

B physics

- BaBar/PEP-II
- Belle/KEK-B
- CDF & D0/Tevatron
- LHCb, ATLAS & CMS/LHC
- Super B Factory/???

ALL RESULTS ARE PRELIMINARY UNLESS PUBLISHED

Apologies

- Due to shortness of time, I will cover only a selection of B physics, and skip entirely many other important results
 - D physics: mixing & rare decays
 - Spectroscopy: observations & interpretations of new states
 - т physics: new limits on lepton flavour violation
 - ISR physics, γγ physics, spin physics, ...
 - Theoretical developments
- For details see review talks at (ongoing) FPCP http://fpcp2006.triumf.ca/agenda.php

The (SM) physics

- Electroweak symmetry breaking
 - Higgs field acquires vacuum expectation value
 - diagonalization of quark mass matrix
 - charged current \rightarrow flavour mixing (CKM)
 - no tree-level flavour changing neutral currents (GIM)
- CKM matrix (3 mixing angles & 1 phase) responsible for <u>all</u> quark mixing & CP violation phenomena

Most of SM free parameters are in flavour sector

CKM matrix

Unitarity Triangle

Convenient method to illustrate (dis-)agreement $\bar{\eta}$ of observables with CKM prediction

KM Prediction

Overconstraining the UT

- Test SM via multiple redundant measurements of UT parameters
 - 3 angles ((β,α,γ) = (ϕ_1, ϕ_2, ϕ_3)) & 2 sides ($R_u \& R_t$)
- β : TDCPV in $B^0 \rightarrow J/\psi K_s$, $B^0 \rightarrow \phi K_s$, many others
- α : TDCPV in $B^0 \rightarrow hh'$ (h,h' = $\pi/\rho/...$)
- γ : DCPV in B \rightarrow hh' (h,h' = $\pi/K/...$); DCPV in B \rightarrow DK; TDCPV in B⁰ \rightarrow D^{*} π ; and more
- $R_{_{u}}$: rates & spectra in $B \rightarrow X_{_{u}}Iv$; rates of $B^+ \rightarrow I^+v$
- R_t : mixing ($\Delta m_d / \Delta m_s$); rates of $B \rightarrow \rho \gamma$, ...

Time Dependent CP Violation

Asymmetric B Factories

PEPII at SLAC 9.0 GeV e^{-} on 3.1 GeV e^{+}

KEKB at KEK 8.0 GeV e^{-} on 3.5 GeV e^{+}

Luminosity trends

Other modes for β

- $B^0 \rightarrow J/\psi K^*$ time-dependent angular analysis
 - determine sign of cos(2β)
- $B^0 \rightarrow D^{(*)+}D^{(*)-}K_s$ time-dependent (amplitude) analysis
 - determine sign of $cos(2\beta)$ (eventually)
- $B^0 \rightarrow J/\psi \pi^0$, $D^{(*)+}D^{(*)-}$ TDCPV
 - $\beta(b \rightarrow ccd) = \beta(b \rightarrow ccs)$?
- $B^0 \rightarrow D\pi^0$, etc. time-dependent amplitude analysis
 - $\beta(b \rightarrow cud) = \beta(b \rightarrow ccs)$?
 - with $D \rightarrow K_s \pi^+ \pi^-$, determine sign of $\cos(2\beta)$
- $B^0 \rightarrow \phi K_s$, etc. time-dependent analysis
 - $\beta(b \rightarrow sqq) = \beta(b \rightarrow ccs)$? more later ...

Other modes for β

- $B^0 \rightarrow J/\psi K^*$ time-dependent angular analysis
 - determine sign of $cos(2\beta)$
- NEW results from BaBar • $B^0 \rightarrow D^{(*)+}D^{(*)-}K_{s}$ time-dependent (amplitude)
 - determine sign of $cos(2\beta)$ (eventual)
- $B^0 \rightarrow J/\psi \pi^0$, $D^{(*)+}D^{(*)-}$ TDCPV
- with D $\rightarrow K_{s}\pi^{+}\pi^{-}$, determine sign of NEW results from Belle ϕK_{s} , etc. time-dependent • $B^0 \rightarrow D\pi^0$, etc. time-dependent amplitude
- $B^0 \rightarrow \phi K_s$, etc. time-dependent analysis
 - $\beta(b \rightarrow sqq) = \beta(b \rightarrow ccs)$? more later ...

