Weak Decays, CP Violation and the CKM Matrix: Experimental Status

Tim Gershon University of Warwick

WIN'09

22rd International Workshop on Weak Interactions and Neutrinos

14th September 2009

Outline of the talk

- Charged leptons
 - $-(g-2)_{u}$ and associated measurements
 - charged lepton flavour violation: μ and τ decays
- Quarks & hadrons
 - flavour oscillations and CP violation
 - assorted measurements of CKM matrix elements and searches for new physics
 - kaons: $|V_{\mu}|$; lepton universality tests; rare decays
 - bottom: Unitarity Triangle angles; rare decays
- Global fits and summary

Outline of the talk

- Charged leptons
 - (g Necessarily selective
 - ch
 Apologies for omissions
 Apologies for omissions
- Quar
 Focus on s
 - fla
 New physics sensitive channels
 - as
 New results
 Future prospects
 - kaons: |V₁; lepton universality tests; rare decays
 - ALL RESULTS ARE PRELIMINARY UNLESS PUBLISHED REFERENCE GIVEN
- Glob

Charged leptons

Muon Anomalous Magnetic Moment

• Final result of BNL E821 PRD 73 (2006) 072003

 a_{μ}^{ep} = (11 659 208.0 ± 5.4 ± 3.3) x 10⁻¹⁰

• Standard Model prediction:

4.5 Billion Positrons with E>2 GeV

Muon Anomalous Magnetic Moment

• Final result of BNL E821 PRD 73 (2006) 072003

 a_{μ}^{ep} = (11 659 208.0 ± 5.4 ± 3.3) x 10⁻¹⁰

• Standard Model prediction:

 $a_{\mu}^{SM} = (11\ 658\ 471.81 \pm 0.02\ (QED) + 15.32 \pm 0.18\ (weak) + 690.30 \pm 5.26\ (had,LO) - 10.03 \pm 0.11\ (had,HO) + 11.60 \pm 3.90\ (had,LBL)) \times 10^{-10} = (11\ 659\ 179.00 \pm 6.46) \times 10^{-10} = (11\ 659\ 179.00 \pm 6.46) \times 10^{-10}$ • $a_{\mu}^{CP} - a_{\mu}^{SM} = (29.0 \pm 9.0) \times 10^{-10} = (29.0 \pm 9.0) \times$

4.5 Billion Positrons with E>2 GeV

Muon Anomalous Magnetic Moment

• Final result of BNL E821 PRD 73 (2006) 072003

 a_{μ}^{ep} = (11 659 208.0 ± 5.4 ± 3.3) x 10⁻¹⁰

• Standard Model prediction:

 $a_{..}^{SM} = (11\ 658\ 471.81\ \pm\ 0.02\ (QED))$ 4.5 Billion Positrons with E>2 GeV $+ 15.32 \pm 0.18$ (weak) $^{\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda}$ + 690.30 ± 5.26 (had,LO) -10.03 ± 0.11 (had,HO) + 11.60 ± 3.90 (had,LBL)) x 10⁻¹⁰ $= (11\ 659\ 179.00 \pm 6.46) \times 10^{-10}$ MMM $a^{ep} - a^{SM} =$ 32σ Tim Gershor 70 90 100 Time μs F.Jegerlehner & A.Nyffeler, /eak Decays, CPV & CKM Phys. Rept. 477 (2009) 1110

Hadronic vacuum polarisation

 $a_{\mu}^{had,LO} = \frac{1}{4\pi^3} \int_{m_{\pi^\circ}^2}^{\infty} ds K(s) \sigma_{e^+e^- \to hadrons}$

M.Davier *et al.*, arXiv:0908.4300 [hep-ph]

- Kernel function K(s) ~ s⁻¹ \rightarrow low s (e⁺e⁻ $\rightarrow \pi^+\pi^-(\gamma)$) dominates
- In practise, apply cut off

New $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ Results

M.Davier et al...

