

LATEST RESULTS FROM BELLE AND PLANS FOR A SUPER B Factory

Tim Gershon University of Warwick

January 24, 2006

Tim Gershon

January 24, 2006

- KEK-B and Belle
- Summer 2005 highlights
 - (http://belle.kek.jp/conferences/CONF2005/)
 - direct CP violation
 - measurements of UT angles
 - penguin dominated processes
- Super *B* Factory

International Collaboration: Belle

Aomori U. BINP Chiba U. Chonnam Nat'l U. U. of Cincinnati Ewha Womans U Frankfurt U. Gyeongsang Nat'l U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow IHEP, Vienna ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys. Kyoto U. Kyungpook Nat'l U. EPF Lausanne Jozef Stefan Inst. / U. of Ljubljana / U. of Maribor U. of Melbourne Nagoya U. Nara Women's U National Central U National Taiwan U. National United U. Nihon Dental College Niigata U. Osaka U. Osaka City U. Panjab U. Peking U. U. of Pittsburgh Princeton U. Riken Saga U. USTC

Seoul National U. Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. Toyama Nat'l College U of Tsukuba VPL Yonsei U.

13 countries, 55 institutes, ~400 collaborators

Tim Gershon

University of Oxford Seminar

January 24, 2006

WARWICK

IMPROVED RESOLUTION!

... no pentaquarks found

WARWICK

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

where A, λ , ρ , η are Wolfenstein parameters

From unitarity ($V_{CKM}^* V_{CKM} = 1$): $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

The Unitarity Triangle

$$\begin{array}{c}
\phi_1 \leftrightarrow \beta \\
\phi_2 \leftrightarrow \alpha \\
\phi_3 \leftrightarrow \gamma
\end{array}$$

- Within the Standard Model, only *B* system has large *CP* violation
- Hadronic parameters (τ_B , Δm_d) \Rightarrow *CP* effects accessible
- e^+e^- collisions at high luminosity
 - large data sample
 - clean environment

vert reconstruct almost any decay mode (even with neutrinos)

- Precise test of quark mixing & ${\it CP}$ violation within SM
- Search for new physics
- Copious samples of τ pairs, D mesons and other particles also produced \Rightarrow broad physics program

- Usually discussed in the context of neutral B decays
- Consider B^0/\bar{B}^0 decaying to a CP eigenstate
- Define $\lambda_{CP} = \frac{q \bar{A}}{p \bar{A}}$
 - p, q from $B^0 \overline{B}^0$ mixing
 - Standard Model : $\frac{q}{p} \sim e^{-2\phi_1}$

(usual phase convention)

- Three categories of *CP* violation
 - 1 $|q/p| \neq 1$ CPV in mixing2 $|\overline{A}/A| \neq 1$ CPV in decay (direct CPV)3 $Im(\lambda_{CP}) \neq 0$ CPV in mixing—decay interference
- With amplitude analysis can also consider
 - 2' $Im(\bar{A}/A) \neq 0$ CPV in decay amplitude to Q2B state

- For most modes, use two kinematic variables to identify signal $\Delta E = E_B E_{\text{beam}} \qquad M_{\text{bc}} = \sqrt{E_{\text{beam}}^2 p_B^2}$
- Put event-shape variables into *likelihood ratio* to reject background

• Particle ID from ACC, TOF & CDC used to separate K/π

Direct *CP* Violation

Direct CPV in $B^0 \to K^+\pi^-$

WARWICK

Tim Gershon

University of Oxford Seminar

January 24, 2006

WARWICK

Contributions from $K^*(892)^0 \pi^+$, $K_0^*(1430)^0 \pi^+$, $\rho^0 K^+$, ωK^+ , $f_0 K^+$, $f_2(1275)K^+$, $f_X(1300)K^+$, $\chi_{c0}K^+$ & non-resonant terms

 $f_0(980)$ parametrized by Flatté lineshape, $f_X(1300)$ assumed scalar ($f_0(1370)$?)

