{k} Q_{i}^{(k+4)} \right) / \Lambda^{k}$$

- New physics effects are governed by:
 - new physics scale Λ
 - effective flavour-violating couplings c_i
 - couplings may have a particular pattern (symmetries)
 - coupling strengths can vary (different interactions)
- If Λ known from LHC, measure c_i
- If Λ not known, measure c_i / Λ

MFV Confronts the Data

- Current experimental situation
 - some new physics flavour couplings are small

Minimal flavour violation

all new physics flavour couplings are zero

MFV is a long way from being verified! Need to establish correlations between different flavour sectors (B_d,B_s,K)

New Physics Sensitivity in MFV

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\Delta F=2} &= \mathcal{H}_{\text{SM}} + \mathcal{H}_{\text{NP}} = \left(V_{tq}V_{tq'}^*\right)^2 \left(\frac{S_0(x_t)}{\Lambda_0^2} + \frac{a_{\text{NP}}}{\Lambda^2}\right) (\bar{q}'q)_{(V-A)} (\bar{q}'q)_{(V-A)} \\ S_0(x_t) &\rightarrow S_0(x_t) + \delta S_0, \quad |\delta S_0| = O\left(4\frac{\Lambda_0^2}{\Lambda^2}\right), \quad \Lambda_0 = \frac{\pi Y_t}{\sqrt{2}G_F M_W} \sim 2.4 \text{ TeV} \\ \hline \text{Today} \\ \Lambda(\text{MFV}) &> 2.3\Lambda_0 \text{ @95C.L.} \\ \text{NP masses > 200GeV} \qquad \qquad \text{NP masses > 600GeV} \end{aligned}$$

- analysis relies on CKM fits and improvements in lattice calculations
- only $\Delta F=2$ (mixing) operators considered
- further improvements possible including also $\Delta F{=}1$ (especially $b{\rightarrow}s\gamma)$

Correlations Distinguish Models

SFF can reach ~0.4% precision

SFF can reach 2% precision

Plots show parameter scans in four different SUSY breaking schemes:

 $- mSUGRA \qquad - U(2) flavour symmetry$ - SU(5) + v_R degenerate <math display="block">- SU(5) + v_R non-degenerate

Running at the Y(5S)

- Belle & CLEO have demonstrated potential for $e^+e^- \rightarrow Y(5S) \rightarrow B_s^{(*)}B_s^{(*)}$
- Some important channels, such as $B_s \rightarrow \gamma \gamma$, $A_{SL}(B_s)$ are unique to SuperB
- Problem: cannot resolve fast Δm_{c} oscillations
 - retain some sensitivity to ϕ_s , since $\Delta \Gamma_s \neq 0$

$$\Gamma_{\bar{B}_s \to f}(\Delta t) + \Gamma_{B_s \to f}(\Delta t) = \mathcal{N} \frac{e^{-|\Delta t|/\tau(B_s)}}{2\tau(B_s)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \sinh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \sinh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \sinh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big] \frac{1}{(1-24)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{1}{(1-24)} \cosh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big] \frac{1}{(1-24)} \Big$$

cf. D0 untagged measurement of $\phi_{_{s}} \quad_{33}$

Large New Physics Contributions Excluded

Will be studied at LHCb (+ upgrade)