arXiv:0908.4300 [hep-ph] KLOE Cross section [nb] PLB 670 (2009) 285 SND OLYA DM1 10³ CMD DM2 CMDS MEA KLOE BABAB 10² Average Initial state radiation y not tagged BABAR arXiv:0908.3589 [hep-ex] – 232/fb $e^+e^- \rightarrow \pi^+\pi^-(\gamma)\gamma_{LD}$ near the Y(4S) Initial state radiation y is tagged 0.6 0.8 1.4 1.6 1.8 – Ratio with $e^+e^- \rightarrow \mu^+\mu^-(\gamma)\gamma_{\mu}$ HMNT 07 (e⁺e⁻) -276 ± 51 $a_{\mu}^{\text{had}\text{LO}}$ [e⁺e⁻] = (695.5 ± 4.0_{ex} ± 0.7_{or}) × 10⁻¹⁰ JN 09 (e⁺e⁻) -290 + 65 $a_{\mu\nu}^{had LO}$ [e⁺e⁻] - $a_{\mu\nu}^{had LO}$ [T] = (6.8 ± 4.5) × 10⁻¹⁰ Davier et al. 09 (7) -148 ± 52 Davier et al. 09 (e⁺e⁻) a.SM = (11 659 183.4 ± 4.9) x 10⁻¹⁰ -303 + 51This work (e⁺e⁻ w/ BABAR -246 ± 49 $a_{II}^{ep} - a_{II}^{SM} = (24.6 \pm 8.0) \times 10^{-10}$ BNL-E821 (WA) 0 ± 63 recall: was (29.0 ± 9.0) x 10⁻¹⁰ Tim Gershon -600 -500 -400 -300 -200 -100 0 100 $imes 10^{-11}$ Including new a mult calculation from Weak Decays, CPV & CKM - a^{exp}

J.Prades et al., arXiv:0901.0306 [hep-ph]

New $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ Results

M.Davier et al...

arXiv:0908.4300 [hep-ph] KLOE Cross section [nb] PLB 670 (2009) 285 SND OLYA A DM1 10³ CMD 4 DM2 CMD2 MEA KLOE BABAB 10² Average Initial state radiation y not tagged BABAR arXiv:0908.3589 [hep-ex] – 232/fb $e^+e^- \rightarrow \pi^+\pi^-(\gamma)\gamma_{\mu\nu}$ near the Y(4S) Initial state radiation y is tagged 0.6 0.8 1.4 1.6 1.8 - Ratio with $e^+e^- \rightarrow \mu^+\mu^-(\gamma)\gamma_{\mu}$ HMNT 07 (e⁺e⁻) -276 ± 51 $a_{\mu}^{\text{had}\text{LO}}$ [e⁺e⁻] = (695.5 ± 4.0_{ex} ± 0.7_{cm}) × 10⁻¹⁰ JN 09 (e⁺e⁻) -290 + 65 $a_{\mu}^{had LO}$ [e⁺e⁻] - $a_{\mu}^{had LO}$ [T] = (6.8 ± 4.5) x 10⁻¹⁰ Davier et al. 09 (7) -148 ± 52 Davier et al. 09 (e⁺e⁻) $a_{II}^{SM} = (11\ 659\ 183.4 \pm 4.9) \times 10^{-10}$ -303 + 51This work (e⁺e⁻ w/ BABAR -246 ± 49 $a_{\mu}^{ep} - a_{\mu}^{SM} =$ 3.1σ BNL-E821 (WA) 0 ± 63 Tim Gershon -600 -500 -400 -300 -200 -100 0 100 $imes 10^{-11}$ Including new a maile calculation from Weak Decays, CPV & CKM - a^{exp}

J.Prades et al., arXiv:0901.0306 [hep-ph]

Prospects for (g-2)

- Improve experimental precision
 - FERMILAB-PROPOSAL-0989 aims for 0.14 ppm
 - factor of 4 improvement from BNL E821
 - reuse of E821 storage ring at FNAL
- Improve Standard Model expectation
 - further measurements of $e^+e^- \rightarrow hadrons$
 - uncertainty from $\pi\pi \approx$ that from others combined
 - precision studies of tau spectral function
 - KLOE, BESIII, CMD3, SND, BABAR, BELLE
 - continued progress on theory