First evidence for direct CPV in charged B decays

Channel	Fraction (%)	δ (°)	b	φ (°)	A_{CP} significance (σ)
$K^{*}(892)\pi^{\pm}$	$13.0 \pm 0.8^{+0.5}_{-0.7}$	0 (fixed)	$0.078 \pm 0.033^{+0.012}_{-0.003}$	$-18 \pm 44^{+5}_{-13}$	2.6
$K_0^*(1430)\pi^{\pm}$	$65.5 \pm 1.5^{+2.2}_{-3.9}$	$55 \pm 4^{+1}_{-5}$	$0.069 \pm 0.031^{+0.010}_{-0.008}$	$-123\pm16^{+4}_{-5}$	2.7
$\rho(770)^{0}K^{\pm}$	$7.85 \pm 0.93 \substack{+0.64 \\ -0.59}$	$-21 \pm 14^{+14}_{-19}$	$0.28 \pm 0.11^{+0.07}_{-0.09}$	$-125 \pm 32^{+10}_{-85}$	3.9
$\omega(782)K^{\pm}$	$0.15\pm0.12^{+0.03}_{-0.02}$	$100 \pm 31^{+38}_{-21}$	0 (fixed)	_	_
$f_0(980)K^{\pm}$	$17.7 \pm 1.6^{+1.1}_{-3.3}$	$67 \pm 11^{+10}_{-11}$	$0.30 \pm 0.19^{+0.05}_{-0.10}$	$-82 \pm 8^{+2}_{-2}$	1.6
$f_2(1270)K^{\pm}$	$1.52\pm0.35^{+0.22}_{-0.37}$	$140 \pm 11^{+18}_{-7}$	$0.37 \pm 0.17^{+0.11}_{-0.04}$	$-24 \pm 29^{+14}_{-20}$	2.7
$f_X(1300)K^{\pm}$	$4.14 \pm 0.81^{+0.31}_{-0.30}$	$-141 \pm 10^{+8}_{-9}$	$0.12 \pm 0.17^{+0.04}_{-0.07}$	$-77 \pm 56^{+88}_{-43}$	1.0
Non-Res.	$34.0 \pm 2.2^{+2.1}_{-1.8}$	$\delta_1^{nr} = -11 \pm 5^{+3}_{-3}$	0 (fixed)	_	_
		$\delta_2^{nr} - 185 \pm 20^{+62}_{-19}$			
$\chi_{e0}K^{\pm}$	$1.12\pm0.12^{+0.24}_{-0.08}$	$-118 \pm 24^{+37}_{-38}$	$0.15 \pm 0.35^{+0.08}_{-0.07}$	$-77\pm94^{+154}_{-11}$	0.7

- Statistical significance calculated as $\sqrt{-2 \ln(L_0/L_{max})}$
- Largest systematics from model uncertainty

357 fb⁻⁻

 \vdash

WARWICK

Direct *CP* violation seen by Belle:

- $B^0 \to K^+ \pi^- (\sim 10\% ~\sim 5\sigma)$
- $B^0 \rightarrow \pi^+\pi^-$ (~ 50% ~ ~ 4 σ)
- $B^+ \rightarrow \rho^0 K^+$ (~ 30% ~ ~ 4 σ)

Measurements of UT Angles

... and many others!

• Can access ϕ_3 via interference between $B^- \to D^0 K^- \& B^- \to \overline{D}^0 K^-$

Bigi & Sanda; Gronau, London & Wyler

• Reconstruct D in final states accessible to both D^0 and \overline{D}^0

- Ultimately aim to use many states and combine results
- Inclusive analyses can be performed but sensitivity is diluted
 Reconstruct modes exclusively, where possible
 Use amplitude analysis (not, *eg.*, Q2B analysis) where possible
- To extract φ₃, need D decay "model"
 → crucial rôle of charm factory
- Modes used so far
 - 1. *CP* even (mainly K^+K^-)
 - 2. *CP* odd (mainly $K_S \pi^0$)
 - 3. Doubly Cabibbo suppressed states ($K\pi$)
 - 4. Multibody final states ($K_S \pi \pi$)
- Modes that may be used in future
 - * $K_S K^+ K^-, \pi^+ \pi^- \pi^0, K_S \pi^\pm K^\mp, K^\pm \pi^\mp \pi^0, K_S \pi^+ \pi^- \pi^0, \dots$

- CP violation effects depend on
 - ϕ_3 : weak phase difference between *B* decay amplitudes
 - $\delta_B\,$: strong phase difference between B decay amplitudes
 - $r_{B}\,$: relative magnitude of $B\,$ decay amplitudes
 - δ_D : (strong phase difference of D decay amplitudes)
 - r_D : (relative magnitude of D decay amplitudes)
- For multibody D decays, last two described by decay model
- D decay model also includes assumptions of
 - no mixing
 - no CP violation
 - ... well motivated and tested (effects can be included)

