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Chapter 1

Full Special Relativity

This chapter should expose the foundations of Special Relativity including all as-
sumptions entering the construction of the theory. Subsequently, the theory and its
application to classical mechanics is demonstrated, mainly as a reminder of previ-
ous lessons on the topic, however, using more advanced mathematical tools. These
are being introduced step-by-step either in separate excursions or along the way of
progressing with topics from Special Relativity.

The content of this chapter draws mainly from [1] with some input from [2].
For additional material to any of the sections in this chapter, please see those two
textbooks unless you have a different favoured textbook.

1.1 Homogeneity and isotropy of space

The two topics in the section title represent far reaching concepts in physics. A truly
fundamental start to the lecture would attempt to rather ’derive’ these concepts
instead of starting with them in mind. In order to get anywhere in this lecture let’s
rush through such fundamental ideas. This has the advantage of at least naming
the keywords along the way for anyone interested to delve deeper later on.

One possible start to get to grips with homogeneity and isotropy of space would
be to consider the idea of motion.

Motion: Any definition of movement needs an answer to: ’relative to what’.

The line of thought then proceeds naively as follows: If you need a reference, in-
troduce a coordinate system. Then immediately you have a definition of motion
according to

3



4 CHAPTER 1. FULL SPECIAL RELATIVITY

Motion: Not all coordinates of all points of a body remain constant.

Let’s untangle that big step of thought from above into its more fundamental parts.

Manifold: First of all, you need a continuous set of points. That is called a mani-
fold, just a set, nothing much more to it.

Metric: This is less fundamental. Define a distance measure on the manifold. That
is then called a metric.

Reference frame: This is the least fundamental. In fact, it’s nothing else then an
arbitrary labelling of points which is called a coordinate system. Still, these
can be quite complex constructions and are therefore a perfect tool to confuse
students.

The most simple metric space in the sense of simplicity according to human
experience is the Euclidean space. A quick demonstration of metric space and
coordinate system confusions would be: Describe a point in Euclidean space using
Cartesian coordinates, (x,y,z). Then change to polar/spherical coordinates, (r,θ, φ),
and watch students struggling for the first two years on maths for scientists courses.
The swap itself is irrelevant for the point, it’s still the same point in the manifold,
merely its labels have changed.

Considering that more and more complex structures will have to be scrutinised
and used to do physics in or with them, a clearer mathematical description of points
and metrics and ’things’ in spaces would be highly welcome. Such tools are all
headed as coordinate independent descriptions. You use them since many years in
the form of vectors. Using vectors makes no difference to the physics description
other than it’s more convenient.

However, with respect to describing physics, we are not quite there yet. Vectors
can change quite easily:

1. Translate the entire set of coordinate labels:

r′r′r′ = rrr +ααα

2. Rotate a reference direction:

r′r′r′ = Rrrr

with R being a rotation matrix.
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The idea is to get rid of ALL dependencies on labelling a point. Hence, you require
invariance under translation and rotation. That now has big(!) consequences for
physics. Why? Here is a reminder:

Noether Theorem essence: Every invariance (symmetry operation) implies
a conserved quantity in nature and vice versa.

Here this would translate as: Translation invariance implies momentum con-
servation, whereas rotation invariance implies angular momentum conservation.

Another way to put it is to define homogeneity and isotropy as results of sym-
metry operations by requiring invariance under translation and rotation transforma-
tions. This specific requirement of invariance is also called Euclidean principle of
relativity. Another way to express it could be to require that physics is the same
under variation of 6 parameters. These are the 3 components of ααα and 3 rotation
angles which build the Euclidean group (see Sec. 1.2.1).

1.2 Introducing the time parameter

This is heading towards the Galilean principle of relativity which could be
expressed as a relativity of velocity.

Let rrr = rrr(t); define the term velocity as

vvv =
d

dt
rrr(t)

and acceleration as

aaa =
d2

dt2
rrr(t).

A convenient path towards the Galilean relativity principle emerges following New-
ton’s work on classical mechanics.

Newton starts with:

1. Time intervals between any 2 events are invariant for any 2 observers, i.e.
there is a universal time.

2. Spatial separation of 2 events is invariant for any 2 observers, i.e. there is a
universal space

Now describe the dynamics between any 2 bodies:

1. Law of inertia: aaa(t) = 0 if and only if the force between the bodies FFF = 0, i.e.
vanishes.
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2. Second law: FFF (t, rrr) = maaa(t).

Newton’s laws claim that acceleration and force are absolute, i.e. any transfor-
mation from absolute space S (with position vector rrr(t)) to a reference system in
uniform motion (aaa(t) = 0) relative to S, say S’ (with r′r′r′(t)) leaves the dynamics (the
description of the physics under investigation) invariant if

d2rrr(t)

dt2
=

d2r′r′r′(t)

dt2
.

Let’s see how that works using Galilean transformations:

r′r′r′(t) = rrr(t)− uuu t

where uuu is the relative velocity between 2 reference frames. Caution here! The
vector rrr(t) is the position vector between 2 points interacting but each point has its
own position vector in absolute space. This can be expressed as Newton’s third law:

rrr = PPP 2 −PPP 1 or (third law) rrr = PPP 1 −PPP 2

The Galilean transformation changes the PPP ’s first of all. So

maaa(t) = ma′a′a′(t) = F ′F ′F ′(t, r′r′r′(t))

assuming invariance of mass. Plug in the transformation and get

= F ′F ′F ′(t,PPP 2 − uuu t−PPP 1 + uuu t) = F ′F ′F ′(t, rrr(t)) ≡ FFF (t, rrr)

where the last equivalence statement originates from the concept that any force
function is completely determined by its arguments. After all, a force taken at
an identical point in space and time should be identical whether it was previously
transformed or not, it’s still the same point in space and time.

The lesson is: Newton dynamics is invariant under Galilean transformations
which is the the Galilean principle of relativity.

Now consider how many numbers determine the transformation: All 6 param-
eters from the Euclidean group plus 3 numbers for the relative velocity vector plus
the time translation invariance (the freedom to choose the origin in time). That
sums up to 10 numbers. Ergo, the Galilean group has 10 parameters free to choose
and leave the physics unchanged.

1.2.1 Excursion: ’What is a group and why is it interesting
here?

(Caution: This is not a complete definition, mathematically sound. It covers merely
what we need here and might give you an idea what this term means. For anyone



1.2. INTRODUCING THE TIME PARAMETER 7

interested in proper definitions, you will have to look up a maths textbook on group
theory.)

Have a set of transformations G between reference frames (translations, rota-
tions, etc.). Then any principle of relativity requires that

1. Two members of G put together must give again an element of G.

2. Every transformation has an inverse (Galilean: uuu →−u−u−u)

3. There is an identity transformation (Galilean: uuu = 0)

Then a set G is called a group.

Why would that be of any interest?

Two steps, really. First, given a group of transformations, one would naturally have
to ask for: ”transform what?”

Here (relativity for example) a set of reference frames. However, this could just as
well deal with something else:

• event coordinates

• events

• four-vectors

• tensors

• spinors

• fields

• state vectors in a Hilbert space

• ...

Step 2: If an object of a physical theory turns out to be invariant under a group
G then the theory is said to be invariant under this ’symmetry group’. This is the
most successful way in the history of physics to build a theory.

Why some groups are ’realised’ in nature and (most) others are not, is not
known. Once you have found one though, you’re on to a winner.
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1.3 The way beyond Galilean relativity

The fastest argument I’ve seen to motivate physics beyond Galilean relativity is
quoted in [1]: Consider Maxwell’s electrodynamics.

Waves in a vacuum are predicted to move with a constant speed

v =
1√
ǫ0µ0

≈ speed of light as it was known at the time

Problem: Invariance under Galilean transformations should be true for electromag-
netism, which implies a constant v (Maxwell) must imply variable ǫ0, µ0 due to the
observer dependence of the constant value under Galilean transformations.

However, the numbers ǫ0, µ0 are not permitted to vary since forces like the
Coulomb force are directly proportional to ǫ0 and they must be invariant in Galilean
relativity. This is inconsistent and did provide a major headache for decades to most
physicists at the time.

One way out was the invention of an ’ether’, i.e. a preferred reference frame.
In such a frame it was postulated that v = c = constant holds for electromagnetism.

Another related effort was undertaken by Lorentz. He derived the set of trans-
formations, which now carry his name, directly from Maxwell’s equations. The idea
was to understand better which properties of Maxwell’s theory were at odds with
Galilean transformations. Maxwell electromagnetism was not as established as it
is today and Galilean transformations worked perfectly fine with the prime theory
at the time, Newton mechanics. Therefore the unusual transformations derived by
Lorentz were considered a hint towards understanding the ether theory rather than
anything displaying a challenge to Galilean transformations.

Once the Lorentz transformations were derived from first principles, it changed
all of physics. That is the paradigm shifting impact of Einstein’s contribution and
the basis of special relativity
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1.4 Derivation of the Lorentz transformation

The first principles mentioned above can be cast into the following two items:

EP1 All inertial frames are equivalent with respect to the laws of physics (relativity
principle)

EP2 The speed of light in empty space, c, is independent of the state of motion of
its source (constancy of speed of light)

However, there are quite a few additional assumptions which enter the theory and
therefore its derivation. In the following the Lorentz transformations will be derived
with explicit reference to these additional assumptions.

1.4.1 Linearity and absence of change of direction

Start with using EP2: Let’s choose 2 reference frames, a frame S and a primed frame
S’, with the following properties

x = x′ = 0 ; t = t′ = 0

This translates as having S and S’ synchronised at the start of a light signal. Also
we describe here a one-dimensional, x only, light signal for now. The generalisation
to three spatial dimensions follows later.

Direction preservation now means for the analysis of the light signal that

△x

△t
= ±c ⇒ △x′

△t′
= ±c

combine both expressions to

(△x)2 − c2 (△t)2 = 0

Then synchronisation gives

x2 − c2t2 = x′2 − c2t′2 = 0

hence get for any interval

(△x)2 − c2 (△t)2 = (△x′)2 − c2 (△t′)2 = 0

only if the transformation is linear.
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(Otherwise the following could be true which would spoil the sequence above)

(△x)′ = (x2 − x1)
′ 6= (x′

2 − x′
1)

and the same for (△t)′.

Now assume linearity of a transformation then the following is true:

If a body K in a reference frame S moves with constant velocity u then this
implies that K moves in a different reference frame S’ with u’ but also constant!

