

IoP Masterclass

FLAVOUR PHYSICS

Tim Gershon, University of Warwick April 20th 2007

The Standard Model

Some Questions

- What is antimatter?
- Why are there three "colours" of quarks?
- Why are there so many bosons?

These questions have well-understood answers

Some More Questions

- Why are there so many fermions?
- Why are there three "generations" of both quarks and leptons? ("flavour")
- Why are matter and antimatter different?

("CP violation")

We do not know the answers to these questions!

Matter vs. antimatter

- In the Big Bang, matter and antimatter should have been produced in equal quantities
- In the Universe today, we observe only matter

 \Rightarrow need *CP violation*

What is CP Violation?

- Symmetries are powerful tools to understand nature
- Two important discrete symmetries are
 - C : charge conjugation

(exchange particle and antiparticle)

– P: parity

(mirror transform all spatial coordinates)

Need violation of combined CP symmetry to distinguish absolutely between matter & antimatter

CP Symmetry

СР

Combined CP transformation \Rightarrow pictures look the same

Illustrated using the images of MC Escher

CP Violation

CP

Combined CP transformation \Rightarrow pictures look different!

Illustrated using the images of MC Escher

Addressing the questions

- Questions discussed above appear to be fundamental
- Unfortunately, we do not know how to answer them
- Do not give up! Instead:
 - Measure related processes
 - flavour changes
 - CP violation
 - Look for clues

both quark & lepton sectors

The CKM Matrix

• Quark mixing described by Cabibbo-Kobayashi-Maskawa matrix (d') (d)

$$\begin{vmatrix} \mathbf{s} \\ \mathbf{s} \end{vmatrix} = \mathbf{V}_{CKM}$$

S

b

down-type quarks as seen by the weak interaction physical down-type quarks (with well-defined masses)

- Matrix elements are complex numbers
 - interactions of quarks and antiquarks can be different \Rightarrow <u>CP violation!</u>

The Unitarity Triangle

Squares of CKM matrix elements describe probabilities

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Current Status

- Measurements of Unitarity Triangle parameters test CKM picture
 ⇒ BABAR experiment
- So far, all results are consistent
- Ongoing effort to improve precision

Neutrino Physics

- Leptons mix just like quarks
 - mixing pattern described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix
- Yet study of lepton flavours remarkably different
 - leptons are not bound by the strong interaction
 - neutrinos do not interact electromagnetically
 - neutrinos are much lighter than other particles

Neutrino Physics Questions

- Until recently biggest question was
 - "Do neutrinos have mass?"
 - Observation of neutrino oscillations \Rightarrow YES!
- Biggest questions now
 - what are the neutrino mixing parameters?
 - \Rightarrow T2K experiment
 - is the neutrino its own antiparticle?
 - \Rightarrow COBRA experiment

- Big question for the future:
 - is there CP violation in leptons?
- \Rightarrow neutrino factory

Neutrino oscillations

neutrinos as seen by the weak interaction

physical neutrinos (with well-defined masses)

- Neutrinos
 - must be produced and interact as flavour states
 - but travel as a mixture of the physical states
 - . flavour composition can change

 \Rightarrow neutrino oscillation!

Summary

- Flavour physics addresses some of the fundamental questions of our current knowledge of nature
- We may not find answers to these questions soon, but the experimental program improves our understanding and takes us in the right direction
- Ultimately expect that studies of quarks, charged leptons and neutrinos will lead to a theory of flavour

Parameter Counting

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

() = with neutrino mass

Dynamic generation of BAU

- Suppose equal amounts of matter (X) and antimatter (X)
- X decays to
 - A (baryon number N_{A}) with probability p
 - B (baryon number $N_{_{R}}$) with probability (1-p)
- <u>X</u> decays to
 - $-\underline{A}$ (baryon number $-N_{A}$) with probability \underline{p}
 - $-\underline{B}$ (baryon number $-N_{_{B}}$) with probability (1-p)
- Generated baryon asymmetry:
 - $\Delta N_{TOT} = N_{A}p + N_{B}(1-p) N_{A}p N_{B}(1-p) = (p p) (N_{A} N_{B})$
 - Require $p \neq \underline{p} \& N_A \neq N_B$

PEP-II accelerator collides Positrons electrons and positrons at energies tuned to produce pairs of B mesons Electron/positron energies are asymmetric - produced B particles are moving \rightarrow time to decay can be measured

 BABAR detector reconstructs decay products of B mesons

Tim Gershon, IoP Masterclass, April 20th 2007

NIVERSIT

The BABAR Experiment

erator collides PEP-II Rings