WGVI Summary

WG VI: Angles from penguin dominated B(s,d) decays

Conveners T. Gershon, L. Silvestrini, Th. Feldmann

T. Gershon, L. Silvestrini, Th. Feldmann

Many, many excellent talks

Thanks to all speakers for their tremendous efforts Apologies for a very selective summary

CKM2008 - WG6 summary

theory primers [Bauer, Franco, Pierini, Jäger]

- symmetries and topological amplitudes 1/N_c arguments
- factorization (1/m_b expansion -> SCET)

different phenomenological assumptions:

- → SCET/BPRS
- → QCDF/BBNS
- → pQCD

Comparison

	BPRS	QCDF	PQCD	
Expansion in α₅(µi)?	No	Yes	Yes	
Singular convolutions	N/A	New parameters	"Unphyiscal" k⊤	
Charm Loop?	Non- perturbative	Perturbative	Perturbative	
Number of parameters	Most	Middle	Least	
How conservative?	Most	Middle	Least	

hadronic uncertainties

[Jäger, Lü, Pierini]

Status of theoretical calculations:

- tree amplitudes:
 - colour allowed:

only small corrections to naive factorization

• colour suppressed:

NLO vertex corrections almost cancel LO dominated by spectator effects

annihilation:

1/m_b-suppressed uncertain (non-factorizable effects)

Tree amplitudes

- 1/N expansion (only counting rules)
- Λ_{QCD}/m_B expansion (QCDF/SCET; pQCD): computation of important pieces possible

	a _I /T/E _I	a ₂ /C/E ₂	α_4^u	b ₁ /E/A ₂	b ₂ /A/A ₁
I/N	I	I/N	I/N	I/N	[?]
∕\/m _B	I		Ι	Λ/m _B	Λ/m _B

- QCD light-cone sum rules: partly complementary set of calculable amplitudes; constrain "inputs" to //mB
- SU(3) [U-spin] relates ΔD=1 and ΔS=1: e.g. trees in πK from ππ; penguins in ρρ from ρK^{*}, etc. (m_s/Λ_{QCD} corrections; annihilation contamination)

JÄGER

hadronic uncertainties

[Jäger, Lü, Pierini]

Status of theoretical calculations:

- penguin amplitudes:
 - differing results in BBNS/BPRS/pQCD:
 - chirally enhanced penguin
 - Annihilation penguin
 - charm(ing) penguin
 - \star treatment of non-factorizable 1/m_b effects ?

Non-factorizable penguins

ΙÜ

Hadronic Uncertainties

- Need to understand subleading effects in order to interpret several interesting measurements
 - $-\Delta A_{_{CP}}(K\pi)$
 - ϕK^* polarization
 - $\Delta S(\phi K_s, etc.)$
 - Large BR($B^0 \rightarrow \pi^0 \pi^0$)
- Hoped for breakthrough has not (yet) occurred
 - High energy scales of LHC attractive for theorists too
- Need LHCb data to inspire future theory developments
- Focus on theoretically clean &/or data-driven methods

 $\Delta A_{CP}(K\pi)$

CKM2008 - WG6 summary

13 September 2008

$\Delta A_{_{CP}}(K\pi)$

Bs and other results from CDF

20 MeV/c²

Candidates per

1400

1200

1000

800

600

400

CDF Run II Preliminary L_{int}=1 fb⁻¹

 $B^{0} \to K^{+}\pi^{-}$ $\overline{B}^{0} \to K^{-}\pi^{+}$

 $B_{c}^{0}/\overline{B}_{c}^{0} \rightarrow K^{+}K^{-}$

 $B^0/\overline{B}^0 \rightarrow \pi^+\pi^-$

 $B^0_s \rightarrow K^- \pi^+ + \overline{B}^0_s \rightarrow K^+ \pi^-$

 $\Lambda_{\rm b}^{0} \rightarrow p\pi^{-} + \overline{\Lambda}_{\rm b}^{0} \rightarrow \overline{p}\pi^{+}$

 $\Lambda_{\rm b}^0 \rightarrow {\rm pK}^- + \overline{\Lambda}_{\rm b}^0 \rightarrow \overline{\rm pK}^+$

Combinatorial backg. Three-body B decays

- 1. Observation of new Bhh mode: Bs \rightarrow K π
- 2. First observation of $\Lambda_{b} \rightarrow ph$ decays: $\Lambda_{b} \rightarrow p\pi$ and $\Lambda_{b} \rightarrow pK$
- 3. Unique sample of $B_s \rightarrow KK$

How Will it Look for LHCb?