So in general you get:

x′ = a11 x+ a12 t+ const1 (1.1)

t′ = a21 x+ a22 t+ const2 (1.2)

Let S and S’ be synchronised at some point t′0 = t0 = 0; x′
0 = x0 = 0 then it follows

immediately that const1 = const2 = 0.

Then any one-dimensional movement with speed u in x-direction would result
in the following derivation:

Examine the origin of S’, i.e. x′ = 0:

a11 x+ a12 t = 0

⇒ u =
x

t
= − a12

a11
insert this back in eqn. 1.1 to get

x′ = a11 (x− ut) = a11(u) (x− ut) (1.3)

The parameter a11 could be a function of u since the speed u is a constant for any
given reference frame.

1.4.2 Invariance under time reflection

Now let’s apply EP1: Relativity says S and S’ are equally valid descriptions for the
body K. Let’s assume S moves relative to S’ with speed -u and plug this into eqn.1.3.

x = a11(−u) (x′ − (−u)t′) (1.4)

Here enters the invariance under time reflection (t → −t) since that implies u → −u
with x unchanged. Let’s apply this to eqn.1.1, then we get

x′ = a11(u) x+ a12(u) t

t′ = a21(u) x+ a22(u) t (1.5)
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transforms to

x′′ = a11(−u) x− a12(−u) t

t′′ = a21(−u) x− a22(−u) t (1.6)

Invariance now requires that x′′ = x′ and t′′ = −t′. This implies the following set of
relations between the coefficients:

a11(−u) = a11(u) a12(−u) = −a12(u)

a21(−u) = −a21(u) a22(−u) = a22(u) (1.7)

The coefficients a11,22 therefore are supposed to be even functions of u which is easily
implemented by assuming them to be functions of u2.

1.4.3 Identity assumption

Referring back to eqns.1.3 and 1.4, when considering a one-dimensional light ray:
x = ct and x′ = ct′ (using EP2) then we get:

x′ = a11(u
2) x

(

1− u

c

)

x = a11(u
2) x′

(

1 +
u

c

)

(1.8)

The identity assumption requires the following to be true: any transform from
system S to S’ and back to S should yield the identity transformation.

Simple as that may seem, realising this requirement using eqns.1.8 gives:

1 = a11(u
2) a11(u

2)
(

1− u

c

) (

1 +
u

c

)

⇔ a211(u
2) =

1

1− u2

c2

Hence we encounter the (in)famous special relativity ’gamma’ factor:

a11 = γ =
1

√

1− β2

using β = u
c
.
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1.4.4 Finish deriving the one-dimensional Lorentz transfor-
mations

All the main ingredients have been identified hence finishing the derivation is straight-
forward. Let’s see how it goes:

From
− a12

a11
=

x

t
= u

get

a12 =
−u

√

1− u2

c2

hence
x′ = γ (x− u t)

and for a21,22 take eqn.1.4 and solve for t’:

x = a11 (x
′ + u t′) ⇒ t′ =

1

u

(

x

a11
− x′

)

plug-in a11 and x’:

t′ =
1

u

[

x

γ
− γ (x− u t)

]

=
1

u

[(

1

γ
− γ

)

x+ γ u t

]

Use this rather useful identity relation:

1

γ
− γ =

√

1− β2 − 1
√

1− β2
=

1− β2 − 1
√

1− β2
= −γ β2

to get to

t′ =
1

u

(

γ u t− γβ2 x
)

= γ
(

t− u

c2
x
)

from which you can read off

a22 = γ ; a21 = − u

c2
γ

That’s it!

So, here are the complete one-dimensional Lorentz transformations which
should look utterly familiar to you.

x′ =
x− u t
√

1− u2

c2

t′ =
t− u

c2
x

√

1− u2

c2

(1.9)
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The inverse transformation is just as important. You can always get it though by
inserting the following replacements into eqns.1.9: x′ ↔ x, t′ ↔ t and u ↔ − u.

x = γ (x′ + u t′)

t = γ
(

t′ +
u

c2
x′
)

(1.10)

Eqns.1.9 and 1.10 will be referred to as LT1 and LT2, respectively, for the entire
rest of the lecture (unless I use the equation numbers in this write-up).

1.4.5 What about other velocities than c?

The shortest expression of the Einstein principle 2, EP2, would probably be c = c′,
but what about other velocities?

Have a body K move in S with velocity v, then x = vt. Now what is v in
S’, i.e. a system moving relative to S with speed u? The Lorentz transformations
suggest to simply transform and have a look at the outcome. So that’s what we’ll
do. Starting from simply stating v′ = x′/t′, use LT1 to get from primed coordinates
to un-primed and therefore express v’ with known numbers from system S:

v′ =
x− u t

t− ux
c2

=
v t− u t

t− u v t
c2

=
v − u

1− u v
c2

hence if v = c you get

v′ =
c− u

1− u
c

= c
c− u

c− u
= c

Therefore whichever way you look at a body K now moving with c, it always appears
to be moving with c, from S as well as S’, hence c is the limiting speed by construction
and the whole concept is self consistent. No big deal but reassuring nevertheless.

1.4.6 Three-dimensional Lorentz transformations

There is a bit more to the Lorentz transformations than what you have seen so far.
Some important properties can only be revealed when generalising them to three
spatial dimensions. That’s what we’ll do next.

Starting the discussion, let’s assume again motion in x-direction for one refer-
ence frame, S’, relative to another frame, S, and let them be synchronised, t = t′ = 0.
An observer stationary in S’ and holding a mirror at a distance Y’ flicks a switch to
start a light flash at the origin O. The quick analysis of the picture would give the
following set of statement: The diagram shows 2 events in reference frames S’,
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Figure 1.1: Observer in S’, diagram of light flash in S’. Insert the drawing during
the lecture.

1. Event O happens at t′ = 0; x′ = 0

2. Event P happens at t′ = T ′; x′ = 0

Hence the mirror in S’ is at the position Y ′ = c
2
T ′.

That was the trivial bit. Now look at the analysis of the identical system from
reference frame S, moving relative to S’ with speed u. The diagram again shows 2

Figure 1.2: Observer in S, diagram of light flash in S’. Insert the drawing during the
lecture.

events taking place:

1. Event O happens at t = 0; x = 0 by construction

2. Event P happens at t = T = γT ′ (This follows using LT2 and x′ = 0) and
x = X = γ u T ′ (again, LT2 and x′ = 0).

Now the question is what happens to Y in comparison to the Y’ as derived before?
Look at the distance from O to P first:

d = 2

√

Y 2 +

(

X

2

)2
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and also (we know it’s a light flash)

d = cT = cγT ′

hence

(cγT ′)
2
= 4

[

Y 2 +

(

γuT ′

2

)2
]

⇒ c2γ2T ′2 = 4Y 2 + u2γ2T ′2

⇒ 4Y 2 = c2
c2 − u2

c2 − u2
T ′2

⇒ Y =
cT ′

2
= Y ′

and the same argument works for the z-direction. The message is that directions
perpendicular to the direction of relative motion are simply not affected in any
way by a Lorentz transformation, i.e. nothing happens. This is a very useful and
practical insight into Lorentz transformations and has profound implications for
many practical applications of the theory, say in electromagnetism to name just one
example. Trivial as it may seem, it’s rather important and you would do well to
remember it when it comes to exercises and exam problems.

1.4.7 First glimpse at a compact way of writing Lorentz
transformations

After repeating and reminding you of all the basics of Lorentz transformations, it’s
probably not a big surprise to see them written down in more compact form using
vectors and matrices. You probably saw this several times before and for all you
care at this stage, it’s really just convenient without any consequences (or specific
purpose). Let’s have a look at writing LT2 in this proposed compact form and you’ll
see what I mean:









ct
x
y
z









=









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

















ct′

x′

y′

z′









= L(β)









ct′

x′

y′

z′









(1.11)
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In order to write LT1, simply substitute β ↔ − β and interchange primed with
un-primed coordinates.

Comments:

• The suggestive short-hand: Column vector=LT-matrix times Column vector
is not only convenient. This is the entry point of geometry into physics! This
is the main reason why we will have to deal with this in a little more detail
later on, i.e. specifically the topics of tensors and four-vectors etc.

• Caution: The transformations and their corresponding groups have a priori
nothing to do with the objects they act (operate) on.

• The strategy in physics therefore is typically: (A) Describe the maths for the
transformation (groups!) first and then (B) come to create suitable objects
to describe the physics consistently. This would be the way to construct any
Lorentz-invariant theory.

Here in this lecture, we will follow the strategy from above and apply it to classical
mechanics and electromagnetism (which, as you know, is already Lorentz-invariant -
it’s just not so obvious). The next step in this programme could be to follow Dirac’s
work and apply the strategy to Quantum mechanics.

1.4.8 Exercises

Collection sheet [2.1] - Derive the identities:

• γ2 − 1 = γ2 β2

• γ − 1 = γ2

γ+1
β2
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1.5 Excursion Tensor Analysis

1.5.1 Introduction

As a warm up, let me showcase the most important elements of special relativity
and their typical mathematical expressions. This serves either as a reminder for
some of you or simply as name-dropping for everyone else. Afterwards, let’s dissect
all this and learn a few things along the way.

Recalling absolute time and space in Sec. 1.2, it should be clear from eqns. 1.9
and 1.10 that for Lorentz transformations in general there is no absolute time and
space anymore. A time interval changes from one frame to another, △t′ 6= △t, and
similarly the space intervals.

However, Minkowski showed in 1908 that a new invariant (or absolute) exists:
The line element of 4D spacetime! This looks like this:

s2 ≡ c2t2 − x2 − y2 − z2

Quick check: Assume y = z = 0 and get

s′2 = c2t′2 − x′2 = γ

[

(

ct− u

c
x
)2

− (x− ut)2
]

= γ2

(

c2t2 − 2tux+
u2x2

c2
− x2 + 2xut− u2t2

)

=

(

1− u2

c2

)

c2t2 −
(

1− u2

c2

)

x2

1− u2

c2

= c2t2 − x2 = s2

which means this line element s is indeed invariant. What’s a line element? What
does this all mean? I hope that can all be clarified below.

Another interesting keyword in connection to the above is the term Poincare
transformation. These are all transformations which leave the line element invariant.
Yes, there are indeed more than the Lorentz transformations from above which do
that. Again, nothing more about it at this point.