Charged lepton flavour violation

- Lepton flavour conservation: one of the original, and remaining, puzzles of the Standard Model
- Neutrinos oscillate \rightarrow lepton flavour is violated
- Charged lepton flavour violation (CLFV) suppressed to unobservable levels (O(10⁻⁵⁰)) by small neutrino masses
- CLFV signals: FCNC decays of μ and τ
 - $\mu \rightarrow e\gamma$, $\mu \rightarrow e$ conversion, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow \mu\mu\mu$, etc.
- Observable CLFV \rightarrow smoking gun for new physics
- Many extensions of the SM induce CLFV signals

The muon to electron gamma (MEG) experiment at PSI

$\mu^+ \to e^+ \gamma$

- positive muons \rightarrow no muonic atoms
- continuous (DC) muon beam → minimise accidental coincidences

Tim Gershon

Weak Decays, CPV & CKM

First Preliminary MEG Result

• Experimental challenges

arXiv:0908.2594 [hep-ex] T.Mori at LP'09

- control accidental coincidence: require excellent timing on both e and γ
- distinguish background from radiative muon decay: require excellent (E,p) measurements for both e and γ
- Signal yield determined from simultaneous fit to five discriminating variables: E_v , E_e , t_w , θ_w and ϕ_w
- 90% confidence level upper limit

 N_{sc} < 14.7 (Feldmann-Cousins)
- $B(\mu^+ \rightarrow e^+\gamma) < 3 \times 10^{-11}$ @ 90% C.L.
- Current best limit < 1.2×10^{-11}

Tim Gershon

eak Decays, CPV & CKM

MEGA experiment PRL 83 (1999) 1521

14

Lepton Flavour Violating τ Decays

τ → eγ and τ → μγ at BABARData sample of 4.8 x 10⁸ τ pairs B(τ → eγ) < 3.3 x 10⁸ (90% C.L.) B(τ → μγ) < 4.4 x 10⁸ (90% C.L.)

> arXiv:0908.2381 [hep-ex] (see also Belle PLB 666 (2008) 16)

τ → III at BABAR Data sample of 4.3 x 10⁸ τ pairs

Tim Gershon

Weak Decays, CPV & CKM

Mode	Eff. [%]	$N_{\rm bgd}$	$\mathrm{UL}_{90}^{\mathrm{exp}}$	$N_{\rm obs}$	$\mathrm{UL}_{90}^{\mathrm{obs}}/$	10 ⁻⁸
$e^{-}e^{+}e^{-}$	8.6 ± 0.2	0.12 ± 0.02	3.4	0	2.9	
$\mu^-e^+e^-$	8.8 ± 0.5	0.64 ± 0.19	3.7	0	2.2	
$\mu^+e^-e^-$	12.7 ± 0.7	0.34 ± 0.12	2.2	0	1.8	
$e^+\mu^-\mu^-$	10.2 ± 0.6	0.03 ± 0.02	2.8	0	2.6	
$e^-\mu^+\mu^-$	6.4 ± 0.4	0.54 ± 0.14	4.6	0	3.2	
$\mu^-\mu^+\mu^-$	6.6 ± 0.6	0.44 ± 0.17	4.0	0	3.3	

A. Cervelli at CIPANP 2009 (see also Belle: Y.Miyazaki at EPS2009)

> ... and many more! Full listings available from HFAG tau decay subgroup http://www.slac.stanford.edu/xorg/hfag/tau

15

Prospects for Lepton Flavour Violation

- MEG still taking data
- New generations of μ e conversion experiments
 - COMET at J-PARC, followed by PRISM/PRIME
 - mu2e at FNAL, followed by Project X
 - Potential improvements of $O(10^4) O(10^6)$ in sensitivities!
- τ LFV a priority for next generation e^+e^- flavour factories
 - SuperKEKB/Belle2 at KEK
 - SuperB in Italy
 - O(100) improvements in luminosity \rightarrow O(10) O(100) improvements in sensitivity (depending on background)
 - LHC experiments have some potential to improve $\tau \to \mu \mu \mu$