Kππ Dalitz plot techniques

Ciuchini, Pierini, Silvestrini, 2006; Gronau, Pirjol, Soni, JZ, 2006, 2007

- I relative phases of $B \to K^* \pi$ amplitudes from $B \to K \pi \pi$
- no penguins in: $3A_{3/2} = A(K^{*+}\pi^{-}) + \sqrt{2}A(K^{*0}\pi^{0})$
- in the limit of zero EWP

$$\gamma = \Phi_{3/2} \equiv -1/2 \times \arg(\bar{A}_{3/2}/A_{3/2})$$

• with EWP $(C = -0.27 = 3(C_9 + C_{10})/(2\lambda^2(C_1 + C_2)))$

$$\bar{\eta} = \tan \Phi_{3/2} \left[\bar{\rho} + C [1 - 2 \operatorname{Re}(r_{3/2})] + \mathcal{O}(r_{3/2}^2) \right]$$

- for $K\pi$: $r_{3/2} = 0$ in SU(3) limit
- $r_{3/2}$ correction to this Neubert-Rosner shift
 - $r_{3/2} < 0.05$ using naive factorization
 - $r_{3/2} = 0.054 \pm 0.045 \pm 0.023$ using SU(3)

Kππ Dalitz plot results

Kππ⁰ (BaBar)

- BABAR results from 232 million BB
- Accepted by PRD
 - arXiv:0711.4417 [hep-ex]
- Scans opposite show the results for ϕ and $\overline{\phi}$
- Presence of multiple solutions reduces precision of constraint
- Preliminary BABAR results on 454 million BB indicate much better separation between solutions
 - Likelihood scans of phase differences not yet completed
 - arXiv:0807.4567 [hep-ex]

К_пп (BaBar + <u>Belle</u>)

Kππ Dalitz plot results

<mark>Κππ⁰ (BaBar)</mark>

- BABAR results from 232 million BB
- Accepted by PRD
 - arXiv:0711.4417 [hep-ex]
- Scans opposite show the results for φ and φ
- Presence of multiple s reduces precision of c
- Preliminary BABAR res million BB indicate mu separation between se
 - Likelihood scans of differences not yet
 - arXiv:0807.4567 [h

CKM constraint in presence of EW penguins is:

$$\overline{\eta} = \tan \Phi_{3/2} \left[\overline{\rho} - 0.24 \pm 0.03 \right]$$

CKM2008 - WG6 summary

 $\Delta \phi(\mathbf{K}^{*+} \pi^{-}) = -0.7^{+31.3}_{-30.9}$ bol∆22 20 25 20 20 15 10 -100-75 -50 -25 0 25 50 75 100 $\Delta \phi$ _____35 $\Delta \phi(\mathbf{K}^{*+} \pi^{-}) = +14.6^{+28.4}_{-29.0}$ 60|√25 20|√2-20 15 10 -100-75 -50 -25 0 25 50 75 100 Δø