Now have a look at the differential form of the line element:

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

and notice the small change in notation, from classical t, x , y, z to more mathe-
matical x0,1,2,3 labels for coordinate names. Also the brackets are optional for many
textbooks. I’ll drop them soon but for now let’s be as precise as reasonable.
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This little change in notation is rather important and will have many practical
consequences. It is index notation, dreaded by many students but eminently
useful, so you will have to learn to cope with it (see exercises in Sec. A). This
notation enables one to write the line element as follows:

(ds)2 = ηµν dxµ dxν (1.12)

The customary notation counts Greek letter indices (such as µ, ν) from 0 to 3,
while Latin letter indices (such as i,j) from 1 to 3. They are often used to address
purely spatial coordinates. However, usually, you will mainly see Greek letter indices
labelling all four coordinates in spacetime. Again, at this point this notation doesn’t
mean much to you and we will examine and train it in much more detail later
(keyword: Einstein summation convention).

This notation also introduces an interesting matrix

ηηη = (ηµν) = (ηνµ) ≡









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(1.13)

which you will get to know a little better later on. All of this comes down to
Minkowski’s insight that this line element introduces geometry into physics. It
might not be immediately obvious but this is how it goes: The line element defines
an invariant length (invariant with respect to Lorentz transformations, that is, by
construction). What this means is that we now have a method to define distance
in spacetime in a unique (invariant) way.

The Minkowski statement from above enters through this object ηηη, which
receives a physical meaning in special relativity. It’s a geometrical object from
maths, a special tensor of rank 2 (see later), a metric.

So here is the point where one can turn around and unravel the whole line of
naming strange concepts from above. The fundamental starting point for all these
concepts is in fact the metric which Minkowski thankfully made clear to physicists
at the time, setting all the discussions on a firm footing for the first time.

Let’s therefore start again on special relativity and its foundations, step-by-
step. What is a metric?

For those who took the course on metric spaces, apology for this physics defini-
tion. In short, a metric defines distances on a manifold (set of points) and represents
an additional, independent property of the manifold.

Generally, we are not used to the concept of taking a metric into account
explicitly when calculating distances. That becomes clearer when considering the
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metric we usually take for distance calculation, i.e. the Euclidean metric. It’s not
explicitly named as such since it’s trivial. The matrix corresponding to the Euclidean
metric is simply the unit matrix, i.e. all one’s on the diagonal and zeros elsewhere.

It’s not exactly an intellectual challenge to put the above in explicit terms but
I find it helps as a little aside. Also, it’s another good warm-up for later. Therefore,
consider calculating the distance between the origin and a point P on the x-axis,
at some time t in the future (we are dealing with spacetime after all, using only
space would be the same for Euclidean metrics). That gives a distance squared s2

according to (take EEE as the Euclidean metric symbol, x as the vector symbol and
xxxT as the transposed vector - transpose here = turn column vector to row vector
and vice versa)

s2 = (P (x, t)−O(x = 0, t = 0))2 = xxxT ExExEx = (t−0, x−0, 0, 0)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















t− 0
x− 0
0
0









remembering that P and O are points described by vectors. No surprise, the distance
squared is simply s2 = t2 + x2. The metric in between is trivial in this case, hence
you never see it. The Minkowski metric doesn’t look like much either but all the
strangeness of special relativity can be traced back to that switch in sign.

It should be stressed here that the inversion of the signature is completely
equivalent, hence some textbooks have the time coordinate with the negative sign
and the spatial coordinates all positive. That is merely a sign convention and has
no impact on the physics. The convention above is the one used in this lecture. It’s
worth remembering when comparing explicit calculations between textbooks, i.e. a
common cause of confusion.

Repeating the exercise above using the Minkowski metric, you can quickly spot
an oddity which is very important and will be mentioned many times more during
the lecture. The squared distance using Minkowski for the example above would
look like this: s2 = c2t2 − x2. Really, the ’c’ is merely there to give us a consistent,
no headache, unit system. Nothing special about it.

But look at the distance formula - the negative sign implies that something
really strange is predicted by special relativity if this were true. Squared distances
could vanish and even turn negative. Consider a light ray from the origin going to
P, then x = ct and the theory says that the distance measured between O and P
is in fact zero. The Euclidean metric might put that at, say, a light-year distance
while the Minkowski metric says zero. No wonder that special relativity wasn’t an
immediate hit after 1905. This needs some serious explanations and to get anywhere
near them, we need some mathematical tools first.
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1.5.2 Working with tensors

So, what is a tensor?1

Tensor A linear operator acting on another tensor of equal or lower rank to produce
a third equal or lower rank tensor.

That’s one way to put it. Certainly not a definition, using the very term to define
a term is never a good idea. We will end up defining a tensor using its properties
under transformations but that is quite a way ahead yet. Let’s start a little more
pedestrian and just use the word ’tensor’ without knowing really what it is and
similarly for the ’rank of a tensor’. Let’s see how to get some intuition going on
these things.

Do you know any tensors already? Most certainly you do.

Zero rank tensors This is simply a number, any number, often rather termed
scalars. These you know quite well.

Rank 1 tensors The classic example for these are vectors, or ’numbers in one
column’.

Rank 2 tensors You have seen the Minkowski metric which is such a thing. These
tensors can always be represented by a matrix. This is often a big hazard to
students since it’s very natural to identify matrix equal tensor but that is
plain wrong. It’s a one-way street: Any rank 2 tensor can be represented by
a matrix but not every matrix is a tensor.

A rank 3 tensor or higher would by analogy need to be represented by higher dimen-
sional arrays of numbers (a block of numbers for rank 3) but that’s clearly not very
practical. Better to just use abstract symbols for those. Fortunately, we will not
need to go beyond rank 2 tensors at any point in the lecture. Those of you planning
to attend the general relativity lecture though need to get used to the idea of rank
4 tensors.

Pedestrian style, let’s get started with vectors. Taking the pseudo definition
of a tensor from above literally, we can state: A vector operating on another vector
(for instance) can yield (a) another vector or (b) a scalar.

That sounds familiar: case (b) would be your usual dot product operation
between 2 vectors, case (a) the cross product. Simple, and yet, a plain cheat. You
use this since years and yet the description of it is simply wrong. Have a closer look.
This will become a little tedious and boring but it’s well worth the effort.

1Most of this material comes from [3]
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Vectors and One-forms

Vectors have components once you specify a reference frame. You can always fully
define any reference frame by defining its basis vectors which then form a vector
space (I hope this reminds you of your linear algebra lessons). Have some general
basis with vectors ggg1, ggg2 which span a two-dimensional space. Then any vector, vvv,
can be written as

vvv =
2

∑

i=1

vigggi

All the sum’s will become very tedious indeed when using the index notation, hence
a convention was implemented, the Einstein summation convention to ease
calculations and confuse students, apparently2. Here is the definition for this case.
It doesn’t matter which case we consider, it’s always the same consequence: Drop the
explicit summation sign and imagine always to sum over repeated indices occurring
in a diagonal position with respect to each other.

vvv =
2

∑

i=1

vigggi = vi gggi = v1ggg1 + v2ggg2

The index ’i’ in the example above is ’summed over’. The operation is also called
’contracted’, you contract over ’i’, signalling that the index ’i’ is not available for
any other manipulation you might come up with.

Moving on, let’s make it explicit that the vi are the components of vvv and gggi
are the basis vectors, i.e. two completely different things (numbers, vectors).

So, how to form the dot-product? Assume you have two vectors

uuu = uigggi ; vvv = vigggi

You write the dot-product using the new index notation:

u · vu · vu · v = ui vi gggi · gggi = u1 v1 ggg1 · ggg1 + u2 v2 ggg2 · ggg2

which is plain nonsense.

The lesson here is that indices matter when using the Einstein summation con-
vention. Each and every pair of contracted indices requires its own summation
independent of other contraction operations. That means it gets its own index!

Try again:
u · vu · vu · v = ui vj gggi · gggj

2Please have a look at Appendix A.1 for another definition from [6].
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= u1 v1 ggg1 · ggg1 + u1 v2 ggg1 · ggg2 + u2 v1 ggg2 · ggg1 + u2 v2 ggg2 · ggg2
This still looks odd.

This is the point at which you can’t get any further without a bit of a radical
choice to make. You either introduce a new mathematical object, a new kind of
vector, or you change the familiar definition of the dot-product. Of course, both has
happened and been explored but for relativity theory (and differential geometry etc)
the choice is to introduce a new kind of vector, something we will call a one-form.

Here is how it goes: Let’s represent uuu as before in the basis (ggg1, ggg2) but choose
for vvv a different, yet unknown basis (ggg1, ggg2). The components of vvv are merely num-
bers, so it will not matter a thing whether we label them with index up or low, so
write

vvv = vi ggg
i = v1 ggg

1 + v2 ggg
2

Now the strange expression for the dot-product from above looks a little different
(not much, granted):

u · vu · vu · v = u1 v1 ggg1 · ggg1 + u1 v2 ggg1 · ggg2 + u2 v1 ggg2 · ggg1 + u2 v2 ggg2 · ggg2

Now all left to do (remember the index up basis ’vectors’ are not yet defined, hence
take your pick on what seems best in order to keep the familiar dot-product, i.e. the
reason to go to all this trouble) is to choose ggg1, ggg2 such that the expression above
reduces to the known dot-product

u · vu · vu · v = u1 v1 + u2 v2

Therefore require the following relations to hold:

gggi · gggi = 1

and
ggg1 · ggg2 = ggg2 · ggg1 = 0

Put more concisely, as a definition of a one-form in this case, one can write

gggi · gggj = δji =

{

1 ∀i = j
0 ∀i 6= j

(1.14)

where the δ–symbol is called the Kronecker delta.

Eqn. 1.14 simply defines the inverse basis. All the elements of the inverse
basis of a vector space are called one-forms. They are not vectors! Constructed
graphically in 3-D, for instance, they look like planes and a dot-product with an
’arrow’-like vector gives a scalar which would be the ’number of piercings’ of the
arrow through the set of planes.
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In many textbooks as well as traditionally, a vector with an upper index on
its components, by convention, is called a contravariant vector and lower index
vectors, covariant vectors.

This translates to: Contravariant vectors are vectors. Covariant vectors are one-
forms.

Why would anyone bother? You didn’t learn the dot-product for vectors cor-
rectly as you now know but it really didn’t matter! In Euclidean space it’s all the
same and there are no consequences mixing up the concepts. However, in Minkowski
spacetime it makes a difference and even more so in general relativity.