A. Giri, Y. Grossman, A. Soffer & J. Zupan, PRD 68, 054018 (2003)

A. Poluektov et al. (Belle Collaboration), PRD 70, 072003 (2004)

• Consider $\bar{D}^0 \to K_S \pi^+ \pi^-$

 \rightarrow define amplitude at each Dalitz plot point as $f(m_{+}^{2}, m_{-}^{2})$

where $m_{+} = m_{K_{S}\pi^{+}}, m_{-} = m_{K_{S}\pi^{-}}$

• Consider $D^0 \to K_S \pi^+ \pi^-$

 \rightarrow amplitude at each Dalitz plot point is $f(m_{-}^2, m_{+}^2)$

- $\left|f(m_+^2, m_-^2)\right|$ can be measured using flavour tagged D mesons
- Consider $B^+ \rightarrow (K_S \pi^+ \pi^-)_D K^+$ \rightarrow amplitude is $f(m^2_+, m^2_-) + r_B e^{i(\delta_B + \phi_3)} f(m^2_-, m^2_+)$
- Consider $B^- \rightarrow \left(K_S \pi^+ \pi^-\right)_D K^ \rightarrow$ amplitude is $f(m_-^2, m_+^2) + r_B e^{i(\delta_B - \phi_3)} f(m_+^2, m_-^2)$
- Can extract (r_B, δ_B, ϕ_3) from B^+ & B^- data

 $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ Selection

253 fb 1 BELLE-CONF-0476, BELLE-CONF-0502

WARWICK

Tim Gershon

University of Oxford Seminar

January 24, 2006

$B^{\pm} \to DK^{(*)\pm}, D \to K_S \pi^+ \pi^-$ Dalitz Plot Distributions WARWICK

- Fit Dalitz plot distribution of tagged D mesons from e^+e^- continuum
- Tag using charge of π_s in $D^{*+} \to D^0 \pi_s^+$
- Used *model* defines phase variation of $f(m_{+}^{2}, m_{-}^{2})$

$$\chi^2/ndf = 2.30$$

(ndf = 1106)

Fine tuning of model \rightsquigarrow little effect on ϕ_3

WARWICK

253 fb

1

BELLE-CONF-0476, BELLE-CONF-0502

Fit B^{\pm} samples separately, float $r_B e^{i(\delta_B \pm \phi_3)}$

Avoid fit likelihood errors \rightarrow use frequentist approach to obtain confidence regions $\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c$

(recall r_B and δ_B different for each mode) \overleftarrow{c}

$$\begin{split} B^{\pm} \to DK^{\pm} & \left| \begin{array}{c} \phi_{3} = 64^{\circ} \pm 19^{\circ}(\text{stat}) \pm 13^{\circ}(\text{syst}) \pm 11^{\circ}(\text{model}) \\ r_{B} = 0.21 \pm 0.08(\text{stat}) \pm 0.03(\text{syst}) \pm 0.04(\text{model}) \\ \delta_{B} = 157^{\circ} \pm 19^{\circ}(\text{stat}) \pm 11^{\circ}(\text{syst}) \pm 21^{\circ}(\text{model}) \\ \end{array} \right| \\ B^{\pm} \to D^{*}K^{\pm} & \left| \begin{array}{c} \phi_{3} = 75^{\circ} \pm 57^{\circ}(\text{stat}) \pm 11^{\circ}(\text{syst}) \pm 11^{\circ}(\text{model}) \\ r_{B} = 0.12 + 0.16(\text{stat}) \pm 0.02(\text{syst}) \pm 0.04(\text{model}) \\ \delta_{B} = 321^{\circ} \pm 57^{\circ}(\text{stat}) \pm 11^{\circ}(\text{syst}) \pm 21^{\circ}(\text{model}) \\ \end{array} \right| \\ B^{\pm} \to DK^{*\pm} & \left| \begin{array}{c} \phi_{3} = 112^{\circ} \pm 35^{\circ}(\text{stat}) \pm 9^{\circ}(\text{syst}) \pm 14^{\circ}(\text{model}) \\ r_{B} = 0.25 \pm 0.18(\text{stat}) \pm 0.09(\text{syst}) \pm 0.09(\text{model}) \\ \delta_{B} = 353^{\circ} \pm 35^{\circ}(\text{stat}) \pm 8^{\circ}(\text{syst}) \pm 54^{\circ}(\text{model}) \\ \end{array} \right| \\ B^{\pm} \to DK^{\pm} \& B^{\pm} \to D^{*}K^{\pm} \text{ combined} \\ & \left| \begin{array}{c} \phi_{3} = 68^{\circ} + 14^{\circ} \\ -15^{\circ} (\text{stat}) \pm 13^{\circ}(\text{syst}) \pm 11^{\circ}(\text{model}) \\ \end{array} \right| \\ \end{array} \right| \end{split}$$