Prospects for LHCb

- $B^{0} \rightarrow K\pi\pi^{0}$ will be difficult \rightarrow use a different method
- One nominal year of LHCb data on $B^{\scriptscriptstyle +} \to K\pi\pi$
 - 2 orders of magnitude more events than the B factories!
- γ : B+ \rightarrow K+ π + π and B0 \rightarrow K_s π + π -

```
dominant contributions for K* resonance

B+ \rightarrow K^{*0} \pi + : Vbt V^{*ts P}

B0 \rightarrow K^{*+} \pi^{-} : Vbt V^{*ts P} + Vbu V^{*us T}

1^{st} step: amplitude analysis of charged B

• extracts B+ : Vbt V^{*ts \infty} a e^{i\delta}

B- : V^{*bt Vts \infty} a e^{i\delta}

which should be equal in absence of weak phase

• parameters are extracted relative to

B+ \rightarrow \chi c0 K+

which should have same contribution in neutral decay, allowing comparison of parameters
```


▶ the ability of measuring γ is related to it's own value and the ratio **r** = **T** / **P** in B0 \rightarrow K* π

- ▶ we can measure <mark>r</mark>
- conflicting theoretical predictions Beneke,Neubert Nucl. Phys B675, 333(2003) Buras et al, Phys. Rev.Lett 92 101804 (2004)

Monte Carlo test

- 100 samples of 100k B0 events
- no background nor acceptance included
- inputs inspired by BaBar
- ► input $\gamma = 69^{\circ}$, r = 0.45

• extracts
$$\gamma = 69^{\circ} \pm 5^{\circ}$$

CKM2008 - WG6 summary

γ Summary

- Kπ system remains interesting
 - results are tantalizing but hadronic uncertainties remain
 - need better data on $K_{s}\pi^{0}$ Super Flavour Factory
- Kππ based methods provide additional information
 - can control hadronic uncertainties
 - first results available, expect updates from B factories
 - looking good for LHCb

∆S in Hadronic b→s Penguin Dominated Decays

Some More on ΔS

- ΔS REMAINS an EXCELLENT TEST
- Sign of ΔS theoretically NOT fully reliable though in most model calculations and for most modes ΔS is positive
- CONCLUSIVE evidence for NP demands
 |ΔS| >0.10 IN some of the CLEAN modes
 (though whichever |ΔS|)

Browder, Gershon, Pirjol, AS, Zupan, arXiv:0802.3201(RMP)

TABLE VIII Expectations for ΔS_f in three cleanest modes.

	Model	ϕK^0	$\eta' K^0$	$K_S K_S K^0$		
	$QCDF+FSI^{a}$	$0.03\substack{+0.01\\-0.04}$	$0.00^{+0.00}_{-0.04}$	$0.02^{+0.00}_{-0.04}$		
	$QCDF^{b}$	0.02 ± 0.01	0.01 ± 0.01			
	$QCDF^{c}$	0.02 ± 0.01	0.01 ± 0.02			
	SCET ^d		-0.019 ± 0.009			
е	SOLI		-0.010 ± 0.010			
or	$_{\rm P}{\rm QCD^{e}}$	0.02 ± 0.01				
	^a Cheng <i>et al.</i> (2005a,b)	^b Beneke (2005)			
	^c Buchalla <i>et al</i>	l. (2005)	^d Williamson and Z	upan (2006)		
	^e Li and Mishin	na (2006)				
1	N		a. Don't t	ako		
(IV	103308		.anc		
	theory errors too "literally"					
		, , , , , , , , , , , , , , , , , , ,				

CKM2008 - WG6 summary

SON

26

Both experiments now using time-dependent **Dalitz pot analyses**

BaBar

PRELIMINAE $7.7 \pm 7.7 \pm 0.9$ $21.2^{+9.8}_{-10} \pm 2.0 \pm 2.0$ 12.9 ± 5.6 20 30 40

> $\phi(1020)K_S^0$ and good tags At (ps)

laximum eparately	Like to ł	lihood fit K _s and K _L modes:
$-\xi_{\eta'K_S}S_{\eta'K_S}$ $C_{\eta'K_S}$		$0.53 \pm 0.08 \pm 0.02$ $-0.11 \pm 0.06 \pm 0.02$
$\frac{\xi_{\eta'K_L}S_{\eta'K_L}}{C_{\eta'K_L}}$	=	$\begin{array}{c} 0.82 \pm 0.19 \pm 0.02 \\ 0.09 \pm 0.14 \pm 0.02 \end{array}$

