The Unitarity Triangle Angle γ An Overview

Content

- Why measure γ ?
 - How precisely do we need to measure it?
- How to measure $\boldsymbol{\gamma}?$
 - The theoretically pristine $B \rightarrow DK$ approach
- Where do we stand & what remains to be done?
 - Introduce/provoke talks in the working group

Why Measure $\boldsymbol{\gamma}?$

 Name of the game in flavour physics is to overconstrain the CKM matrix

measure fundamental parameters constrain new physics effects

- Measure the 4 free parameters in various ways
 - CP conserving $\{|V_{us}|, |V_{cb}|, |V_{td}|, |V_{ub}|\}$
 - CP violating $\{\epsilon_{\kappa}^{}, \phi_{s}^{}, \beta, \gamma\}$
 - Tree level $\{..., ..., |V_{\mu}|, \gamma\}$
 - Loop processes $\{..., ..., |V_{td}|, \beta\}$

... many other possible combinations

Unitarity Triangle Comparisons

Importance of $\boldsymbol{\gamma}$

• γ plays a unique role in flavour physics

the only CP violating parameter that can be measured through tree decays (*)

(*) more-or-less

- A benchmark Standard Model reference point
 - doubly important after New Physics is observed
- How precise is precise enough?
 - 10% 🛞 At 3 sigma hardly exclude anything
 - 1% \Rightarrow Seems the right level to test NP
 - Good luck if you can get the funding ...

CKM2008 11th September 2008

- 0.1% (X)

How To Measure $\boldsymbol{\gamma}$

Focus on theoretically pristine measurement

One Method, Many Modes

- $B \rightarrow DK$ with any D decay mode that is accessible to both D^0 and \overline{D}^0 is sensitive to γ
 - M.Gronau & D.Wyler, PLB 253, 483 (1991)
 - M.Gronau & D.London, PLB 265, 172 (1991)
 - D.Atwood, I.Dunietz and A.Soni, PRL 78, 3257 (1997); PRD 63, 036005 (2001)
- Different D decay modes in use
 - CP eigenstates (eg. K^+K^- , $K_s\pi^0$) "GL
 - Doubly-suppressed decays (
 - Singly-suppressed decays
 - Three-body decays

- Other possibilities exist

How It Works

 $\sqrt{2\mathcal{A}}(B \rightarrow D_{CP}K)$

 $\mathcal{A}(B \rightarrow D^{0}K)$

Consider D→CP eigenstates as an example

 $\begin{aligned} A(B^{-} \rightarrow D_{1}K^{-}) &\propto \frac{1}{\sqrt{2}} \left(1 + r_{B}e^{i(\delta_{B} - \gamma)} \right) &\rightarrow \Gamma(B^{-} \rightarrow D_{1}K^{-}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma) \\ A(B^{-} \rightarrow D_{2}K^{-}) &\propto \frac{1}{\sqrt{2}} \left(1 - r_{B}e^{i(\delta_{B} - \gamma)} \right) &\rightarrow \Gamma(B^{-} \rightarrow D_{2}K^{-}) \propto 1 + r_{B}^{2} - 2r_{B}\cos(\delta_{B} - \gamma) \\ A(B^{+} \rightarrow D_{1}K^{+}) &\propto \frac{1}{\sqrt{2}} \left(1 + r_{B}e^{i(\delta_{B} + \gamma)} \right) &\rightarrow \Gamma(B^{+} \rightarrow D_{1}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma) \\ A(B^{+} \rightarrow D_{2}K^{+}) &\propto \frac{1}{\sqrt{2}} \left(1 - r_{B}e^{i(\delta_{B} + \gamma)} \right) &\rightarrow \Gamma(B^{+} \rightarrow D_{2}K^{+}) \propto 1 + r_{B}^{2} - 2r_{B}\cos(\delta_{B} + \gamma) \end{aligned}$

In practice, measure asymmetries and ratios where possible to reduce systematics

CKM2008 11th September 2008

Theoretically Pristine

- Try to draw a diagram for B⁻→DK⁻ with a different weak phase to those on previous slide
 – if you succeed, estimate effect on y extraction
- Largest effects due to
 - charm mixing
 - charm CP violation J PRD 72 031501 (2005)
 - B mixing ($\Delta\Gamma$) for neutral B decays
 - \Rightarrow can be controlled PRD 69 113003 (2004), PLB 649 61 (2007)

negligible

- **BUT**, must obtain hadronic parameters from data
 - Includes (r_, δ_{R}) as well as D decay model

CKM2008 11th September 2008

Even more modes ...