- Consider B^0/\bar{B}^0 decaying to a CP eigenstate
- Define $\lambda_{CP} = \frac{q}{p} \frac{\bar{A}}{A}$
 - p, q from $B^0 \overline{B}^0$ mixing
 - Standard Model : $\frac{q}{p} \sim e^{-2\phi_1}$
- Simplest scenario:

$$- \left| \frac{q}{p} \right| = 1, \left| \frac{\bar{A}}{\bar{A}} \right| = 1 \Rightarrow S_{CP} = \operatorname{Im}(\lambda_{CP})$$

• At *B* factories, measure Δt from decay time of other *B*

$$P_{CP}^{q}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left\{S_{CP}\sin(\Delta m \Delta t)\right\}\right]$$

 $B^0 \to J/\psi K_L$

$B^0 \rightarrow J/\psi K^0 - \Delta t$ Dependence

WARWICK

University of Oxford Seminar

January 24, 2006

World Average: $sin(2\phi_1) = +0.687 \pm 0.032$

WARWICK

Tim Gershon

Plots from UTFit Collaboration

Tim Gershon

sity of Oxford Seminar

- loop diagrams \Rightarrow virtual particles \Rightarrow high masses
- expect new physics at TeV scale
- NP particles should appear in loops
- no reason for NP phases to be aligned
- many possible manifestations of NP
 - $b \rightarrow s$ vs. $b \rightarrow d$
 - gluonic vs. radiative vs. electroweak
 - $\Delta B = 2$ (mixing) processes

 $\sin(2\phi_1^{\text{eff}}) = +0.44 \pm 0.27 \pm 0.05$ $A = +0.14 \pm 0.17 \pm 0.07$

Tim Gershon

University of Oxford Seminar

Tim Gershon

University of Oxford Seminar

Invariant mass region: 0.8 GeV/ $c^2 < m_{K_S\pi^0} < 1.8~{\rm GeV}/c^2$ 70 \pm 11 signal events

$$S_{K_S \pi^0 \gamma} = +0.08 \pm 0.41 (\text{stat}) \pm 0.10 (\text{stat})$$

 $C_{K_S \pi^0 \gamma} = -0.12 \pm 0.27 (\text{stat}) \pm 0.10 (\text{stat})$

WARWI

 $A_9A_{10} > 0$ excluded at 95% CL

WARWICK

Assuming isospin relation:

$$\mathcal{B}(B \to (\rho, \omega)\gamma) = \left(1.34^{+0.34}_{-0.31} {}^{+0.14}_{-0.10}\right) \times 10^{-6}$$

Significance: 5.5σ

$$V_{td}/V_{ts}| = 0.200^{+0.026}_{-0.025}(exp)^{+0.038}_{-0.029}(theo)$$

WARWICK

Super *B* Factory

- Luminosity frontier probes new physics ... complementary to energy frontier
- eg. When LHC discovers SUSY, Super *B* can help identify SUSY breaking mechanism
- Argument for *B* physics (& flavour physics) well established ... important relation to baryon asymmetry of the Universe
- Complementarity between LHCb and Super *B* becoming clearer
 - Super *B* only: modes with neutrals, neutrinos, difficult topologies
 - LHCb only: modes with B_s , other heavy B hadrons
 - Overlap: eg. $B_d \rightarrow \pi^+ \pi^-$, DK^{*0} to keep us honest
 - ATLAS/CMS: very rare modes (eg. $B_{d,s} \rightarrow \mu^+ \mu^-$)

- Why: Matter dominated universe
- How: Flavour structure in and beyond Standard Model
- Are there new *CP* violating phases? $b \rightarrow s$ TDCPV; UT from tree *vs* loops; $\Delta B = 2 \& \Delta B = 1$
- Are there new right-handed currents? $b \rightarrow s\gamma$ TDCPV *etc.*; $B \rightarrow VV$ polarization
- Are there new operators enhanced by new physics? $B \rightarrow K^* l^+ l^- A_{FB}; B \rightarrow K\pi, \pi\pi$ rates & asymmetries
- Are there new FCNCs? (*b*,*c* or τ) $b \rightarrow s\nu\bar{\nu}; \tau \rightarrow \mu\gamma$ etc.; $D\bar{D}$ mixing, CPV, etc.