Final results computed through scans of $-2 \ln \mathcal{L}$: Methods to constrain ΔS using SU(3) related modes appear to be reaching limitations

Entries (a) $B^0 \rightarrow \eta' K^0$ 100 50 0 0 **♀**q=+1 ↓ q=-1 Asymmetry 0 2.0 2.0-22 -2.5 0 -ξ_f∆t(ps) 2.5 5 7.5 -7.5 -5

Maximum Likelihood fit simultaneously to K_s and K_l :

$$\begin{array}{rcl} -\xi_{\eta'K^0}S_{\eta'K^0} &=& 0.64 \pm 0.10 \pm 0.04 \\ C_{\eta'K^0} &=& 0.01 \pm 0.07 \pm 0.05 \end{array}$$

 $B^0 \rightarrow K_s K_s K_s$

(preliminary) BABAR RESULTS **NEW FOR CKM2008**

13 September 2008

FUJIKAWA

 $C_{CP} = -\mathcal{A}$ **BaBar** $-0.16 \pm 0.17 \pm 0.03$ Belle $-0.31 \pm 0.20 \pm 0.07$ Average -0.23 ± 0.13

 $\begin{array}{ll} \mbox{sin } 2\phi_1^{eff} = - \mbox{ \mathcal{S}} \\ \mbox{BaBar} & 0.90 \pm \begin{array}{c} 0.20 \\ 0.18 \end{array} \pm \begin{array}{c} 0.04 \\ 0.03 \end{array} \\ \mbox{Belle} & 0.30 \pm 0.32 \pm 0.08 \\ \mbox{Average} & 0.74 \pm 0.17 \end{array}$

 $B^0 \rightarrow K^0 \pi^0$

Mode of special interest:π⁰Ks

More on π^0 Ks

- However, Isospin povides useful relations amongs the 4 K π modes which may lead to useful constraints
- An interesting exampleFleischer,Jager,Pijol,Zupan,arXiv: 0806.2900 226

$$S_{\pi^{0}K_{S}} = 0.99^{+0.01}_{-0.07}|_{\exp. -0.001}|_{R_{T+C}} + 0.00_{-0.06}|_{\gamma},$$

See also Gronart Rosner and V:0807.3080

Fits prefer large values of $S(K_{c}\pi^{0})$

SONI, PIERINI

- WG6 summary

30

HFAG COMPILATION

- Huge effort from B factories to clarify hints of trends / deviations in previous measurements
 - eg. Dalitz plot analyses
- Situation today is quite different to the past
- (Put your own conclusion here)

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$

13 September 2008

33

The Gronau-London Method

$$\begin{aligned} A^{+-} &= A(B^0 \to \pi^+ \pi^-) \\ \overline{A}^{+-} &= A(\overline{B}^0 \to \pi^+ \pi^-) \\ A^{00} &= A(B^0 \to \pi^0 \pi^0) \\ \overline{A}^{00} &= A(\overline{B}^0 \to \pi^0 \pi^0) \\ A^{+0} &= A(B^- \to \pi^+ \pi^0) \\ \overline{A}^{-0} &= A(B^- \to \pi^- \pi^0) \end{aligned}$$

$$A^{+0} = \frac{1}{\sqrt{2}} A^{+-} + A^{00}$$
$$\overline{A}^{-0} = \frac{1}{\sqrt{2}} \overline{A}^{+-} + \overline{A}^{00}$$

CKM2008 - WG6 summary

Measurements in the $\pi\pi$ System

Putting it Together

Very important disclaimer! ... Why?