If that all appears to come a little fast, there are two excellent textbooks going
to great length in motivating and explaining all of this again [4] and [5]. The point,
again, is that in all aspects of physics involving a Euclidean space, the distinction
between vectors and one-forms simply does not matter. They become identical
objects. Once you leave the confines of ’normal’ space and have to deal with non-
trivial space-times then the distinction makes all the difference. It’s good to learn
about all this in special relativity first since here it is only a change of sign going
from a one-form representation of a rank-1 tensor to a vector representation and
vice versa. In general relativity such a switch can involve heavy computations.

The gradient as a one-form

The reason to single out the gradient of something (it’s an operator, i.e. it acts
on something where the ’something’ doesn’t need to be specified as long as that
operation is defined) is that it will yield the prototype for a one-form, something
that is more naturally a one-form than a vector.

Mathematically, that’s a silly thing to say since these are equivalent expres-
sions, i.e. once you have one, you have the other. However, in physics we start from
describing the location of something more naturally as a vector, an arrow pointing
towards a mass point for instance. If you do that, then the gradient is the template
for a one-form. Again, you used it all through Maths for Scientists lectures and
never knew what you are dealing with. The simplicity of Euclidean space makes
that possible without a hitch.

A gradient represents a rate of change along ’something’, i.e. it introduces a
direction to something, a function for instance. The easiest path to see a gradient
as a one-form is to take the gradient along a vector (its counterpart in the world of
differential geometry) rather than a scalar function. Let me remind you that you
have done that many times and called it a ’divergence’, i.e. a change in a vector(-
field). You might not have called it a vector field explicitly but that’s what you
have done. You needed it all the time in the Electrodynamics lecture where you
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computed change in the electric field for instance. That translates into calculating
the divergence of the vector field, called the Electric field.

Let’s do that most explicitly and learn some useful things about vectors along the
way3.

Define a general vector, i.e. one that is valid in all metric spaces (attention,
this is something new, we haven’t had such a general definition yet - it is very, very
important in general relativity, less so for us). Connect two points A and B and
describe the line from A to B using a parameter λ. In plain algebra instead of words:

Figure 1.3: Line between any two points A and B and the parameter λ to describe
it. Insert the drawing during the lecture.

P (λ) = A+ λ (B − A)

where P (λ) could be a line or any curve. Then define the vector from A to B:

vvvAB =
dP (λ)

dλ

∣

∣

∣

∣

λ=0

⇒ d

dλ
(A+ λ (B − A)) = B − A = Tip-Tail

This then becomes a local definition of a vector, i.e. at a point. Now go backwards,
take any vector vvv and construct the curve P (λ).

Assume a function f, taking points as arguments, and pick a fixed point P0

(remember, this is by construction a point along the vector vvv). Then write to first
order

f(P (λ)) = f(P0) + (P (λ)− P0) · d̃f̃df̃df
Now let’s dissect this expression. Starting from a fixed point on the vector, P0,
we add another term. The first part on the left has the appearance of a vector
(’Tip-Tail’), the difference between some point on the curve P, the Tip, and the

3This part attempts to give a short version of the extensive discussion in [4]
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fixed point, the Tail. This term is multiplied with something new. First of all, the
multiplication must(!) yield a number since the function consists of numbers and
this expression is to yield a function value. So the candidate for the multiplication
operation is the dot product, connecting a vector with this new term. This now
already defines d̃f̃df̃df as a one-form (contracted with a vector gives a number).

Is it possible to gain a little more understanding? Geometrically, we have a
fixed point and an arrow pointing along vvv, embedded in a diffuse ’ether’ of function
values (the function f is defined everywhere in that space). Zoom in into a small
region (first order Taylor series) around the fixed point with a small arrow pointing
in some direction. There is another geometrical structure evident, i.e. the planes
(if it all were in 3D space, of course) of constant function values around the fixed
point. The vector vvv clearly must pierce some of these planes, since otherwise there
would be no change and the derivative would be identically zero. The planes, being
pierced by the vector, are the one-form d̃f̃df̃df . They have to be planes (in 3D) since
they represent the first order change in any direction. The vector then realises
a specific direction and contracting both gives the first order approximation value
of the function around the fixed point in that chosen direction. A lot of text,

Figure 1.4: Attempt at drawing the contraction of a vector (arrow) with a one form
(planes). Insert the drawing during the lecture.

but this might look a little more familiar when using coordinates or rather vector
components instead of the abstract expression above. Therefore, let’s assume we
have a reference frame this time (note, for the above, we didn’t really need one - it
is all very general)4.

Given a global reference frame and corresponding coordinates, defining a curve
and tangent vectors along it is particularly straightforward. Any change along the
curve P (λ) with a curve parameter λ in, say a 2D orthonormal coordinate system

4This discussion follows [5], but could be looked up in [4] too.
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using x and y coordinates, can be expressed as

dP (λ)

dλ
=

dx

dλ

∂P

∂x
+

dy

dλ

∂P

∂y

due to the chain rule. This just says, any change of the x-coordinate as you move
along the curve times the rate of change of the curve with x (and the same for y
added) gives the directional change along the curve. Graphically, particularly simple
in 2D, this procedure yields the tangent vector at a fixed point (the point where you
evaluate the derivative!) along the curve.

The key point now is to realise that this procedure works for any function or
curve. You can change to an operator representation and write

d

dλ
=

dx

dλ

∂

∂x
+

dy

dλ

∂

∂y

As it says in [5]: The trick to seeing the connection between derivatives and vectors
is to view this equation as a vector equation in which:

Vector = x-component× x basis vector + y-component× y basis vector

That’s step one in getting the message that derivatives and vectors have something
to do with each other. Now is not the time to see that such basis vectors actually
aren’t necessarily vectors but rather one-forms5.

The local definition of a vector along any curve is important, hence let’s get
back to that picture, have a curve, fix a point P0 along it and define a vector vvv as
the tangent vector along the curve at the point P0. Now if you can define a vector
then you can always also define a set of basis vectors at that chosen point in which
to represent that vector vvv. That translates into chosing a local reference frame
at P0.

Let’s repeat the discussion from above in this more general setting. We need
to calculate a gradient, a derivative, at some point along the curve in the direction
of vvv. Note that vvv is the tangent vector by definition. How would one calculate the
rate of change of the curve in the direction of vvv?

Well, the point is that vvv is already the tangent vector, nothing more to calcu-
late, really. If we choose a simple orthonormal basis, say in 3D the [x, y, z] = [xi]
Cartesian coordinates, [eee1 = iii, eee2 = jjj, eee3 = kkk], then one could represent vvv as

vvv|atP0 along P (λ) =
3

∑

i=1

dxi

dλ

∂

∂xi

∂

∂xi

∂

∂xi
= vi ∂i∂i∂i = vi eeei

5The reason is that in the cartesian frame both become identical. The proper distinction
between vectors and one-forms emerges once we look at the transformation properties, see below.
That will also be the point when all doubts about tensors will be put to rest.
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where index notation comes into full fruition and it is made explicit that the eeei
basis is defined using partial derivatives. Note the upper index on vi, signalling
v as a vector (components have upper index) and the derivative symbol ∂i∂i∂i having
lower index components, signalling a one-form. They are summed over according
to Einstein summation convention which is nothing else than the dot-product as it
should be.

This way of calculating a tangent vector to any curve and define a local refer-
ence frame is universally valid, even in general relativity, which is very useful indeed.
Typically, one would write the expression as an operator expression, omitting the
P (λ) symbol since it’s all valid for any curve. Likewise it’s not necessary to choose
Cartesian coordinates. In fact, later our reference frame will be based on Minkowski
space-time rather than a Euclidean space and the relations between basis vectors
will change accordingly. Another point to note here is that the above is also known
as the directional derivative if in addition the vector v is normalised, i.e. a unit
vector.

Finally, a last ditch attempt to yet show you the same again from a more
hands-on point of view. Here a drawing will greatly assist in getting the message.
Consider a given space-time curve P (λ), draw a tangent at some fixed point λ0.
Then pick a point λ1 a little further up the curve and call that λ1 = λ0 + ǫ. So
much for the curve, no reference frame needed. Now, still on the same drawing
pick some point t0 + δ and x0 + δ as the endpoints to a vector along the tangent at
λ0 = (x0, t0). That’s it, no more drawing. Just realise that the slope of the tangent
and your vector simply is given by

slope =
t0 + δ − t0
x0 + δ − x0

which is valid in the reference frame but now you also have purely for the curve:

slope = lim
ǫ→0

P (λ0 + ǫ)− P (λ0)

λ0 + ǫ− λ0

=
dP (λ)

dλ

∣

∣

∣

∣

λ0

Hence, here you have a local tangent vector definition without referring to any
reference frame.

As stated in the footnote, the proper definition of a one-form still awaits you
when reaching the topic of transformations. Here, the issue was merely mentioned,
motivated and then more or less elegantly side-stepped and declared pending. This
leaves one more oddity to clear up, the position of indices on basis vectors and
one-forms.
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Figure 1.5: Attempt at drawing the hands-on, operational, definition of a local
vector as a tangent vector. Insert the drawing during the lecture.

Why are the indices of basis vector and one-forms in the wrong place?

Looking back at the introduction of basis vectors gggi, you might have noticed some-
thing odd, i.e. the index is in low position while they are called vectors. This reflects
a slight inconvenience of index notation in the senses that it is just as important
to consider the object labelled with an index as is the position of the index. Here,
the index labels vectors, not components of vectors. That makes all the difference.
The reason why people continue using this notation and not just despair is that it’s
consistent. We wrote contractions of vector components with basis vectors without
blinking and all works out fine.

Here is an explanation on how the index on basis vectors as well as one-forms
can end up in the ’wrong’ position and still deliver consistent maths. Consider the
local definition of a vector. At any point P0 in a metric space one can define a basis
eeeµ as unit derivatives at that point. (Note the gradual introduction of Greek indices
and the familiar eee for an orthonormal set of basis vectors for special relativity).

For example, one can write for the first basis vector:

eee0|P0
≡ ∂

∂x0

∣

∣

∣

∣

P0

≡ xxx,0 ≡ ∂∂∂0

where the ’comma-derivative’ notation is briefly mentioned. It’s used abundantly in
general relativity but we will not use it any further. In any case, strictly speaking,
the basis vector eee0 should actually be written as eµ,0, i.e. derivatives with respect to
coordinate zero, applied to all components, µ in the upper position, of the vector.
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Tensors

Moving on from vectors and one-forms to more general objects, i.e. tensors of rank
2. How can such a thing be represented?