Measurement of a

• $B^0 \rightarrow \pi^+\pi^-$

- both tree and penguin contributions
- large possible DCPV & $S_{\pi^+\pi^-} \neq -\sin(2\alpha)$
- isospin \Rightarrow Grossman-Quinn type bounds

Measurement of a

• $B^0 \rightarrow \pi^+ \pi^- \pi^0$

- decays mainly via intermediate ρ resonances
- time-dependent Dalitz plot analysis
 - \Rightarrow separate penguin from tree contribution
- $B^0 \rightarrow \rho^+ \rho^-$
 - almost 100% longitudinal polarization (CP even)
 - small penguin contribution $S_{\rho^+\rho^-} \simeq -\sin(2\alpha)$
 - accuracy on α still limited by (lack of) knowledge of $B^0\to\rho^0\rho^0$ and $B^+\to\rho^+\rho^0$

Measurement of α

• $B^0 \rightarrow \pi^+ \pi^- \pi^0$

- decays mainly via intermediate p resonances
- time-dependent Dalitz plot analysis
 - \Rightarrow separate penguin from tree contribution
- $B^0 \rightarrow \rho^+ \rho^-$
 - almost 100% longitudinal polarization (CP even)
 - small penguin contribution $S_{\rho^+\rho^-} \simeq -\sin(2\alpha)$
 - ρ⁺ρ⁰ BaBar Towledge NEW results from BaBar • accuracy on α still limited by (lack of $B^0 \rightarrow \rho^0 \rho^0$ and $B^+ \rightarrow \rho^+ \rho^0$

Constraint on a

DCPV in B decay

- γ is the relative weak phase between tree and penguin amplitudes in charmless B decays
- DCPV in, eg., $B^0 \rightarrow K^+\pi^-$ sensitive to γ hadronic uncertainties \Leftrightarrow (only) model-dependent constraints

DCPV in 3 body B decay

- Dalitz analysis \rightarrow measure hadronic parameters
- Search for DCPV in $B^+ \rightarrow K^+ \pi^+ \pi^-$

CP violation in the B system

- Time-dependent CP violation
 - Observed (>5 σ)
 - J/ ψ K^o (BaBar,Belle); $\pi^{+}\pi^{-}$ (Belle); η' K^o (BaBar,Belle combined)
 - Evidence (> 3σ)
 - $D^{*+}\pi^{-}$ [$D^{*+}D^{-}$, $K^{+}K^{-}K^{0}$, $f_{0}K_{s}$] (BaBar,Belle combined)
- Direct CP violation
 - Observed (>5 σ)
 - K⁺π⁻ (BaBar,Belle combined)
 - Evidence (> 3σ)
 - $\pi^+\pi^-$ (Belle); ρ^-K^+ (Belle); $\rho^+\pi^-$ (BaBar, Belle combined)
- Kaon system: π⁺π⁻, π⁰π⁰, π⁺μ⁻ν, π⁺e⁻ν, π⁺π⁻e⁺e⁻, ε'/ε

Clean measurement of y

- A theoretically clean measurement of y can be made using $B \rightarrow DK$ decays
- Reconstruct neutral D mesons in states accessible to both flavour eigenstates

 $B^- \to D^0 K^- (b \to c \overline{u} s) \qquad B^- \to \overline{D^0} K^- (b \to u \overline{c} s)$

- relative weak phase is γ (strong phase δ)
- relative magnitude is r_p
- V results from Belle various different B & D decays utilized
- current most accurate: $D \rightarrow K_{s} \pi^{+} \pi^{-}$

Constraint on y

Measurement of R

- both experimentally and theoretically challenging
- Two main approaches: <u>inclusive</u> & exclusive $B \rightarrow X_{IIV}$

Different theoretical treatment

UNIVERSIT

Measurement of R₊

- In principle, Δm_d measures R_t
 - large theoretical uncertainty
 - can be controlled in the ratio $\Delta m_d / \Delta m_s$

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 \hat{B}_{B_d}}{m_{B_s} f_{B_s}^2 \hat{B}_{B_s}} \left| \frac{V_{td}}{V_{ts}} \right|^2$$

$$NEW results from DO$$

All UT Constraints

Different statistical approaches

Beyond the UT

- Now have measurements of all three angles and two sides of UT
 - highly constraining values of β and R
 - slight tension between these constraints
 - interpretation of this & other possible NP hints obscured by hadronic uncertainties
- Beyond overconstraining the UT, ∃ numerous additional possible NP signatures in B physics
 - loop diagrams (FCNCs) probe very high mass scales through virtual particles

Historically, extremely successful for both NP discovery and quantification

The FCNC Matrix

The FCNC Matrix

FCNC Matrix phenomenology

- Generic NP can effect each loop independently
 - particular models \Leftrightarrow correlations

also with other observables (eg. T LFV, CPV, EDMs, ...)

probing for new physics in the flavour sector $\uparrow NP \, discovery \uparrow$

probing the flavour sector of the new physics

 Flavour physics is essential to understand NP at the TeV scale (or higher)

Key measurements

• $\Delta F = 2$:

$$\Delta m_{_{S}}, A_{_{CP}}(B_{_{S}} \rightarrow J/\psi \phi), \epsilon_{_{Bd}}, \epsilon_{_{Bs}}$$

• gluon penguin

$$A_{_{CP}}(B_{_{S}} \rightarrow \phi \phi), A_{_{CP}}(B_{_{d}} \rightarrow \phi K_{_{S}}), etc.$$

γ penguin

[Γ , $A_{_{CP}}$, polarisation] $B_{_{S}} \rightarrow \phi \gamma$, $B_{_{d}} \rightarrow X_{_{S}} \gamma$, $B_{_{d}} \rightarrow X_{_{d}} \gamma$