- As well as different D decays, can use
 - Different B decays (DK, D^{*}K, DK^{*})
 - different hadronic factors ($r_{_{\rm P}}$, $\delta_{_{\rm P}}$) for each
 - benefit from $D^* \rightarrow D\pi^0 \& D^* \rightarrow D\gamma$
 - some care required due to K^{*} width
 - Neutral B decays
 - different hadronic factors (r_{B}, δ_{D}) larger r_{D}
- Useful rule-of-thumb: NIMSBHO principle (A.Soffer)
 - Not Inherently More Sensitive But Helps Overall
- Best sensitivity by combining all measurements CKM2008 11th September 2008

PRD 70, 091503 (2004)

PLB 557, 198 (2003)

Where Do We Stand?

Total data size	es to date: BABAR 4	65 M BB, Belle ~800	O M BB, CDF ~4/fb	
$B \rightarrow DK$		B –	$B \rightarrow DK^*$	
only charged B results shown		$D^* \to D\pi^0$ $D^* \to D\gamma$		
$\begin{array}{c} \qquad \qquad$		$egin{array}{c} BABAR & (383M \ Bar{B}) \ Belle & (275M \ Bar{B}) \end{array}$		BABAR (379M <i>B</i> \$\overline{B})
ADS $(K\pi)$	$BABAR~(232M~Bar{B})$ Belle (657M $Bar{B}$)	BABAR (232M $B\bar{B}$)	BABAR (232M $B\bar{B}$)	BABAR (379M $B\bar{B}$)
ADS $(K\pi\pi^0)$	BABAR (226M $B\bar{B}$)			
$D \rightarrow K_S \pi^+ \pi^-$	BABAR (383M $B\overline{B}$) Belle (657M $B\overline{B}$)	BABAR (383M $B\overline{B}$) Belle (657M $B\overline{B}$)	BABAR (383M $B\bar{B}$)	BABAR (383M $B\overline{B}$) Belle (386M $B\overline{B}$)
$D \rightarrow K_S K^+ K^-$	BABAR (383M $B\bar{B}$)	BABAR (383M $B\bar{B}$)	BABAR (383M $B\bar{B}$)	
$D o \pi^+ \pi^- \pi^0$	BaBar (324M $B\bar{B}$)			
CKM2008 11th	NEW today! see V.Tisserand's talk			

How to Determine D Decay Models

- To extract $\boldsymbol{\gamma}$ need to understand D decays
 - GLW modes
 - need constraints on direct CP violation in D decay
 - ADS modes
 - $r_{_D}$ can be measured from flavour-tagged D mesons
 - δ_{D} need CP tagged D mesons
 - multibody modes have additional coherence parameter
 - Dalitz modes

NEW tomorrow – see J.Libby's talk

- model dependent need model, including phase variation
- model independent need c_i and s_i parameters

NEW tomorrow – see J.Rademacker's talk

Model-Independent Dalitz Measurements

- Revert to a "counting" analysis by binning the DP
 - Model not needed ... BUT
 - Best to use model to define bins
- Measure cos and sin of average D⁰ D⁰ strong phase difference in each bin
 - c_i from $K_s \pi^+ \pi^- vs$. CP tags
 - s_i (and c_i) from K_s $\pi^+\pi^- vs$. K_s $\pi^+\pi^-$
- How to implement this?
 - Define common model & binning; expts count events per bin
 - OR Expts make data available in common format

PRD 68, 054018 (2003) EPJC47, 347 (2006) & arXiv:0801.0840

Alternatives to $B \rightarrow DK$

- $B \rightarrow D^{(*)}\pi$ measures $sin(2\beta + \gamma)$ (interference between decays with and without mixing) PLB 427, 179 (1998)
 - r_{B} very small (~0.02)
 - small modulation on a large signal \Rightarrow systematics!
 - cannot extract $r_{_{B}}$ (only $r_{_{B}}^{^{2}}$) \Rightarrow need input, eg. SU(3)
- $B \rightarrow D^* \rho$ similar but can get r_B from interference between helicity amplitudes PRL 80, 3706 (1998)

- but now you need to deal with slow π/π^0 related systematics

- $B_{_{S}} \rightarrow D_{_{S}}K$ similar (measures sin($\phi_{_{S}}+\gamma$)) but now $r_{_{B}}$ is larger
 - a promising channel for LHCb NPB 671, 459 (2003)

CKM2008 11th September 2008

Definitions of parameters

• GLW:

• ADS:

$$R_{CP\pm} = \frac{\Gamma\left(B^{-} \to D_{\pm}K^{-}\right) + \Gamma\left(B^{+} \to D_{\pm}K^{+}\right)}{\Gamma\left(B^{-} \to D_{fav}K^{-}\right) + \Gamma\left(B^{+} \to D_{fav}K^{+}\right)} = 1 + r_{B}^{2} \pm 2r_{B}\cos\left(\delta_{B}\right)\cos\left(\gamma\right)$$