Assume a tensor T acts on a vector vvv to give a vector:

T ⊗ vvv = TTT

In abstract notation as above, it’s a simple thing but transferring this to index
notation, one has to keep in mind that this operation can give you N-different vectors,
with N being the dimension of the vector space, i.e. the number of independent basis
vectors. The vector TTT would be different each time you chose a different basis vector
for vvv, hence the result in index notation must be the vector TTT j.

Now express the vector TTT j as linear combinations of the given basis vectors:

TTT j = Tij ggg
i

where the Tij are simple numbers, the coefficients here and later the tensor compo-
nents. Then you could calculate the Tij from

Tij = gggiT gggj

Let’s take a closer look and gain some more insight on the way. Take any vector vvv
and compute

T vvv = T
(

vj gggj
)

= T gggj v
j

= TTT j v
j

= Tijggg
i vj

= Tijggg
i
(

gggj · vvv
)

=
(

Tij ggg
igggj

)

vvv

Hence you can get a representation of a general tensor using basis one-forms in this
case (could be vectors - same derivation but calculating the T ij components) as:

T = Tijggg
igggj

This is the general representation of a rank 2 tensor with components Tij . In a
little more detail this is sometimes referred to as a (0, 2) tensor rank where the first
position numbers the indices in the upper position, the second slot the number of
indices in the lower position. There can just as well be mixed rank, (1, 1)-rank,
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tensors with coefficients T i
j . These are the most troublesome since it’s sometimes,

not always, important which index comes first, i.e. stands left-most.

It should be clear now why rank 2 tensors can always be represented in matrix
form. The matrix collects the components in a number grid, one index the row, the
other the column. Nevertheless, you would never know which type of rank a tensor
has just from looking at the matrix.

1.5.3 Transformations

There are other important operations which are represented as a matrix and even
mingle with tensors, yet they aren’t tensors, or often they aren’t. This can cause
no end to misunderstandings. Knowing your transformations from your tensors will
be important already in special relativity but even more so in general relativity.
Therefore we will discuss transformations in some detail and this way finally close
the loop to the missing definition of tensors. You will have acquired enough maths
by the end to comfortably follow the return to special relativity.

Generally, transformations are defined by a change of basis in a given vector
space (which is the same as as saying basis in a given one-form space - they are
closely related). The clue to understanding transformation lies in the realisation
that scalars, vector and generally all tensors are geometric invariants, i.e. their
components change under a transformation, not the tensors themselves.

That sounds maybe more mysterious than it actually is. Quick example, con-
sider a football in a stadium. At any moment in time, there are many thousand
different points of view on where the ball is (our side, opposite side, left, right, etc)
but that doesn’t change the ball. Its position simply is transformed by each single
observer (shift of origin, typically).

For the following, we will consider only linear transformations such as the Lorentz
transformation as an example.

Any change of basis can then be written as

g′g′g′1 = A1
1ggg1 + A2

1ggg2 + A3
1ggg3

g′g′g′2 = A1
2ggg1 + A2

2ggg2 + A3
2ggg3

etc. A shorter version could be
g′g′g′j = Ai

jgggi

In order to qualify as a valid transformation, it must have an inverse, i.e. detA 6= 0,
hence

gggj =
(

A−1
)i

j
g′g′g′i
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Similarly have

g′g′g′i =
(

A−1
)i

j
gggj

and
gggi = Ai

jg
′g′g′j

This means one can transform any vector according to the equations above, replacing
the basis vector with any arbitrary vector component.

v′j = Ai
j vi ; v′i =

(

A−1
)i

j
vj

Likewise, similar expression can be written immediately for rank 2 tensors when
reminding yourself that we wrote any rank 2 tensor as being constructed from 2
basis vectors. So, tensor transformations look like this:

T ′
ij = Ak

i A
l
j Tkl

T
′i
j =

(

A−1
)i

k
Al

j T
k
l

T
′j
i = Ak

i

(

A−1
)j

l
T l
k

T
′ij =

(

A−1
)i

k

(

A−1
)j

l
T kl (1.15)

Last thing to clarify would be what these A’s are. Say you have a basis gggi and
coordinates xi as well as transformed g′g′g′i and transformed coordinates x′i and a
relation

xi = f i(x
′k)

Represent the basis vectors locally, i.e. gggi = ∂∂∂i and likewise for the transformed
basis and use the chain–rule to get

g′g′g′j =
∂ x1

∂ x′j
∂∂∂1 +

∂ x2

∂ x′j
∂∂∂2 + ...

in short

g′g′g′j =
∂ xi

∂ x′j
gggi

Hence the numbers Ai
j from the expressions above are simply

Ai
j =

∂ xi

∂ x′j
(1.16)

similarly
(

A−1
)i

j
=

∂ x
′i

∂ xj

The definition of tensors can now proceed by adopting eqns. 1.15 with transforma-
tions given as in eqn. 1.16. Any object which transforms under linear transforma-
tions (1.16) as in 1.15 is called a tensor.
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Explicit one-form and vector definition

Back in section 1.5.2, I promised to come back to a proper one-form (and vector)
definition. In principle that has happened already using the tensor definition above.
After all, one-forms and vectors are rank one tensors. However, I find an explicit def-
inition, in all detail, helps to get to the point rather than more abstract expressions
and can remove confusion maybe left-over from previous sections6.

If you look for a template for an object or term that wants to be a vector then
a physicist would tell you the position observable would be just the thing (for a
mathematician such a question doesn’t make any sense in the first place). In order
to make the following even a little easier, let’s take the differential position, dxdxdx,
vector. If there is a transformation (for instance to spherical coordinates) given to
primed coordinates, dx′dx′dx′, then you know how to write that explicitly:

dx′1 =
∂x′1

∂x1
dx1 +

∂x′1

∂x2
dx2 +

∂x′1

∂x3
dx3

dx′2 =
∂x′2

∂x1
dx1 +

∂x′2

∂x2
dx2 +

∂x′2

∂x3
dx3

dx′3 =
∂x′3

∂x1
dx1 +

∂x′3

∂x2
dx2 +

∂x′3

∂x3
dx3

This is nothing else than the transformation rule we’ve discussed above, just more
explicit and specialised to 3D coordinates. In matrix notation this looks quite fa-
miliar:





dx′1

dx′2

dx′3



 =





∂x′1

∂x1

∂x′1

∂x2

∂x′1

∂x3

∂x′2

∂x1

∂x′2

∂x2

∂x′2

∂x3

∂x′3

∂x1

∂x′3

∂x2

∂x′3

∂x3









dx1

dx2

dx3





or in full index notation

dx′i = Ai
jdx

j

For a one-form we follow the motivation in section 1.5.2 and consider, finally,
the gradient as the best template for a one-form, given that positions are defined as
vectors (otherwise we would have just the opposite discussion).

It’s the chain rule that will yield all the differentiation we need. If an operator
such as ∂/∂x is transformed from one into a primed coordinate system, say in a 3D

6This follows [5].
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space again, we get:

∂

∂x′1
=

∂x1

∂x′1

∂

∂x1
+

∂x2

∂x′1

∂

∂x2
+

∂x3

∂x′1

∂

∂x3

∂

∂x′2
=

∂x1

∂x′2

∂

∂x1
+

∂x2

∂x′2

∂

∂x2
+

∂x3

∂x′2

∂

∂x3

∂

∂x′3
=

∂x1

∂x′3

∂

∂x1
+

∂x2

∂x′3

∂

∂x2
+

∂x3

∂x′3

∂

∂x3

In matrix representation:




∂
∂x′1

∂
∂x′2

∂
∂x′3



 =





∂x1

∂x′1

∂x2

∂x′1

∂x3

∂x′1

∂x1

∂x′2

∂x2

∂x′2

∂x3

∂x′2

∂x1

∂x′3

∂x2

∂x′3

∂x3

∂x′3









∂
∂x1

∂
∂x2

∂
∂x3





or in full index notation
∂′
i = (A−1)ji∂j

where (A−1)ji is the inverse transformation to the vector transformation matrix.
This constitutes a definition of one-forms and vectors using their transformation
properties just as for any other tensor.

Please note that it is irrelevant which transformation matrix you call matrix
and which the inverse matrix. The point is that one-forms use the inverse trans-
formation relative to the vector transformation. Geometrically that makes them
different objects compared to vectors, i.e. not arrows. That doesn’t help much with
defining one-forms as outlined in section 1.5.2 but helps in realising that there is a
fundamental difference between vectors and one-forms and that is the lesson to take
away.

1.5.4 Back to Lorentz transformations

Let’s put all these new maths tools into practice by transferring to special relativity.
The first thing is obviously the Lorentz transformations. We have just discussed
linear transformations. Connecting the above to Lorentz transformations should be
straightforward.

In order to clarify the transition from arbitrary transformations and basis
to the Minkowski metric and Lorentz transformation (and 4D coordinates), I will
introduce new symbols for the latter:

• Transformed terms receive a ’hat’ instead of a prime: x̂µ

• The Lorentz transformation coefficients will be labelled Lµ
ν with abstract ma-

trix symbol: L
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• The Minkowski metric coefficients are ηµν : Matrix ηηη (sorry for the bold font,
but there is no calligraphic Greek eta), see eqn. 1.13.

Lorentz transformation The transformations

x̂µ = Lµ
ν x

ν

represent the Lorentz group, defined by the condition

ηρσ L
ρ
µL

σ
ν = ηµν

(note the contraction operations on ρ and σ in order to train your eyes on relations
like this) and

det(L) = ±1

in order to leave the line element invariant:

ds2 = ηµν dx
µ dxν = dxν dx

ν

= Lν
σ dx̂ν L

σ
ν dx̂

ν

= Lν
σ L

σ
ν dx̂ν dx̂

ν

that is, ds2 is invariant if
Lν
σ L

σ
ν = 1

which is equivalent to
∂xν

∂x̂σ

∂x̂σ

∂xν
= 1

which is true in general for all partial differentials.