Quarks and hadrons

The Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- A 3x3 unitary matrix
- Described by 4 real parameters allows CP violation
 - PDG (Chau-Keung) parametrisation: θ_{12} , θ_{23} , θ_{13} , δ
 - Wolfenstein parametrisation: λ , A, ρ , η
- Highly predictive

Tim Gershon

eak Decays, CPV & CK

Flavour oscillations, CP violation and Nobel Prizes

- 1964 Discovery of CP violation in K⁰ system
- 1980 Nobel Prize to Cronin and Fitch

- 2001 Discovery of CP violation in B_d system
- 2008 Nobel Prize to Kobayashi and Maskawa

Tim Gershon

Weak Decays, CPV & CKM

Prog.Theor.Phys. 49 (1973) 652

Flavour oscillations, CP violation and Nobel Prizes

١n

Charm mixing and CP violation

Including results from BABAR, Belle, CDF, CLEO(c), FOCUS

Latest new results Belle arXiv:0905.4185 [hep-ex]

BABAR arXiv:0908.0761 [hep-ex]

THE TIM Gershon OF Weak Decays, CPV & CKM

- Mixing established (though still no single measurement > 5 σ) ₂₁
 - No indication of CP violation

${\rm B}_{\rm s}$ oscillations and CP violation

- Tevatron measurements using tagged $B_{_{\rm s}} \rightarrow J/\psi \phi$
- Angular analyses of vector-vector final state
- Results depend on $\Delta\Gamma$

Tim Gershon

leak Decays, CPV

${\rm B}_{\rm s}$ oscillations and CP violation

Weak Decays, CPV & CKM

Future prospects for CP violation in B_s and charm oscillations

- More results still to come from B factories & Tevatron
- LHCb will improve world's best measurements with 1 year of data (at nominal luminosity)

– excellent prospects for $B_{s} \rightarrow J/\psi \phi$ and $D^{0} \rightarrow hh$ with early data

CKM Matrix – Magnitudes

$$\begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

CKM Matrix – Magnitudes

theory inputs (eg., lattice calculations) required

$|V_{us}|$ and $|V_{ud}|$ fit by flavianet

from RBC/UKQCD '07

Tim Gershon

Weak Decays, CPV & CKM

Uncertainty from $|V_{us}|^2$ now comparable to that from $|V_{ud}|^2$ Significant further improvement difficult 27

Lepton Universality in K_{l_2} Decays

$$R_{K} = \frac{\Gamma(K^{+} \to e \nu_{e})}{\Gamma(K^{+} \to \mu \nu_{\mu})} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} (1 + \delta R_{QED}) = (2.477 \pm 0.001) \times 10^{-5}$$

Standard Model prediction

E Goudzovski at Kaon'09

Preliminary results from 40% of NA62 data

Rare kaon decays: $K_{L} \rightarrow \pi^{0} \nu \nu$

- Theoretically clean Standard Model probe
- Extremely rare (O(10⁻¹¹)) \rightarrow highly sensitive to new physics
- Main challenges: knowledge of beam, detector hermeticity

Future prospects for kaon physics

BNL-E949 PRL 101 (2008) 191802

PRD 79 (2009) 092004

T.Komatsubara at LP'09

 $K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ "3 σ " discovery

Grossman-Nir limit

Standard Model

A PoT

KOTO goal

2E14 pps 3 Snowmass years

- Main focus on the golden $K \to \pi \nu \nu$ decays
- $K_L \rightarrow \pi^0 \nu \nu$
 - KOTO experiment (JPARC)
 - Same technique as KEK-E391a
- $K^+ \rightarrow \pi^+ \nu \nu$

Tim Gershon

/eak Decays, CPV & CKM

- $B(K^+ \rightarrow \pi^+ \nu \nu) = (1.73^{+115}) \times 10^{-10}$ (7 events)
- NA62 (CERN)
- kaon decay in flight
- Expect ~50 events/year

BR 10⁻⁵ -

10-6

10-7

10-8

10-9

10-10

10-11

10-12

KEK

E391a

SM

Step

10-13 ____ <Step 2

New Phyics

CKM Matrix – Phases

P.Harrison et al., arXiv:0904.3077 [hep-ph]