 $A_{CP\pm} = \frac{\Gamma(B^- \to D_{\pm}K^-) - \Gamma(B^+ \to D_{\pm}K^+)}{\Gamma(B^- \to D_{\pm}K^-) + \Gamma(B^+ \to D_{\pm}K^+)} = \frac{\pm 2r_B \sin(\delta_B) \sin(\gamma)}{1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)}$

$$A_{ADS} = \frac{\Gamma(B^{-} \to D_{ADS}K^{-}) - \Gamma(B^{+} \to D_{ADS}K^{+})}{\Gamma(B^{-} \to D_{ADS}K^{-}) + \Gamma(B^{+} \to D_{ADS}K^{+})} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)}{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)}$$

$$R_{ADS} = \frac{\Gamma(B^{-} \rightarrow D_{ADS}K^{-}) + \Gamma(B^{+} \rightarrow D_{ADS}K^{+})}{\Gamma(B^{-} \rightarrow D_{fav}K^{-}) + \Gamma(B^{+} \rightarrow D_{fav}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

- Notes
 - Dalitz parameters (x_{+},y_{+}) , (x_{-}, y_{-}) from B⁺, B⁻ independently
 - GLW-Dalitz relation: $x_{\pm} = (R_{CP+}(1 \mp A_{CP+}) R_{CP-}(1 \mp A_{CP-}))/4$

- Additional coherence factors needed for DK^* or $D \rightarrow K\pi\pi^0$ CKM2008 11th September 2008

Putting It All Together

Evidence for CP violation in both GLW & Dalitz

Mode	Experiment	A _{CP+}	A _{CP} -	R _{CP+}	R _{CP} -	Reference
D _{CP} K	<u>BaBar</u> N(BB)=382M	0.27 ± 0.09 ± 0.04	$-0.09 \pm 0.09 \pm 0.02$	$1.06 \pm 0.10 \pm 0.05$	$1.03 \pm 0.10 \pm 0.05$	PRD 77 (2008) 111102
	<u>Belle</u> N(BB)=275M	$0.06 \pm 0.14 \pm 0.05$	-0.12 ± 0.14 ± 0.05	$1.13 \pm 0.16 \pm 0.08$	$1.17 \pm 0.14 \pm 0.14$	PRD 73, 051106 (2006)
	<u>CDF</u>	0.39 ± 0.17 ± 0.04		$1.30 \pm 0.24 \pm 0.12$	-	ICHEP 2008 preliminary
	Average	0.24 ± 0.07 $\chi^2/ndf = 2.3/2 (CL=0.32 \Rightarrow 1.0\sigma)$	-0.10 ± 0.08 $\chi^2 = 0.03 (CL=0.86 \Rightarrow 0.2\sigma)$	1.10 ± 0.09 $\chi^2/ndf = 0.7/2 (CL=0.70 \Rightarrow 0.4\sigma)$	1.06 ± 0.10 $\chi^2 = 0.4 (CL=0.54 \Rightarrow 0.6\sigma)$	HFAG

GLW results can be translated into $x_{_{+}} = -0.082 \pm 0.045$, $x_{_{-}} = 0.103 \pm 0.045$, $r_{_{R}}^{2} = 0.08 \pm 0.07$

Mode	Experiment	X+	у+	х-	у-	Correlation	Reference
DK [−] D→Ksπ ⁺ π [−] & D→KsK ⁺ K [−]	<mark>BaBar</mark> N(BB)=383M	-0.067 ± 0.043 ± 0.014 ± 0.011	-0.015 ± 0.055 $\pm 0.006 \pm 0.008$	0.090 ± 0.043 ± 0.015 ± 0.011	0.053 ± 0.056 ± 0.007 ± 0.015	<u>(stat)</u> (syst) (model)	PRD 78 (2008) 034023
	<u>Belle</u> N(BB)=657M	-0.107 ± 0.043 ± 0.011 ± 0.055	-0.067 ± 0.059 ± 0.018 ± 0.063	0.105 ± 0.047 ± 0.011 ± 0.064	0.177 ± 0.060 ± 0.018 ± 0.054	(stat) (model)	arXiv:0803.3375
	Average No model error	-0.087 ± 0.032	-0.037 ± 0.041	0.104 ± 0.033	0.111 ± 0.042	<u>(stat+syst)</u>	HFAG correlated average $\chi^2 = 3.1/4 \text{ dof}$ (CL=0.54 \Rightarrow 0.6 σ)

Combining GLW & Dalitz gives $x_{+} = -0.085 \pm 0.026$, $x_{-} = 0.103 \pm 0.027$

CKM2008 11th September 2008

 $x_{-} - x_{+} = 0.189 \pm 0.037$ **5.10 from zero**

Making Constraints on $\boldsymbol{\gamma}$

- Previous discussion suggests we should get a fairly precise world average for $\boldsymbol{\gamma}$

(at least, neglecting model uncertainties)