Data sample of $\sim 50 \text{ ab}^{-1} @ \Upsilon(4S)$ needed to address these questions

Three factors to determine luminosity:

- Head-on collision with finite crossing angle
- Superconducting crab cavities under development
- Will be tested in early 2006

Belle Upgrade for Super-B

Tim Gershon

- Issues
 - Higher background
 - Higher event rate
 - Special features:

low $p \mu$ -ID; hermiticity $\Rightarrow \nu$ reconstruction; K_S vertexing

- Possible solutions (nothing is fixed)
 - Inner SVD \Rightarrow striplets
 - Inner tracker \Rightarrow silicon
 - Outer tracker \Rightarrow fast gas
 - PID \Rightarrow "TOP"; RICH; FDIRC . . .
 - Endcap calorimeter \Rightarrow pure CsI
 - KLM \Rightarrow tile scintillator
 - Fast trigger & read out; improved DAQ & computing

- KEKB is running well, Belle has more and more data to analyze
- Many new and improved results, and more coming soon ...
- Significant *CPV* effects appearing in many modes
- Amplitude analyses opening new vistas for *B* physics
- What I have shown is only a fraction

http://belle.kek.jp/conferences/CONF2005/

• All results shown here are preliminary

Back Up

Tim Gershon

Short engineering run has been performed ($\sim 2 \, \text{fb}^{-1}$ on $\Upsilon(5S)$)

 $\Upsilon(5S)$ data taking at high luminosity is possible

University of Oxford Seminar

Identification of SUSY breaking scenario Pattern of deviations from the Standard Model Observ-Bd- Δ m(Bs) B->¢Ks B->Msγ b->sγ 3 ables unitarity indirect CP direct CP SUSY models **mSUGRA** + SU(5)SUSY GUT + VB+++(degenerate) SU(5)SUSY GUT + VB++++ ++ (non-degenerate) U(2) Flavor symmetry ++++++ +++ ++: Large, +: sizable, -: small

Tim Gershon

University of Oxford Seminar

 $\Lambda(1520)$ clearly seen in pK^- No signal for $\Theta(1540)^+$ in pK_S WARWICK

Tim Gershon

University of Oxford Seminar

- *D* physics
- τ physics
- ISR physics
- $\gamma\gamma$ physics
- spectroscopy & exotics
- Rare (& not-so-rare) $b \rightarrow c$ decays
- Many other rare decays
- $b \rightarrow u l \nu$
- $b \rightarrow c l \nu$
- • • •

Direct *CP* violation seen by Belle:

- $B^0 \to K^+ \pi^- (\sim 10\% ~\sim 5\sigma)$
- $B^0
 ightarrow \pi^+\pi^-$ ($\sim 50\% \sim 4\sigma$)
- $B^+ \to \rho^0 K^+ ~(\sim 30\% ~\sim 4\sigma)$

Time-dependent *CP* violation seen by Belle:

- $B^0 \to J/\psi K^0$ (~ 65% >> 5 σ)
- $B^0 \to \pi^+ \pi^- (\sim 65\% > 5\sigma)$
- $B^0 \rightarrow \eta' K^0$ (~ 60% ~ 5 σ)

- First results shown at Lepton-Photon 2003
 - $B^- \to DK^- \& B^- \to D^*K^-, D^* \to D\pi^0$
 - 140 fb^{-1}
 - Published in PRD 70, 072003 (2004)
- Update with 250 fb $^{-1}$ at FPCP 2004
 - hep-ex/0411049
- First results with $B^- \rightarrow DK^{*-}$ at Moriond QCD 2005 / CKM2005
 - Not included in combined average yet
 - hep-ex/0504013
- Only $D \to K_S \pi^+ \pi^-$ used so far

Measurement of $f(m_+^2, m_-^2)$ - Results

Resonance	Amplitude	Phase (°)	Fraction	
$K_S \sigma_1$	1.57 ± 0.10	214 ± 4	9.8%	
$K_S ho^0$	1.0 (fixed)	0 (fixed)	21.6%	
$K_S \omega$	0.0310 ± 0.0010	113.4 ± 1.9	0.4%	
$K_S f_0(980)$	0.394 ± 0.006	207 ± 3	4.9%	
$K_S \sigma_2$	0.23 ± 0.03	210 ± 13	0.6%	
$K_S f_2(1270)$	1.32 ± 0.04	348 ± 2	1.5%	
$K_S f_0(1370)$	1.25 ± 0.10	69 ± 8	1.1%	
$K_S \rho^0(1450)$	0.89 ± 0.07	1 ± 6	0.4%	
$K^{*}(892)^{+}\pi^{-}$	1.621 ± 0.010	131.7 ± 0.5	61.2%	
$K^{*}(892)^{-}\pi^{+}$	0.154 ± 0.005	317.7 ± 1.6	0.55%	
$K^*(1410)^+\pi^-$	0.22 ± 0.04	120 ± 14	0.05%	
$K^*(1410)^-\pi^+$	0.35 ± 0.04	253 ± 6	0.14%	
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	348.7 ± 1.1	7.4%	
$K_0^*(1430)^-\pi^+$	0.52 ± 0.04	89 ± 4	0.43%	
$K_2^*(1430)^+\pi^-$	1.11 ± 0.03	320.5 ± 1.8	2.2%	
$K_{2}^{*}(1430)^{-}\pi^{+}$	0.23 ± 0.02	263 ± 7	0.09%	
$K^{+}(1680)^{+}\pi^{-}$	2.34 ± 0.26	110 ± 5	0.36%	
$K^*(1680)^-\pi^+$	1.3 ± 0.2	87 ± 11	0.11%	
nonresonant	3.8 ± 0.3	157 ± 4	9.7%	