More specifically, let’s do the entire exercise again. One can write LT1 (see,
eqn. 1.9) in this notation as

L(−β) = Lµ
ν =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









Checking invariance of the metric explicitly is conveniently done in matrix notation:

LT ηηη L = η̂̂η̂η

which is








γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1








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=









γ2 − β2γ2 −γ2β + γ2β 0 0
−γ2β + γ2β β2γ2 − γ2 0 0

0 0 −1 0
0 0 0 −1









using the identity

γ2 − β2γ2 =
1

1− β2
− β2

1− β2
= 1

gives η̂̂η̂η = ηηη and hence that ds2 is invariant.

This definition of a Lorentz transformation immediately offers the possibility
to define another very important object, used throughout the lecture, i.e. a four-
vector.

Four-vector A four-vector is a vector which transforms as

x̂ν = Lν
µx

µ

with Lν
µ a Lorentz transformation.

Four-vectors build a vector space with a length:

xxx2 ≡ ηµν x
µ xν

= (x0)2 − (xi)2

and a scalar product
xxx · vvv = ηµν x

µ vν = x0v0 − xivi

hence the length is semi-definite, i.e. can be positive, negative or zero. Such

Figure 1.6: Space-time diagram showing space-like and time-like regions. Insert the
drawing during the lecture.

regions of space-time are called: (Caution: this depends on the sign convention in
textbooks but the drawing above is always correct).



36 CHAPTER 1. FULL SPECIAL RELATIVITY

xxx2 > 0 time-like
xxx2 = 0 null (light-like)
xxx2 < 0 space-like

1.5.5 Exercises

(Collection sheet [1,1-13])

1. Index notation: Simplify the following expressions if possible:

• Aµν B
ν

• Aµ
ν Bσ

• Aν B
ν

• Aν B
νσ Cσ

• Aµν B
σ
ρC

µν

• AµνσρBν Cµ

2. Write the following abstract matrix multiplication in index notation:

• A = MgN

3. Given a basis in three-dimensional space by

g
1
=





1
−1
2



 ; g
2
=





0
1
1



 ; g
3
=





−1
−2
1



 ,

• calculate the components vi for a vector

v =





3
3
6





according to the general representation v =
∑3

i=1 vi gi.

• Find the one-form basis vectors.

• Compute the components of the one-form corresponding to v.

4. Let a coordinate system in a 2-dimensional Euclidean space have a basis

e1 = 2 ex + 3 ey; e2 = ex − ey.

Find the expansion of the vector A = 5 ex + 6 ey in this basis and test your
result.
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5. Find the transformation matrix and the corresponding metric tensor for the
rotation coordinates (r, θ, tr) and ω a constant in a Galileian space-time:

x = r cos(θ + ω tr) ; y = r sin(θ + ω tr) ; t = tr

6. Find the local basis vectors and metric tensor for spherical polar coordinates
defined by

x = r sin θ cosφ ; y = r sin θ cos φ ; z = r cos θ.

7. Quotient rule: Show that if Aα = Bαλ Cλ is a tensor whenever C is a tensor,
then B must be a tensor.

8. Show that the determinant of the metric tensor g ≡ det(gµν) is not a scalar.

9. Show that the invariant proper volume element in four-dimensional space is
given by dV = (−g)1/2 d4x, where d4x = dt dx dy dz in the coordinate system
of the metric gµν .

10. If φ(xµ) is a scalar function of the coordinates, show that dφ
dxµ transforms as a

one-form.

11. In a coordinate system with coordinates xµ, the invariant line element is
ds2 = ηµν dx

µ dxν . If the coordinates are transformed, xµ → x̂µ, show that
the line element is ds2 = gµ̂ν̂ dx̂

µ dx̂ν , and write gµ̂ν̂ in terms of the partial
derivatives ∂ xµ/∂ x̂ν . For two arbitrary four-vectors U and V show that
U ·V = Uµ V ν ηµν = Ûµ V̂ ν gµ̂ν̂ .

12. Given that a rank two tensor transforms as Âµν = aµσ a
ν
ρ A

σρ, where aµσ is a
linear transformation, show that, given two rank one tensors B and C, the
products of the components, T γδ = Bγ Cδ form a rank two tensor.

13. Show that the coefficients aik of a linear transformation between rank one
tensors A and B, where Bi = aikA

k, form a rank two mixed tensor.

(Collection sheet [2,2-4])

14. Sketch a space-time diagram containing two events, O and P, which display a
time-like distance interval and two events, Q and R, which display a space-like
distance interval.

15. Determine whether the following matrix represents a Lorentz transformation
matrix, justifying your answer.

Aαβ =









√
2 0 1 0
0 2 0 0

1 0
√
2 0

0 0 0 1/2








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16. If two events, P and O, are separated by a space-like distance interval, show
using diagrams that (a) there exists a Lorentz frame in which they are simul-
taneous and (b) in no Lorentz frame do they occur at the same point.



Chapter 2

Applications: Mechanics

This chapter will remind you of a lot of concepts of special relativity that you should
be very familiar with already. These are the classic applications of the theory on
concepts from mechanics. It should be clear though that these really are merely
applications of the theory and not ’The Theory’. We will go through some of those
and I’ll display a few more, maybe less well known applications. Subsequently,
the exercise is repeated by applying special relativity to classical electromagnetism.
Again, this is merely an application but a rather strange one since, as you should
know, electromagnetism has special relativity already built-in! All we need to do is
re-phrase Maxwell’s theory such that it becomes manifestly invariant, i.e. make it
obvious that this theory has been united (become one) with special relativity. As
I said, sounds grand but all it is, is a simple translation since the unification has
already happened right at the start without us having to do anything.

Ideally, this exercise would continue and apply special relativity to quantum
mechanics but that topic deserves and requires separate lectures on its own since
it is too rich to simply browse. Likewise, the extension of the theory, from special
relativity to general relativity deserves and requires a separate lecture. Both these
extensions are offered in the curriculum and you are encouraged to try them.

The list of items to go through during the rest of the lecture is composed of:

• Mechanics:

– collection of reminders, mainly on kinematics

– various four-vectors

– Doppler effect

– Acceleration

• EM:

39
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– invariant formulation of electromagnetism (EM)

– Radiation (briefly)

2.1 Proper Time

Proper time is always the time measured by the clock of one observer. It is therefore
an entirely local property. Each and every observer has his/her own clock, measuring
individual proper times. Let’s take a look at the cornerstone of special relativity
and see how that translates into something a little more tangible.

Consider the line element ds2 at any moment of rest, an arbitrary moment in
time. Then on the local world-line of the observer, the spatial parts dx, dy, dz are
all identically zero (trivially, since it’s the observer’s own world-line) and

ds2 = c2dt2

Now the clue is that we can always define any moment in time as a momentary
frame of rest along the world-line (for that one, single observer) where the relation
above is always true, then one can define

ds2 = c2dt2 ≡ c2dτ 2

where τ is now defined as the proper time, cdτ = ds, for that particular observer
(or clock).

An immediate consequence, a rather important one, can be derived from here:
Consider a stationary clock in system S’, i.e. not just momentarily at rest but
always, then for this clock, it’s always

ds2 = c2dt′2 ≡ c2dτ 2

with dxxx′2 = 0. If this observer compares his/her clock to the clock of another
observer in a moving frame, S, something remarkable happens. Let’s have the system
S moving relative to S’ with speed v in x-direction. Then for the observer in S, one
can write

ds2 = c2dt2 − dx2 = c2dt2
(

1− v2

c2

)

However, since ds2 is invariant(!), it is identical for each observer and one can write

c2dτ 2 = c2dt2
(

1− v2

c2

)
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and hence

dτ =
dt

γ

which relates the time interval measured locally (the proper time) and the time
interval determined for the moving observer, dt. Clearly, dt is a longer time interval
than the local time interval (γ > 1).

This translates into the moving clock goes slower (1 second on the local clock
are only < 1 seconds on the moving clock). This is the famous time dilation. The
fun part of relativity is that the very same argument is true for the observer in S.
Both observers have equally valid descriptions of which clock moves slower (that’s
relativity). It’s always(!) the moving one.

This caused all manner of confusion since a clock moving slow is acceptable
but this was considered to be an absolute statement. How could a single clock go
fast and slow at the same time. How does it know which observer to show the fitting
time?

The clue is, it doesn’t. Once you mix up absolute and relative statements
(measurements) you get into all sorts of trouble and paradoxes. The clock has its
own identity and rhythm, no need to ’react’ to anything. It’s the relative motion
of any arbitrary observer which causes him or her to perceive (measure) our clock
to tick differently to how we measure it. All of this is anything but arbitrary but
perfectly defined by the Lorentz transformations. You only need to be complete in
the description of the physics and no paradoxes emerge.

2.2 Four-velocity

The equations above allow to draw another important conclusion immediately, the
definition of a four-velocity, our first derived four-vector (as opposed to the coor-
dinate four-vector which was merely stated as a starting point, not derived). First
note from the definition of proper time along a given world-line that

cdt

ds
=

dt

dτ
= γ

Then we can define the four-velocity uuu as

uµ =
dxµ

dτ
= c

(

c dt
ds
dx
ds

)

= c
c dt

ds

(

1
β

)

= c γ

(

1
β

)

(2.1)

with the three-vector x as abbreviation for the three spatial coordinates and similarly
for the three vector β = v/c and v being the relative velocity between S and S’.
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Looking closely at eqn. 2.1 you can see that each and every term in it is
Lorentz invariant, hence this velocity definition is Lorentz invariant. Therefore, this
definition is valid in all reference frames! Very useful, indeed.

A few quick properties should be derived too. As you will see as the lecture
progresses, once you have a four-vector, the first thing you will want to do with
it is to compute an invariant from it, a number that is specific for this four-vector
and does not change under transformations. The recipe is very simple: square the
vector. Here is the (not terribly useful) example for the four-velocity:

uuu2 = uµ u
µ =

dxµ dx
µ

dτ 2
= c2

ds2

ds2
= c2

So the magnitude of any four-velocity vector is always constant and equal to the
speed of light. No surprise there, this is simply the case by construction. Other
four-vectors will show more interesting magnitudes.

The four-velocity is also quite an important geometrical entity. Have a look at
the definition and you can see that it’s the derivative of the world-line with respect
to its own proper time. For a given world-line, the proper time really is simply a
number parameter along the curve. Take the derivative along the line at any point
gives you the tangent vector at that chosen point on the curve. That tangent vector
can easily be normalised since its magnitude is always the same and constant, see
above, and since it’s a positive number, the tangent vector must be a time-like vector.
Normalised and always time-like is a lengthy description of a perfect candidate for
a time-like, momentary basis vector for a given world-line. Momentary, since you
have to take the derivative at some fixed point along the curve. That corresponds
to a moment in time for that body (observer, clock, ...) and that in turn allows to
always define a momentary rest frame along the curve.