- However, extracting γ is non-trivial
 - simple trigonometry fails (beware non-Gaussian errors)
- Complicated statistical treatment is necessary
 - From Dalitz modes,
 - BaBar obtain $\gamma = (76 \pm 22 \pm 5 \pm 5)^{\circ}$ (from DK⁻, D^{*}K⁻ & DK^{*-})
 - Belle obtain $\phi_3 = (76^{+12}_{-13} \pm 4 \pm 9)^{\circ}$ (from DK⁻ & D^{*}K⁻)

CKM2008 11th September 2008

Concluding Questions

- Why has neither experiment published a combined constraint on γ from its B→DK measurements?
- What auxiliary measurements should be made? – eg. DK^{*} hadronic parameters in DK_s π DP analysis?
- How can we solve the problem of model dependence in Dalitz plot analyses?
 - Will we reach necessary agreement to enable model independent analysis?
- How much data is needed before statistical issues in γ extraction become irrelevant?

 $B \rightarrow DK^*$

- Following PLB 557 198 (2003)
- Suppressed & favoured amplitudes vary across $B \rightarrow DK\pi$ phase space in both magnitude and phase

$$A_{CP\pm} = \frac{\pm 2r_B \sin(\delta_B) \sin(\gamma)}{1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)} \quad R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)$$

$$A_{CP\pm} = \frac{\pm 2\kappa r_s \sin(\delta_s) \sin(\gamma)}{1 + r_s^2 \pm 2\kappa r_s \cos(\delta_s) \cos(\gamma)} \qquad R_{CP\pm} = 1 + r_s^2 \pm 2\kappa r_s \cos(\delta_s) \cos(\gamma)$$

$$r_{s} = \sqrt{\frac{\int_{K^{*}} |\overline{A}|^{2} dPS}{\int_{K^{*}} |A|^{2} dPS}} \quad \kappa e^{i\delta_{s}} = \frac{\int_{K^{*}} |\overline{A}| |A| e^{i(arg(\overline{A}) - arg(A))} dPS}{\sqrt{\int_{K^{*}} |\overline{A}|^{2} dPS \int_{K^{*}} |A|^{2} dPS}}$$

– $r_{_{\! \rm s}},\,\kappa,\,\delta_{_{\! \rm s}}$ depend on K^* selection

 $- In DK_{S}\pi^{-} do not expect (DK_{S}) or (D\pi^{-}) resonances <math display="inline">_{\rm CKM2008\ 11 th\ September\ 2008}$

$D \rightarrow K\pi\pi^0$, $D \rightarrow K\pi\pi\pi$

- Following PRD 68 033003 (2003)
- Suppressed & favoured amplitudes vary across phase space in both magnitude and phase
- Usual expressions get modified $A_{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma)}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)} \quad R_{ADS} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)$

 $A_{ADS} = \frac{2r_BR_Fr_D^F\sin(\delta_B + \delta_D^F)\sin(\gamma)}{r_B^2 + (r_D^F)^2 + 2r_BR_Fr_D\cos(\delta_B + \delta_D^F)\cos(\gamma)} \qquad R_{ADS} = r_B^2 + (r_D^F)^2 + 2r_BR_Fr_D\cos(\delta_B + \delta_D^F)\cos(\gamma)$

$$r_{D}^{F} = \sqrt{\frac{\int_{PS} |\overline{A}|^{2} dPS}{\int_{PS} |A|^{2} dPS}} \quad R_{F} e^{-i\delta_{D}^{F}} = \frac{\int_{PS} |\overline{A}| |A| e^{-i(arg(\overline{A}) - arg(A))} dPS}{\sqrt{\int_{PS} |\overline{A}|^{2} dPS} \int_{PS} |A|^{2} dPS}$$
CKM2008 11th September 2008
CKM2008 11th September 2008
CKM2008 11th September 2008

$B \rightarrow DK, D \rightarrow \pi \pi \pi^0$

- In typical Dalitz analysis, parameters (x₊,y₊), (x₋, y₋) determined independently from B⁺, B⁻ samples
- However, imagine extreme example: $D \rightarrow (XYZ)_{CP}$
 - DP distributions contain $\ensuremath{\text{no}}$ sensitivity to γ
 - Rates & asymmetries are sensitivity to γ (as GLW)
- Parameter of "CP-specificity" $x_{0} = -\int_{DP} \Re(A\overline{A^{*}}) dDP$ $- x_{0} = 0.850 \text{ for } D \rightarrow \Pi\Pi\Pi^{0}$ $- \text{ BaBar fit for } \rho_{\pm} = |z_{\pm} - x_{0}| \quad \theta_{\pm} = \tan^{-1} \left(\frac{\Im(z_{\pm})}{\Re(z_{\pm}) - x_{0}} \right)$ PRL 99 (2007) 251801 CKM2008 11th September 2008 $z_{\pm} = x_{\pm} + iy_{\pm}$