Tim Gershon

University of Oxford Seminar

WARWICK

	$B^{\pm} \to DK^{\pm}$		$B^{\pm} \to D^* K^{\pm}$			
Source	Δr_B	$\Delta \phi_3$	$\Delta \delta_B$	Δr_B	$\Delta \phi_{3}$	$\Delta \delta_B$
Background shape	0.027	5.7°	4.1°	0.014	3.1°	5.3°
Background fraction	0.006	0.2°	1.0°	0.005	0.7°	1.4°
Efficiency shape	0.012	4 .9°	2.4°	0.002	3.5°	1.0°
Momentum resolution	0.002	0.3°	0.3°	0.002	1.7°	1.4°
Control sample bias	0.004	10.2°	10.2°	0.004	9.9°	9.9°
Total	0.030	12.7°	11.3°	0.016	11.1°	11.4°

$$\begin{split} f(m_+^2,m_-^2) &= \left| f(m_+^2,m_-^2) \right| e^{i\phi(m_+^2,m_-^2)} \\ \bullet \mbox{ Fit to flavour tagged } D \mbox{ sample measures } \left| f(m_+^2,m_-^2) \right| \\ & \mbox{ BUT } \phi(m_+^2,m_-^2) \mbox{ model-dependent } \end{split}$$

• Estimate model uncertainty by varying model

Fit model	$(\Delta r_B)_{max}$	$(\Delta \phi_3)_{max}$	$(\Delta \delta_B)_{\max}$
Meson formfactors $F_r = F_D = 1$	0.01	3.1°	3.3°
Constant BW width $\Gamma(q^2)$	0.02	4.7 °	9.0°
Only K^*, ho, ω, f_0 non-resonant	0.03	9.9 °	18.2°
Total	0.04	11°	21°

• Consider *CP*-tagged *D* mesons decaying to $K_S \pi^+ \pi^-$

$$\rightarrow$$
 amplitude is $f(m_{+}^{2}, m_{-}^{2}) \pm f(m_{-}^{2}, m_{+}^{2})$

• FUTURE: use CP tagged D mesons from $c\tau$ factory $(\psi'' \to D\overline{D})$ \hookrightarrow measure $\phi(m_+^2, m_-^2) \Rightarrow$ remove model uncertainty

WARWICK

University of Oxford Seminar

• Reconstruct $D^{(*)}$ mesons in CP even $(D_1^{(*)})$, CP odd $(D_2^{(*)})$

and flavour-specific favoured $(D_{fav}^{(*)})$ decay modes

• *CP* asymmetries

$$A_{D_{1,2}^{(*)}K^{-}} = \frac{\Gamma\left(B^{-} \to D_{1,2}^{(*)}K^{-}\right) - \Gamma\left(B^{+} \to D_{1,2}^{(*)}K^{+}\right)}{\Gamma\left(B^{-} \to D_{1,2}^{(*)}K^{-}\right) + \Gamma\left(B^{+} \to D_{1,2}^{(*)}K^{+}\right)}$$

$$A_{D_{1}^{(*)}K^{-}} = \frac{2r_{B}\sin(\delta_{B})\sin(\phi_{3})}{1+r_{B}^{2}+2r_{B}\cos(\delta_{B})\cos(\phi_{3})} \quad A_{D_{2}^{(*)}K^{-}} = \frac{-2r_{B}\sin(\delta_{B})\sin(\phi_{3})}{1+r_{B}^{2}-2r_{B}\cos(\delta_{B})\cos(\phi_{3})}$$