With the four-velocity given as the time-like basis vector, it is simple to define
three further orthogonal four-vectors in a rest frame and you a have built yourself
a set of basis vectors at that moment in time along a specific world-line, i.e.
a local reference frame. That is a most useful tool, a local reference frame, in order
to analyse all sorts of kinematic exercises. It will come into full fruition as soon as
we come to acceleration. For now let’s define

uµ

c
= (eee0)

µ

as the time-like, local basis vector along an arbitrary world-line with four-velocity
uuu(τ).

2.2.1 Exercises

(Collection sheet [2,5]) Let the four-velocity u contain the three-velocity v, then
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Figure 2.1: Space-time diagram showing the normalised four-velocity as a unit time-
like basis vector along a world-line. Insert the drawing during the lecture.

1. express u0 in terms of |v|,

2. ui in terms of v,

3. u0 in terms of ui and

4. d/dτ in terms of d/dt and v.

2.3 Relativistic kinematics essentials

Having mastered the Lorentz transformations and the four-velocity, you are in a
position to build all of the rest of classical mechanics quite cleanly. The first and
most important concept to introduce on this path is called a four-momentum.

Four-momentum Define the four-momentum in line with Newtonian mechanics
as ppp = muuu

and check whether this makes sense. First, build an invariant from this four-vector
candidate.

ppp2 = (p0)2 − (pi)2 = m2uuu2 = m2 c2

This should be nicely invariant since m and c are assumed to be pure numbers.
Likewise this is already a tantalisingly familiar form. All that we still need are the
four-vector components and an interpretation of the number ’m’. Consider the ’m’
therefore as preliminary for now.

Here I take a big shortcut. Assume(!) E = mc2 (see later in the lecture)
and use Newton’s relation as guidance for interpretation (let’s also work in only
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one-dimension to simplify the arithmetic a little). Note that even such a crude
derivation as shown below is good enough simply to make an educated guess on the
interpretation of terms. Take

F =
dp

dt
; p = mv

as given and likewise take an infinitesimal change of kinetic energy according to

dE = F dx =
dp

dt
dx = dp

dx

dt
= v dp

and use E = mc2 to get (using p = mv, beware the ’m’ symbol here) additionally
E = p

v
c2. Combine it all to

E dE = c2p dp

and integrate
E2 = c2p2 + E2

0

with E0 an integration constant. Replace p with E to

E2 =

(

E v

c

)2

+ E2
0

solve for E

E =
E0

√

1− v2

c2

or

m(v) =
E0/c

2

√

1− v2

c2

then an interpretation of terms might be a little easier. It looks like that E0/c
2 is

the rest mass m0 = m(0). This enables the interpretation of

m ≡ m(v) = γm0

as the ’mass’ in p = mv = m(v)v. Combine this with the definition of the four-
velocity in order to get to an interpretation of the ’m’ in ppp = muuu from the three-
vector relation p = m(v)v. The three-velocity component of uuu is γv, hence the ’m’
is in fact the rest mass m0, i.e. the proper definition of the four-momentum results
as ppp = m0uuu

Now we can immediately get to the zero-component of the four-vector ppp. This
argument works as follows: Pick a system at rest (p = 0;m(0) = m0) and get

(p0)2 − (pi)2 = (p0)2 = m2
0c

2
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hence

p0 = m0c =
E0

c

using E = mc2 again. Having assumed a system of rest, however, since the four-
momentum is a four-vector, all relations valid in one frame are valid in all frames.
How convenient is that.

Writing this four-vector explicitly for any frame gives the fundamental re-
lation of relativistic kinematics:

E2 −
∣

∣p
∣

∣

2
c2 = m2

0c
4 (2.2)

This deeply rooted connection between energy and momentum often leads to calling
this four-vector the energy-momentum four-vector.

2.3.1 Exercises

(Collection sheet [2,6-11])

1. Calculate the speed of a particle whose kinetic energy is equal to its rest mass
energy.

2. A particle of rest mass m and four-momentum p is examined by an observer
with four-velocity u. Show that:

• the observer measured energy is E = pu.

• The rest mass attributed to the particle is m2c2 = p2

• The momentum measured has magnitude c|p| = [(p · u)2 − c2 p2]
1/2

• the ordinary three-velocity v has magnitude

β =
|v|
c

=

[

1− c2 p2

(p · u)2
]1/2

.

3. A hypothetical particle has negative squared mass such that one can write
m = iµ, where µ is a real quantity with units of mass. In all other aspects,
the particle satisfies the rules of special relativity.

• Show that the energy, E, of the particle is

E =
µ c2

√

β2 − 1

and hence determine the momentum, p = |p|, of the particle in terms of
its normalised speed β.
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• What is the possible range of speed, assuming real values for E and p?
For any maximum or minimum speed state the corresponding values of
E and p.

• Consider the free propagation of the hypothetical particle in the labora-
tory frame at some speed βL. Define two events along the trajectory of
the particle separated by a time △t as observed in the LAB frame. Find
a second reference frame, S’, in which the particle propagates backwards
in time.

4. For a particle whose position and momentum four-vectors are given by X and
P, the angular momentum tensor is defined by

Lµν = XµP ν − P µXν .

Show that any freely moving particle has constant angular momentum.

5. Assume an observer at a point O emits a signal which travels faster than the
speed of light and triggers an event P distinct from O. Show that this implies
the existence of another, second observer for whom causality is violated.

6. Consider a particle with rest mass m moving with velocity u relative to the
laboratory frame when it collides elastically with a second particle, also of
rest mass m, which is at rest in the laboratory frame. After the collision, the
particles have velocities v and w. Show that if θ is the angle between v and
w, then

cos θ =
c2

|v| |w|
(γ(v)− 1) (γ(w)− 1)

γ(v) γ(w)

Also compare the result to the Newtonian prediction of θ = π/2 for all v and
w, particularly for the limiting case of |v| and |w| tending towards c.

2.4 Energy-mass equivalence derivation, Einstein

1906

The original paper on the derivation of E = mc2 does not always lend itself to an
easy understanding of the reasoning behind the famous equation. Einstein published
a second paper containing an alternative derivation 1906 which appears to be more
elementary. Unfortunately, this article is not available in translation, free of charge.
Therefore, let’s repeat his work in the following, learning by doing.

Consider a box of length L, extending in the x-direction. This box shall contain
a laser (not part of the original argument but easier here to imagine), mounted on
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the left wall of the box at x = 0. The laser can emit a light pulse in positive
x-direction. Assume total absorption of the light on the opposite wall of the box,
initially at x = L. You may assume that for light the relation between energy and
momentum is E = p c. Take M as the mass of the box and treat the eventual
motion of the box as strictly non-relativistic. This was more or less the text of one

Figure 2.2: Box configuration for Einstein argument on E = mc2 derivation. Initial
configuration first, then after firing the laser pulse. Insert the drawing during the
lecture.

of the 2011 exam questions. The start of the derivation is, as so often, momentum
conservation. Consider the reaction of the box on sending out a laser pulse at t = 0:

plight = pbox

Treating the box all non-relativistic, translates to

vbox = −
plight

M
= − E

M c

where the only external pre-knowledge E = p c for light, enters the derivation. Light
now arrives at the absorption wall after a time interval of △t. In that time the box
moves by

△x = vbox△t

to the left (negative speed) and the light traverses a distance

L+△x = c△t

Finally insert all you got previously

△x = − E

M c
△t = − E

M c2
(L+△x)
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However, after absorption (hence after △t) the box must stop and apparently the
centre of gravity moved by △x, see above, which would be wrong! Conservation of
the centre of gravity requires therefore to assign some mass, m, to the light pulse in
order to get (conservation of centre of gravity, explicitly):

0 = M △x+m (L+△x)

= − E

c2
(L+△x) +m (L+△x)

=

(

− E

c2
+m

)

(L+△x)

⇒ E = mc2

2.5 Waves

Here, again, we will use a shortcut provided by Einstein (conveniently keeping the
little cheats in the family) and access this topic by using quantum theory (his photo-
effect paper is the basis for considering light being made of particles). Another reason
to examine waves at this point is the immediate connection to the energy-momentum
four-vector from above, see sec. 2.3.

The fundamental kinematics relation (eqn. 2.2) for light results in

pµ p
µ = m2c2 = 0

a null-vector, since light moves on the light-cone. That trivially implies that light
should be made of particles having zero rest mass. However, that does not imply zero
energy-momentum four-vector components! Such a particle can have any amount of
energy and momentum assigned to it as long as E = p c and hence the magnitude
of the four-vector is zero.

One may therefore give photons a momentum and using quantum knowledge
assign a wave number pphoton = ~k (one-dimensional). That is a good starting

point to propose a new four-vector:

kµ =

(

ω/c
k

)

where k is the wave three-vector and ω/2π is the wave frequency and Ephoton = ~ω.

Any wave can be described by a wavefunction

Ψ(x) ∝ cos(ωt− k · x)
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where the spatial direction of propagation would be k with a phase velocity

vphase =
ω

|k|

in one fixed reference frame.

A frame-independent form is proposed to look like

Ψ(x) ∝ cos(kµ x
µ)

using the proposed wave one-form and the coordinate four-vector.

These proposals require some testing. For a wave describing light, we know
that the energy-momentum four-vector is a null vector. Considering the relation
between the wave vector and momentum in non-relativistic physics, it appears rea-
sonable to assume that for light, we can require

kµk
µ = 0 =

ω2

c2
− |k|2

which results in an invariant phase velocity of

ω

|k| = c

Furthermore, using the wave four-vector to examine effects of Lorentz transforma-
tions on waves, say use LT2 (1.10):

(

ω/c
k

)

=









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









(

ω′/c
k′

)

=









γ (ω′/c+ βk′x)
γ (k′x + β ω′/c)

k′y

k′z









Now look at a plane wave in S’ with wave vector k′ at an angle cos(θ′) = k′x

|k′|
to the

x′-axis. This gives (take zero-component of proposed four-vector times c):

ω = γ (ω′ + βc |k′| cos(θ′))

using the phase velocity relation

ω = γω′ (1 + β cos(θ′)) (2.3)
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which is the relativistic Doppler effect!