CKM2008 - WG6 summary

The Zero Solution

- GL method does not use any knowledge about penguin contribution (except isospin)
 - neither magnitude nor phase
 - insensitive to isospin conserving new physics
- But, we do know

$$A_{\pi\pi} = \frac{2|P||T|\sin(\delta)\sin(\alpha)}{|P|^2 + |T|^2 + 2|P||T|\cos(\delta)\cos(\alpha)}$$

(using unitarity)

• Non-zero direct CP violation in $B \rightarrow \pi \pi \Rightarrow \alpha \neq 0$ - (or hadronic parameters \rightarrow infinity) ^{13 September 2008} - WG6 summary

Bayesian Implementation

- Use priors that enforce limitations on the magnitude of |P|/|T|
- Even without using $S_{\pi\pi}$ in the fit, still exclude $\alpha = 0$

Try removing experimental information on S⁺⁻ :

The Result change completely, the cut on the hadronic parameter is less effective.

The pp System

• If $m_{\rho 1} \neq m_{\rho 2}$ wave function can be antisymmetric Falk et al., PRD 69, 011502 (2004) \Rightarrow I=1 allowed, isospin relations do not hold But measurements are stable when

But measurements are stable when decreasing allowed ∆m region

electroweak penguin can have I=2
 ⇒ isospin relations do not hold

But no sign of direct CP asymmetry in $B^+ \rightarrow \rho^+ \rho^0$ decays

- final state is VV, L=1 possible and has opposite CP (-1)
 - ⇒ uncertainty in measuring S, must also measure polarization
 - (⇒ isospin relations hold separately for long., trans. perp., trans. par. states)

Polarization has been measured: fL≈ 1 (consistent with factorization) Kagan, PLB 601, 151 (2004)

Measurements in the pp System

Measurements in the pp System

- BaBar evidence for $B^0 \rightarrow \rho^0 \rho^0$
- Belle consistent with zero
- Differences in analysis ($\pi\pi$ mass window)
 - To be resolved in future updates

Measurements in the $\rho\pi$ System

- SM solution (near 90°) allowed, uncertainty ~ 8°
- LHCb can contribute for $\rho\pi$, $\rho^{0}\rho^{0}$
- Focus on theoretically clean methods, but can reduce uncertainty with additional assumptions (eg. SU(3))
- |P|/|T| is crucial parameter 13 September 2008 is CKM2008 - WG6 summary

b > s: why new physics there?

• $b \rightarrow d$ much constrained (see UT determination)

- b → s still allows for a non-negligible amount of new physics (at least at the 15 -20% level), in particular in CP violating phenomena
- Large 2 3 mixing in the neutrino sector ;
 - correspondence to $b_R \rightarrow s_R$ in the 5-plet of SU(5)
- Hints for new physics in b → s transition (SUSY, 4th generation, warped extra-dimensions, new Z', etc.)

MASIERO + NP breakout session

Hadronic b \rightarrow s penguins Golden or Not Golden?