• Charge averaged rates, normalized to $B^- \rightarrow D\pi^-$

$$\mathcal{R}_{1,2} = \left(\frac{\Gamma\left(B^{-} \to D_{1,2}^{(*)}K^{-}\right) + \Gamma\left(B^{+} \to D_{1,2}^{(*)}K^{+}\right)}{\Gamma\left(B^{-} \to D_{\text{fav}}^{(*)}K^{-}\right) + \Gamma\left(B^{+} \to D_{\text{fav}}^{(*)}K^{+}\right)}\right) / \left(\frac{\Gamma\left(B^{-} \to D_{1,2}^{(*)}\pi^{-}\right) + \Gamma\left(B^{+} \to D_{1,2}^{(*)}\pi^{+}\right)}{\Gamma\left(B^{-} \to D_{\text{fav}}^{(*)}\pi^{-}\right) + \Gamma\left(B^{+} \to D_{\text{fav}}^{(*)}\pi^{+}\right)}\right)$$

$$\mathcal{R}_{1} = 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B})\cos(\phi_{3}) \quad \mathcal{R}_{2} = 1 + r_{B}^{2} - 2r_{B}\cos(\delta_{B})\cos(\phi_{3})$$

• Four observables, three unknowns ...

($r_B,\,\delta_B$) different for $B^\mp\to DK^\mp,\,B^\mp\to D^*K^\mp$

• Extract CP asymmetries by fitting B^- and B^+ yields separately

PRELIMINARY

	$B^{\mp} \to D K^{\mp}$	$B^{\mp} \to D^* K^{\mp}$
$\overline{A_1}$	$0.07\pm0.14(ext{stat})\pm0.06(ext{syst})$	$-0.27 \pm 0.25(\text{stat}) \pm 0.04(\text{syst})$
A_2	$-0.11\pm0.14(ext{stat})\pm0.05(ext{syst})$	$0.26 \pm 0.26(stat) \pm 0.03(syst)$
\mathcal{R}_1	$0.98\pm0.18(ext{stat})\pm0.10(ext{syst})$	$1.43 \pm 0.28(stat) \pm 0.06(syst)$
\mathcal{R}_2	$1.29\pm0.16(ext{stat})\pm0.08(ext{syst})$	$0.94 \pm 0.28(\text{stat}) \pm 0.06(\text{syst})$

• First observations of $B^{\mp} \rightarrow D_{1,2}^* K^{\mp} \dots$ and first measurements of $A_{1,2}$ in $D_{CP}^* K^{\mp}$ system

PRELIMINARY

- Use 386 million $B\bar{B}$ pairs
- Use improved continuum suppression
- Other minor changes from PRL 94, 091601 (2005)

New ADS Analysis — $B^{\mp} \rightarrow D\pi^{\mp}$

Consistent with previous Belle result

WARWI

Tim Gershon

University of Oxford Seminar

January 24, 2006

- Utilize *interference* between CP-even & CP-odd final states eg. $B^0 \rightarrow J/\psi K^{*0} \rightarrow J/\psi K_S \pi^0$ angular analysis
- New method uses analysis of (eg.) $D \to K_S \pi^+ \pi^-$ Dalitz plot in $B^0 \to Dh^0$ decays ($h^0 = \pi^0, \eta, \ldots$)
- Similar to $B^+ \rightarrow DK^+$ analysis for ϕ_3
- Test SM prediction: $S_{b \to c\bar{c}s} \simeq S_{b \to c\bar{u}d}$

A. Bondar, T.G., P. Krokovny, PLB 624, 1 (2005)

(Terms of $e^{-|\Delta t|/\tau_{B^0}}$ have been dropped)

University of Oxford Seminar

Tim Gershon

Initial attempts to extract ϕ_2 have focussed on $B^0 \rightarrow \pi^+ \pi^-$. However,

- penguin pollution found to be large
- $\mathcal{B}(B^0 \to \pi^0 \pi^0) \approx 1.5 \times 10^{-6}$ (HFAG2005)
- large direct CP violation:

 $A(B^0 \rightarrow \pi^+\pi^-) = 0.56 \pm 0.12 \pm 0.06$ (Belle; PRL 95, 101801 (2005)) Isospin analysis possible; large statistical error & ambiguities

Recently, $B^0 \rightarrow \rho^+ \rho^-$ found to be powerful for measurement of ϕ_2 because

- small penguin pollution ($\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) < 1.1 \times 10^{-6}$ (BaBar))
- surprisingly (?) little nonresonant contribution
- $B^0 \rightarrow \rho^+ \rho^-$ almost 100% longitudinally polarized (almost pure *CP* state ... downside is cannot access interference)