- Z⁰ penguin $[\Gamma, A_{_{FB}}, A_{_{CP}}] \xrightarrow{B_s} \rightarrow \varphi I^+I^-, \xrightarrow{B_{_{u,d}}} \rightarrow K^*II, \xrightarrow{B_{_{u,d}}} \rightarrow X_s I^+I^-, \xrightarrow{B_{_{u,d}}} \rightarrow X_d I^+I^-$
- H^o penguin

$$B_{s,d} \rightarrow \mu^+ \mu^-, B_d \rightarrow \tau^+ \tau^-$$

Δm_s World Average

Results presented as amplitude scans

Measurement of ϵ_{Bd}

- Belle (hep-ex/0505017) $|q/p| - 1 = 0.0005 \pm 0.0040 \pm 0.0043$
- BaBar (hep-ex/0603053) $|q/p| - 1 = -0.0008 \pm 0.0027 \pm 0.0019$
- NEW results from BaBar NEW results from DO D0 (D0note-5042-C0NF) WARNING: ADMIXTURE OF B & B $(|q/p|-1) = 0.0022 \pm 0.0020 \pm 0.0014$

Challenging control of systematic errors at sub % level

Measurement of $A_{CP}(B_{d} \rightarrow \phi K_{S})$, *etc*.

Probing the FCNC Matrix

- Good constraints in some corners, but mostly still only loose bounds on possible NP contributions
- LHC will provide copious b production
 but also copious backgrounds
- ATLAS/CMS can measure SM $B_{s,d} \rightarrow \mu^+ \mu^-$
- Dedicated experiment necessary for most other modes ⇒ LHCb
 - Excellent sensitivity for (among others):

$$\Delta m_{s}, A_{CP}(B_{s} \rightarrow J/\psi \phi), B_{s} \rightarrow \phi \gamma, B_{u,d} \rightarrow K^{*}\gamma,$$

 $B_{s} \rightarrow \phi I^{+}I^{-}, B_{u,d} \rightarrow K^{*}II, \gamma (B_{s} \rightarrow D_{s}K), \gamma (B_{u,d} \rightarrow DK), \dots$

Motivation for Super B Factory

- How to beat theoretical (hadronic) uncertainties?
 - Measure ratios, asymmetries, etc.
 - Exploit flavour symmetries (isospin, U-spin, SU(3))
 - these approaches key to LHCb program
 - Avoid hadrons in the final state
 - neutrinos ← impossible in hadronic environment
 - photons ← difficult in hadronic environment
 - charged leptons
 - е, µ, т ← e difficult, т impossible
 - Use inclusive final states

• $X_s, X_d \leftarrow \text{impossible in hadronic environment}$

Pros and Cons

LHCb	Super B Factory
Huge b cross-section	Use "simple" hadronic trigger
All b hadrons produced	Only $B_u \& B_d$ at Y(4S)
Large boost	(other E _{см} possible) Reconstruct "any" decay

Measure production vtx

Coherent production at Y(4S)

Together, provide complete coverage of B sector

Super B Factory design

Requirements:

- Extremely high luminosity
- Low backgrounds
- Daresbury Laboratony, April 26-27 - Small beam energy spread ($< \Gamma(Y(4S))$)
- Boost + vertexing
- Hermiticity
- Timeliness
- Affordability! (construction & operation)

Possible designs:

SuperKEKB

- upgrade of conventional B factory
- "linear" SuperB use ILC technology

(damping rings, compressor, final focus, SC-cavities(?))

BACK UP MATERIAL

Tim Gershon, IoP Particle Physics 2006

52

Belle DK Dalitz Result

PRD journal submission in preparation

$|V_{ub}|$ from exclusive modes

Current best measurement: PRD 72, 051102 (2005) $B^0 \rightarrow \pi^- l^+ v \quad B^0 \rightarrow \rho^- l^+ v$

FIG. 3: (color online) Comparison of the differential decay rates as functions of q^2 for $B \rightarrow \pi \ell \nu$ (a) and $B \rightarrow \rho \ell \nu$ (b) with various form-factor predictions. The data are background subtracted and corrected for efficiency and radiative effects. The error bars are statistical (inner) and statistical plus systematic (outer).

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.38 \pm 0.10 \pm 0.16 \pm 0.08) \times 10^{-4},$ $\mathcal{B}(B^0 \to \rho^- \ell^+ \nu) = (2.14 \pm 0.21 \pm 0.48 \pm 0.28) \times 10^{-4},$

$|V_{ub}|$ from exclusive modes

$DO \Delta m$: Dilution Calibration Using $B_d \rightarrow D^{*\pm} \mu \nu X$

F.

 $R \le I$

57

$DO \Delta m_s$: Asymmetry plot

Alternate probe of R₊

- Access $|V_{tb}V_{td}^*|$ through b \rightarrow d penguins
 - − hadronization ⇔ theoretical uncertainty
 - cleanest measurement with exclusive modes: $B(B^{0} \rightarrow \rho^{0}\gamma)/B(B^{0} \rightarrow K^{*0}\gamma)$