$ a B_d \rightarrow \phi K_S $ (Theory)	\bullet $B_d \to \eta'$	$K_S, \pi^0 K_S$ (7)	Theory)	
- SU(3): [Grossman, Isidori, Worah'98 , Grossman, Ligeti, Nir, Quinn'03,]		QCDF	SCET	GP
$ \overline{\Delta S_{\phi K_S}} < \sqrt{2} \ \lambda \left(\sqrt{\frac{BR(B^+ \to \phi \pi^+)}{BR(B_d \to \phi K_S)}} + \sqrt{\frac{BR(B^+ \to K^*K^+)}{BR(B_d \to \phi K_S)}} \right) + \mathcal{O}(\lambda^2) \lesssim 0.3$	$\Delta S_{\eta'K_s}$	[0.00-0.03]	-0.019±0.008 -0.010±0.010	-0.007±0.054
$- QCDF: 0.01 < \Delta S_{\phi K_S} < 0.05 $ [Beneke'05]	$\Delta S_{\pi^0 K_s}$	[0.02-0.015]	0.07740.030	0.024±0.059
$\begin{array}{l} \text{(Sate minimal QCDF input + BR: 0.03 < $\Delta S_{\phi K_S} < 0.06 [VIII 0 07] $)} \\ \text{QCDF + FSI: $\Delta S_{\phi K_S} = 0.03^{+0.0}_{-0.04} $ & [Cheng, Chua, Soni'05] \\ \end{array}$	$\leq \rangle$	> \\S are -	Bereke'05 , Will	amson,Zupan'06 , Silvestrini'07] [Eleischer läger Piriol Zupan '69]
$- \underline{C_{I}P}: \Delta S_{\phi K_{S}} = 0 \pm 0.09 \qquad [Silvestrini'07]$ $B_{d} \rightarrow \phi K_{S} (Experiment)$	$\bullet \underline{B_d \to \eta}$	$\gamma' K_S, \ \pi^0 K_S$	(xperiment)	īt μειοσιμοι φαθιοι ^μ ε μεζιτήμαιε και
- Current (*): $\Delta S_{\phi K_S}^{p} = -0.29 \pm 0.18$ [HFAG,BaBar,Belle'07]	and the second	Current	LHC S	SuperB (75at ⁻¹)
- $L \neq C$: $2fb^{-1}: N \sim 20, \ 0.3 < B/S < 1.1, \ \sigma_S \sim 0.23$	$\Delta S_{\eta'K_s}$	-0.11±0.08	?	$\sigma_S \sim 0.01$
$10 f b^{-1} : \sigma_S \sim 0.10$ [Xie, LHCb-2007-130]	$\Delta S_{\pi^0 K_s}$	-0.13±0.21	?	$\sigma_S \sim 0.02$
- SuperB: $75ab^{-1}: \sigma_S \sim 0.02$ [SuperB CDR '07]		1 Marshall		[BaBar'08 , SuperB CDR'07]

 $B_s \rightarrow VV$

- QCDF:			[Bene	ke,Rohrer,Yang'06]	
BR (10 ⁻⁶)	A _{CP} (%)	Ø _Ⅱ (deg)	fL	A [°] _{CP} (%)	
$9.1^{+0.5}_{-0.4} {}^{+11.3}_{-6.8}$	1^{+2}_{-1}	-34^{+110}_{-62}	63^{+42}_{-29}	$11^{+3}_{-3}{}^{+7}_{-17}$	
- Similar	results t	from paci	D	[Ali et.al.'07]	
- From B.	$R(B_s \to K^{o*}\bar{K}$	ro*) and QC	DFinput	:	
$BR_s^L \gtrsim 3 \cdot 10^{-5} \Rightarrow (S_{\kappa^*\kappa^*}^L - 0.051) < \sin 2\beta_s < (S_{\kappa^*\kappa^*}^L - 0.037)$					
also in SM: $C_{K^*K^*}^L = 0.000 \pm 0.014$, $S_{K^*K^*}^L = 0.004 \pm 0.018$					
- Null tests: [Descotes-Genon, Matias, Virto'07]					
writing $A(B_s - > f) = V_{tb}V_{ts}P_t + V_{ub}V_{us}P_u$					
we have: $S_f = \sin(2\beta_s - 2\beta_s) + \mathcal{O}(\lambda^2) = 0 + \mathcal{O}(\lambda^2)$					

13 September 2008

CKM2008 - WG6 summary

B_s→VV

- QCDF:			[Bene	eke,Rohrer,Yang'06]	
BR (10 ⁻⁶)	A _{CP} (%)	Ø _Ⅱ (deg)	fL	A ^o _{CP} (%)	
$9.1^{+0.5}_{-0.4} {}^{+11.3}_{-6.8}$	1^{+2}_{-1}	-34^{+110}_{-62}	63^{+42}_{-29}	$11^{+3}_{-3}{}^{+7}_{-17}$	
- Similar	results t	rom paci	b	[Ali etal'07]	
- From B.	$R(B_s \to K^{o*}\bar{K})$	(0*) and QC	DFinput	:	
$BR_s^L \gtrsim 3 \cdot 1$	$0^{-5} \Rightarrow (S^I_{\kappa})$	$(\kappa * \kappa * - 0.051) <$	$\sin 2\beta_s < (S^L_{\kappa^*})$	$_{\kappa^*} - 0.037)$	
also in SM: $C_{K^*K^*}^L = 0.000 \pm 0.014$, $S_{K^*K^*}^L = 0.004 \pm 0.018$					
- Null tests:					
$SU(3)$ analysis $B_d \rightarrow K^{o*} \bar{K}^{o*} \leftrightarrow B_s \rightarrow K^{o*} \bar{K}^{o*}$					
Estimat	$e: \sigma(S_{K^*K^*})$	$) \sim 0.013$!	/ [Ciuchini,Pi	erini,Silvestrini'07]	
100% Su(3) breaking, model independent					