- Can form a matrix of angles between pairs of CKM matrix elements
 - $-\Phi_{\mu}$ = phase between remaining elements when row i and column j removed
 - unitarity implies sum of phases in any row or column = 180°

$$\begin{split} & \begin{array}{c} d \\ \Phi = \begin{array}{c} u \\ t \end{array} \begin{pmatrix} \Phi_{ud} \\ \Phi_{cd} \\ \Phi_{td} \end{pmatrix} \\ t \end{array} \begin{pmatrix} s \\ \Phi_{us} \\ \Phi_{cs} \\ \Phi_{ts} \\ \Phi_{tb} \end{pmatrix} \\ \end{array} \begin{array}{c} u \\ \Phi_{cb} \\ \Phi_{tb} \\ \Phi_{tb} \\ \end{array} \begin{array}{c} u \\ e \\ t \end{array} \begin{pmatrix} 1^{o} \\ 22^{o} \\ 157^{o} \\ 90^{o} \\ 23^{o} \\ 112^{o} \\ 68^{o} \\ 0^{o} \\ \end{array} \right) \\ \phi \equiv \phi_{2} \\ \varphi \equiv \phi_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \varphi = \phi_{1} \\ \varphi = \phi_{2} \\ \varphi = \phi_{3} \\ \end{array}$$

Tim Gersh

The Unitarity Triangle

Measurement of α

• Now a precise measurement

 $\alpha = (89.0^{+44})^{\circ}$

- Dominated by $B \to \rho \rho$ system
- Analysis uses isospin triangle

http://ckmfitter.in2p3.fr/

Measurement of γ from $B \to DK$

- Exploit interference between diagrams
- Difficulty:
 - smallness of suppressed amplitude
- Now beginning to see a signal?

Charmless hadronic B decays

- Direct CP violation in $B \to K\pi$ sensitive to γ
 - too many hadronic parameters \Rightarrow need theory input

NB. interesting deviation from naïve expectation

Belle Nature 452 (2008) 332

Charmless hadronic B decays Dalitz plot analyses

- Dalitz analyses measure both magnitude and phases, ie. probe dynamics at the amplitude level $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$
- Time-dependent analyses
 - $B \rightarrow K_{S} \pi^{+} \pi^{-}, B \rightarrow K_{S} K^{+} K^{-}$
 - additional sensitivity to β
- Interference of $K^*\pi$ bands
 - Various $B \rightarrow K\pi\pi$ channels
 - additional sensitivity to γ

BABAR arXiv:0905.3615 Belle PRD 79 (2009) 072004

Tim Gershon

eak Decays, CPV & CKM

No smoking gun for difference between $b \rightarrow ccs$ and $b \rightarrow qqs$

Prospects for Unitarity Triangle angles

- Refine understanding of $\boldsymbol{\alpha}$
 - $\quad B^+ \to \rho^+ \rho^0 \text{ from Belle}$
- Improve γ measurement
 - good prospects for LHCb
- Resolve $K\pi$ puzzle
 - need better $K_s \pi^0$ measurement: Belle2 & SuperB
- Improve $B_{s} \rightarrow hh$ measurements
 - more to come from CDF; then LHCb (plus $e^+e^- Y(5S)$ data)
- Charmless hadronic B decay Dalitz plot analyses
 - CDF, LHCb, Belle2, SuperB

Rare B Decays

• A wide range of probes of new physics

Hints of discrepancies with the SM?

Weak Decays, CPV & CKM

Rare B Decays: $B_s \rightarrow \mu\mu$

A potential new physics discovery channel

Prospects for rare B decays

- Excellent prospects for LHCb for many important channels
 - $B_{s}^{} \rightarrow \mu\mu, \ B \rightarrow K^{*}II, \ B_{s}^{} \rightarrow \phi\gamma, \ etc.$
 - ATLAS and CMS can also contribute for some channels
- Many more important channels can only be studied in e⁺e⁻ environment : Belle2 & SuperB
 - $B \rightarrow \tau \nu$, inclusive measurements, $B \rightarrow K_s \pi^0 \gamma$, $B \rightarrow K \nu \nu$, etc.

