# Warwick particle physics masterclass 19<sup>th</sup> March 2014

- 13.00-13.20 Introduction and Welcome: Prof. Tim Gershon
- 13.20-13.50 Hunting the Higgs: Dr. Michel Janus
- 13.50-14.20 Refreshments/chat with Particle Physics Group members
- 14.20-15.50 Neutrino Physics Data Analysis Challenge: Andrew Furmanski,
   Steve Dennis, Eddy Larkin
- 15.55-16.25 The Matter/Anti-matter Asymmetry of the Universe: Dr. Michal Kreps
- 16.30 End

### Introduction to Particle Physics

Tim Gershon

T.J.Gershon@warwick.ac.uk

Masterclass 19<sup>th</sup> March 2014

## To understand what matter is made of on the smallest scales we need powerful microscopes





#### Higher energies correspond to earlier times



## Particle physics is ...

- ... the study of the fundamental particles
- ... both those that make up matter and those that describe interactions (forces)
- ... the search for an ever more fundamental theory of nature
- ... part of the quest to understand the origin of the Universe











strong (g), electromagnetic (y) and weak (Z, W)interactions



## Mysteries of the Standard Model

Mystery

- Why are there so many particles?
- Do the forces unify at high energy?
- Does the Higgs' mechanism explain fully the origin of mass?
- Why are neutrinos special?
- What is the cause of the asymmetry between matter and antimatter in the Universe?
- What is dark matter? What is dark energy?
- What is the fundamental theory of nature (including gravity)?

These are big, difficult, questions
But they (mostly) can be, and are being, addressed experimentally

## The Large Hadron Collider









## The Large Hadron Collider

- Aims of the LHC include:
  - to discover the Higgs boson (✓)
  - to find hints of a more fundamental theory, that may
    - provide better understanding of the Higgs mechanism
    - allow unification of the forces (strong, EM & weak)
    - explain the origin of dark matter
  - to improve understanding of matter-antimatter asymmetry

## The Large Hadron Collider

- Goals achieved by colliding protons at very high energies
  - acceleration with superconducting magnets (cooler than outer space)
  - protons travel at 99.999991% of the speed of light over 10,000 laps of the 27 km circumference ring per second through a vacuum that is more empty than interplanetary space
  - collisions are (much) hotter than the sun
  - detectors the size of cathedrals packed with advanced technologies examine the debris of the collisions
- It is a triumph of science, technology, engineering and international collaboration

#### Matter & antimatter & neutrinos

- A "big bang" must produce equal amounts of matter and antimatter
- But, as far as we can tell, all our Universe is made of matter
  - where did the antimatter go?
  - study differences between matter and antimatter (called "CP violation") to try to find a solution
- Neutrinos seem special because
  - they are much lighter than all other matter particles
  - they have no charge, so might be their own antiparticles
  - very interesting to study CP violation in neutrinos

## The T2K experiment

- T2K is a "long baseline neutrino oscillation" experiment
- Produce neutrinos (or antineutrinos) by colliding protons with a fixed target
- See if they change type as they travel 280 km to the detector



### Summary

- We have an excellent understanding of the fundamental particles, but know there is even more to be learned
- Some experiments use the highest energy collisions (LHC) but other important approaches also being used
- Astonishing and unforeseeable new technologies "spin-off" from fundamental research
- This is a very exciting era in particle physics

# Warwick particle physics masterclass 19<sup>th</sup> March 2014

- 13.00-13.20 Introduction and Welcome: Prof. Tim Gershon
- 13.20-13.50 Hunting the Higgs: Dr. Michel Janus
- 13.50-14.20 Refreshments/chat with Particle Physics Group members
- 14.20-15.50 Neutrino Physics Data Analysis Challenge: Andrew Furmanski,
   Steve Dennis, Eddy Larkin
- 15.55-16.25 The Matter/Anti-matter Asymmetry of the Universe: Dr. Michal Kreps
- 16.30 End