Also $B_s \rightarrow \phi \phi$

CKM2008 - WG6 summary

Prospects for LHCb

- $B_s \rightarrow \phi \phi$ and $B_s \rightarrow K^{*0}\overline{K}^{*0}$ provide a new window into CP violation in hadronic b \rightarrow s penguins
- Updated study shows LHCb can achieve a resolution of $\Delta("\phi_s") \approx 0.125$ in $B_s \rightarrow \phi \phi$ with 2 fb⁻¹ (1 nominal year), making it an ideal place to search for the anticipated unexpected physics
- Study of $B_s \rightarrow K^{*0}\overline{K}^{*0}$ is progressing well in LHCb
- LHCb is about to take over the penguin world!

LHCb = penguin party?

Need to study effects of contributions from nonresonant or other decays

XIF

Exciting times to be alive

Thursday,	September 11, 2008 MOBILE SUN LITE SITE MAP CONTACT US RSS	CT TO YOUR I EW TOOLBAR NO	PC SW: With With With With With With With With
VIDEO NEWS Forces Captain Crunch	NEWS Got a story? Tex	xt: <mark>63000</mark> - Email: talkback@the-:	·sun.co.uk
Sun Justice Columnists	Success! The world hasn't	The Will Block In	Remarkable
Royals US Election The Vault	ended		new physics
Go Green	By STAFF REPORTER		prediction!
Maddie	Published: 10 Sep 2008		
Sun Money	ADD YOUR COMMENTS		Doom in 4 years
Expats Sup City	WE are all still here!	A A A A A A A A A A A A A A A A A A A	By TIM SPANTON
Planet News	The world's most powerful physics experiment is well and truly under		
Sun Says	way.		IT could take four years for the experiment to
Dear Sun	Scientists cheered as a beam of proton particles completed their first circuit of the 27km long Large Hadron Collider (LHC).		bring doomsday, say some scientists.
Gardening	At 8 30am today, the machine which some fear could create a giant		By coincidence the ancient Mayan calendar finishes then — on
British X-Files	black hole capable of swallowing the planet was switched on.		December 21, 2012.
Weird	Dr Lyndon Evans, known as Lyn, is leader of the Large Hadron Collider		The vast majority of experts say it won't happen.
Alert Me	project at the Geneva-based European Organisation for Nuclear Research (CEBN)		The wax majority of experiencely it won't interpent.
SPORT Football	The white-haired Welshman showed few signs of stress, however, even finding time for a small joke when the machine took a second longer than expected to demonstrate it use energing correctly		Self-proclaimed experts used to believe the world was flat, the moon was made of cheese and England would win the 2006 World Cup.

CKM2008 - WG6 summary

Scientist Otto Rossler tried to get the European Court to ban the tests. He warns: "Nothing will happen for at least four years. Then the weather will change completely, wiping out life. There will be a Biblical Armageddon."

The Book

- All contributors to the WG welcome to contribute
 Including some who could not be in Rome
- We have identified individuals to make the first drafts of sections (5 pages per section)
 - Theory primers Bauer, Jäger
 - α Telnov, Schwartz
 - β Soni, (Dalseno)
 - -γ Zupan, Latham
- Other WG members will serve as reviewers
- First drafts by mid-October please!

Congratulations to the organizers (especially Riccardo) for a fantastic workshop ... and more!