Putting it all together – Unitarity Triangle

Putting it all together – Constraints on New Physics

Constraints on CMSSM parameter space including flavour observables

O.Buchmueller *et al.*, JHEP 0809:117,2008

Effects of varying the uncertainty of (left) $(g-2)_{\mu}$ and (right) $B(b \rightarrow s\gamma)$ N.B. Not all latest data is included

Summary

- Many, many new results continue to appear
- Is new physics running out of hiding places?
 - Most significant discrepancy with the Standard Model is in (g-2) $_{\!_{\rm u}}$ now 3.1 σ
 - Several other hints around 2σ

Tim Gershon

ak Decays, CPV & CKM

- Future prospects for the field look good
 - LHCb will pin down many of the remaining poorly known sectors ... an upgrade will fully exploit potential
 - New dedicated experiments for muons, kaons, charm
 - Super flavour factories for B, tau, charm

Projects in Europe, USA, Asia: a worldwide programme

Back-up Material

ТНЕ

New $\tau \rightarrow \pi \pi^0 \nu$ Results

Belle

Tim Gershon

Weak Decays, CPV & CKM

- PRD 78 (2008) 072006
- $e^+e^- \rightarrow \tau^+\tau^-$ near the Y(4S)
- 72.2/fb

New $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ Results: ρ Region

More Lepton Flavour Violating τ Decays

Compendium of T LFV Results

Charm mixing and CP violation

• Results from BABAR, Belle, CDF, CLEO

CKM Matrix – Magnitudes

Testing CKM Unitarity

$$\begin{aligned} |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} &= 1 \\ |V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} &= 1 \\ |V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2} &= 1 \end{aligned}$$
Most precise test PDG 2008 numbers
For further improvement need
• better $|V_{ud}|^{2}$ measurement 0.94902 ± 0.00053
• better $|V_{ub}|^{2}$ measurement 0.05085 ± 0.00085
• $|V_{ub}|^{2}$ contribution is negligible 0.00015 ± 0.00003

$$\begin{vmatrix} V_{ud} \end{vmatrix}^{2} & |V_{us}|^{2} & |V_{ub} \end{vmatrix}^{2} \\ + & + & + \\ \begin{vmatrix} V_{cd} \end{vmatrix}^{2} & |V_{cs} \rvert^{2} & |V_{cb} \rvert^{2} \\ + & + & + \\ \begin{vmatrix} V_{td} \end{vmatrix}^{2} & |V_{ts} \rvert^{2} & |V_{tb} \rvert^{2} \\ = & = & = \\ 1 & 1 & 1 \end{aligned}$$

New survey of superallowed $0^+ \rightarrow 0^+ \beta$ decays PRC 79 (2009) 055502

$|V_{us}|$ from kaon decays

- Measurements from KLOE, KTeV, BNL E685, ISTRA+, NA48
- Combination by flavianet

$ V_{\perp} f_{\perp}(0)$			Approx. contrib. to % err from:							
$ u_{S} J + (\circ)$			% err	BR	τ	Δ	Int			
	K _L e3	0.21652(56)	0.25	0.11	0.20	0.11	0.10			
	<i>К_L</i> µ3	0.21746(69)	0.32	0.17	0.19	0.11	0.15			
_ - <mark>-</mark> -	K _S e3	0.21572(132)	0.61	0.60	0.03	0.11	0.10			
_ <mark>+</mark> _	K±e3	0.21624(113)	0.52	0.31	0.06	0.41	0.09			
_	<i>K</i> ±µ3	0.21676(141)	0.65	0.48	0.06	0.41	0.15			
0.214 0.216 0.218 0.22										
Average: $ V_{us} f_{+}(0) = 0.21660(47)$ $\chi^2/ndf = 3.03/4 (55\%)$										

M.Palutan at Kaon'09 see also http://ific.uv.es/flavianet/

f (0) = 0.9644(49) from RBC/UKQCD '07

φφ

- New hadronic $b \rightarrow s$ penguin dominated decay mode
- Approximately as clean theoretically as $B \to \phi K_{_{\rm S}}$