253 fb⁻¹ BELLE-CONF-0545

Tim Gershon

University of Oxford Seminar

January 24, 2006

WARWICK

University of Oxford Seminar

January 24, 2006

(cf. $\phi_2 = 87 \pm 12^\circ$ from naïve $S = -\sin(2\phi_2)$ neglecting penguins)

WARWICK

Tim Gershon

University of Oxford Seminar

A. Bondar *et al.*, hep-ph/0503174, to appear PLB • Assume CPT, take $\Delta \Gamma = 0$, |q/p| = 1, $\arg(q/p) = 2\phi_1$

- Neglect Cabibbo-suppressed contribution (for now)
- Ignore mixing, *CP* violation in *D* system
- Amplitude description (terms of $e^{-|\Delta t|/2\tau_{B^0}}$ dropped)

$$\begin{split} \left|\bar{B}^{0}(\Delta t)\right\rangle &= \left|\bar{B}^{0}\right\rangle \cos(\Delta m \Delta t/2) - ie^{-i2\phi_{1}}\left|B^{0}\right\rangle \sin(\Delta m \Delta t/2) \\ \left|\tilde{D}_{\bar{B}^{0}}(\Delta t)\right\rangle &= \left|D^{0}\right\rangle \cos(\Delta m \Delta t/2) - ie^{-i2\phi_{1}}\eta_{h^{0}}(-1)^{l}\left|\bar{D}^{0}\right\rangle \sin(\Delta m \Delta t/2) \\ M_{\bar{B}^{0}}(\Delta t) &= f(m_{-}^{2}, m_{+}^{2})\cos(\Delta m \Delta t/2) - ie^{-i2\phi_{1}}\eta_{h^{0}}(-1)^{l}f(m_{+}^{2}, m_{-}^{2})\sin(\Delta m \Delta t/2) \end{split}$$

 $|B^{0}(\Delta t)\rangle = |B^{0}\rangle \cos(\Delta m \Delta t/2) - ie^{+i2\phi_{1}} |\bar{B}^{0}\rangle \sin(\Delta m \Delta t/2)$ $|\tilde{D}_{B^{0}}(\Delta t)\rangle = |\bar{D}^{0}\rangle \cos(\Delta m \Delta t/2) - ie^{+i2\phi_{1}}\eta_{h^{0}}(-1)^{l} |D^{0}\rangle \sin(\Delta m \Delta t/2)$ $M_{B^{0}}(\Delta t) = f(m_{+}^{2}, m_{-}^{2})\cos(\Delta m \Delta t/2) - ie^{+i2\phi_{1}}\eta_{h^{0}}(-1)^{l}f(m_{-}^{2}, m_{+}^{2})\sin(\Delta m \Delta t/2)$

 $\eta_{h^0} = CP$ eigenvalue of h^0 l = angular momentum

Process	$N_{\sf tot}$	Efficiency (%)	$N_{\sf sig}$	Purity
$D\pi^0$	265	8.7	157 ± 24	59%
$D\omega$	78	4.1	67 ± 10	86%
$D\eta$	97	3.9	58 ± 13	60%
$D^{*}\pi^{0}$, $D^{*}\eta$	52		27 ± 11	52%
Sum	492		309 ± 31	63%

Data fit results. Statistical errors from toy MC.

Final state	ϕ_1 fit result, $^\circ$	
$D\pi^0$	11 ± 26	
$D\omega$, $D\eta$	28 ± 32	
$D^{*}\pi^{0}$, $D^{*}\eta$	25 ± 35	
Simultaneous fit	16 ± 21	

High quality

Low quality

WARW

penguin contains V_{td}

253 fb⁻⁻

- Small branching fraction ($\sim 4 \times 10^{-6}$)
- Large background from $e^+e^- \rightarrow q\bar{q}$ (q = u, d, s, c)
- Background from $B \to K^+ \pi^-$

253 fb⁻¹

BELLE-CONF-0501

Yields from M_{bc} — ΔE fits in bins of $(q, \Delta t)$

- *CP* violation significance $> 5\sigma$ (still)
- DIRECT CPV significance : 4σ

- Due to large penguin contribution need isospin analysis to extract ϕ_2
- Such analyses are underway ...
- Current limitation from knowledge of $B^0 \to \pi^0 \pi^0$
 - branching fraction
 - direct CP asymmetry
- Other avenues for ϕ_2 ($\rho^{\pm}\pi^{\mp}$, $\rho^{\pm}\rho^{\mp}$, *etc.*) being explored

• Main contributions from $\rho^{\pm}\pi^{\mp}$, other contributions complicate the analysis

WARWI

 $B^0 \to \rho^0 \pi^0$

WARWICK

WARWICK