For an angle θ in S, set k′ into the x′ − y′ plane, i.e.

k′ =





cos θ′

sin θ′

0





ω′

c

in S. That results in two useful relations directly from here: Take the 1-component
to derive

ω

c
cos θ = γ

ω′

c
(cos θ′ + β)

using the Doppler effect formula, eqn. 2.3 then results in:

cos θ =
cos θ′ + β

1 + β cos θ′
(2.4)

and from the 2-component, get:

sin θ =
sin θ′

γ (1 + β cos θ′)
(2.5)

These equations 2.4 and 2.5 describe relativistic aberration.

This is all quite re-assuring and convenient but there is one more consequence
from proposing the wave four-vector, i.e. a new effect, specific to special relativity
and unknown to non-relativistic physics. That is the transversal Doppler effect.

For the longitudinal Doppler effect, take the Doppler effect formula, eqn.2.3,
from above and insert θ′ = 0:

ω = γ ω′ (1 + β) = ω′

√

1 + β

1− β

For the transversal Doppler effect, insert θ′ = π/2:

ω = γω′

This new effect was first measured in the, now, classic Ives-Stilwell experiment 1938.

2.5.1 Light rays and taking photos

There is one more peculiarity in special relativity in connection with waves and
light propagation. Describing waves with the wave null vector in the section above
resulted in a rich harvest of known and even one unknown effect and it all works
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rather well. However, when it comes to measuring light as it received by an ob-
server on a camera a subtle challenge arises. This is best explored in an exercise
(another previous exam question) which emphasises the importance of precision in
the concepts when analysing a system.

A distant camera snaps a photograph of a bullet with length b in its rest frame
and velocity v relative to the camera. The direction to the camera is at an angle α
from the direction of motion of the bullet. Behind the bullet and parallel to its path
is a metre rule, at rest with respect to the camera. The task would be to calculate
the length of the bullet as seen in the photo, i.e. how much of the the metre rule is
hidden. The crucial concept to take away from this is the following: Considering a

Figure 2.3: Sketch of taking a camera picture of a passing bullet. Insert the drawing
during the lecture.

Lorentz contraction (length contraction), the measurement of the start and end of
a rod have to be taken simultaneously. Transferred to this problem, photons from
the start and end of the bullet would have to be emitted simultaneously in the
lab-frame (the camera frame - sits at rest and observes the bullet passing by).

For a photo, however, the photons have to be received simultaneously, not emitted.

From the sketch, read off that photon 2 travels an extra-distance b′ cosα,
resulting in an earlier emission time

t′1 − t′2 = − b′ cosα

c

Insert into the LT to get

b = γ
(

b′ +
v

c
(−b′ cosα)

)

hence

b′ =
b

γ (1− β cosα)
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2.5.2 Exercises

(Collection sheet [2,12-15])

1. In its rest frame, a source emits light in a conical beam of width ±45 degrees.
In a frame moving towards the source at speed v, the beam width is ±30
degrees. What is the speed v? Solve using (a) the Lorentz transformations
directly and (b) the relativistic velocity transformation formula.

2. Consider the aberration of light formula:

cos θ̂ =
cos θ + β

1 + β cos θ
.

• Given a radioactive source which emits neutrinos isotropically, how could
you produce a narrow beam of neutrinos?

• Calculate the value of β in the aberration formula if the task is to hit a
neutrino detector of radius 10 m in France with half the flux of a neutrino
beam made from a source at CERN at a distance of 1300 m.

3. For a Quasar with a redshift of z = λ−λ0

λ0

= 4, calculate how fast the Quasar
moves relative to Earth at the time of emission of its light.

4. A rectangle with sides a′0 and b′0 in x′, y′ directions, respectively, moves with
speed v parallel to the x-axis of an observer at rest. The observer at rest takes
a camera picture of the moving rectangle which shall have lights positioned at
each of its corners. Calculate the shape of the rectangle on the picture, i.e. its
apparent side lengths a0 and b0 and draw a sketch of the rectangle according
to how it would appear in the picture.
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2.6 Linear acceleration in special relativity

Acceleration is the one kinematic concept blatantly absent so far when considering
that we transfer Newtonian mechanics to relativistic mechanics. For some reason,
acceleration is occasionally perceived by students as a concept outside of special
relativity, something that can’t be dealt with in a relativistic theory unless one
applies the general relativistic theory. Nothing could be further from the truth, in
short, total nonsense.

Consider motion in x-direction only (for now). We met the four-velocity al-
ready:

uµ =

(

γ c
γ vx

)

where we now count the index only from 0 to 1 and suppress the y and z components.
Let’s introduce an acceleration (four-)vector

aµ =

(

a0

a1

)

where we simply assume that we have a fixed reference frame since we have ex-
plicit components. Choose the rest frame of an object under consideration. Now
simplify even further and assume constant acceleration, g, as an example. This is
useful preparation since we will need a momentary rest frame in order to be able to
differentiate (see the section on the four-velocity, 2.2).

Get
(

a0

a1

)

=

(

du0

dτ
du1

dτ

)∣

∣

∣

∣

vx=0

=

(

0
dvx

dτ

)

≡
(

0
g

)

The first equality assumes that the rest frame is taken at the moment corresponding
to vx = 0, i.e. some well defined point on the world-line. No need to confuse the
differential at that moment with the value itself. A function can very well have a
zero value and still have a finite tangent at that point.

Ok, the first test for any proposed (four-)vector is always to build the invariant,
i.e. to square it. That should then be valid in all frames.

a2 = aµa
µ = ηµνa

νaµ = a0a0 − a1a1 = −g2

So that is not too bad. All in all, from kinematics we can summarise 3 equations
which are all valid in all inertial reference frames:

1.
uµuµ = c2
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2.
aµuµ = 0

3.
aµaµ = −g2

This now helps to gain further insight into the four-acceleration. The quickest way
to derive the second equation follows from the first relation when differentiated:

duuu2

dτ
= 0 =

d

dτ
(ηµνu

µuν)

= ηµν (uµaν + aµuν) = 2uµaµ = 0

Let’s put those three equations to work for us then. Eliminate a0 from the second
and third equation and u1 with equation 1 and get step-by-step, i.e. from (2):

a0 = −a1
u1

u0

into (3)

a21

(

1− (u1)2

(u0)2

)

= g2

multiply through by (u0)2 and using (1) then gives

(a1)2 =
g2

c2
(u0)2

let’s take the acceleration pointing in the positive x-direction and get

a1 =
du1

dτ
=

g

c
u0

For a0 we get similarly

a0 =
du0

dτ
=

g

c
u1

That looks very much like two coupled, linear differential equations and hence we
know the solution. Solve for u0 and u1 using (take the rest frame as the easiest
option)

τ = 0; u0 = c; u1 = 0

using the decoupling trick of differentiating each equation like so

da0

dτ
=

d2(u0)

dτ 2
=

g

c

du1

dτ
=

g2

c2
u0
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and get

u0 = c cosh
(g τ

c

)

u1 = c sinh
(g τ

c

)

For the last step, solve for the coordinates with the initial conditions

t = 0; x = 0; at τ = 0

using

u0 = c
dt

dτ
; u1 =

dx

dτ

and get

t =
c

g
sinh

(g τ

c

)

x =
c2

g

(

cosh
(g τ

c

)

− 1
)

This could look a bit cleaner if we choose

τ = 0; x =
c2

g

since then it is

x =
c2

g
cosh

(g τ

c

)

Having these expressions for the coordinates makes it immediately clear how con-
stant acceleration looks like in special relativity:

x2 − c2t2 =
c4

g2
= constant

which is nothing other than the equation for a hyperbola. That means the world-line
in a space-time for a body accelerating uniformly is a hyperbola. This is fundamen-
tally different to Newton mechanics! If you recall your kinematics from elementary
school, constant acceleration for Newton’s theory results in a parabola. Let’s have
a brief pause here and list some observations:

• The acceleration is not bound from the top, i.e. we can have g → ∞ which
would lead to x = c t.

• An object in region I can send no signals to regions III and IV, ever. These
regions are called ’causally disconnected’.
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Figure 2.4: Space-time diagram of a constant acceleration world-line including the
4 special wedges of uniform acceleration movement. Insert the drawing during the
lecture.

• There are causally disconnected regions, i.e. there are coordinate horizons
in special relativity! You could consider them as ’poor man’s’ black holes!
Quantum theory in such a space-time (Unruh radiation) was the precursor to
attempts on quantising proper black holes (Bekenstein-Hawking radiation).

• Taking any momentary rest frame along the hyperbola, i.e. any point along
that world-line, then at each such point a set of basis vectors can be defined.
Such basis vectors (we dealt with the four-velocity as the time-like basis vector
when normalised) would here be proper–time dependent. This is our first
example of such a non-trivial set of basis vectors and opens the possibility to
do physics in such a non-trivial basis.

2.6.1 Kinematics in coordinate language

This now summarises all we have seen about relativistic kinematics in the most basic
representation, i.e. as coordinates in a fixed, given reference frame. For some of you
this will be a life-line if you really don’t like the more compact notation so far, for
others this may look terribly cumbersome and obtrusive.

Let’s state this explicitly: Assume a reference frame as for LT2, i.e. assume
you are at rest in S’, then transform to S where S’ appears to move relative to S
with v. Consider the differential Lorentz transformations and remember that v is
independent of the coordinate system variables, i.e. NO Differentiation.

dt = γ(v)
(

dt′ +
v

c2
dx′

)

dx = γ(v) (dx′ + v dt′)

dy = dy′ ; dz = dz′
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Then we can build

ux =
dx

dt
=

dx′ + vdt′

dt′ + v
c2
dx′

=
u′
x + v

1 + vu′

x

c2

uy =
dy

dt
=

u′
y

γ(v)
(

1 + vu′

x

c2

)

uz =
dz

dt
=

u′
z

γ(v)
(

1 + vu′

x

c2

)

(2.6)

Finally, get for the acceleration

ax =
dux

dt
=

dux

dt′

dt
dt′

and use
dt

dt′
= γ(v)

(

1 +
vu′

x

c2

)

and

dux

dt′
=

a′x + a′x
vu′

x

c2
− a′x

vu′

x

c2
− a′x

v2

c2
(

1 + vu′

x

c2

)2

=
a′x

(

1− v2

c2

)

(

1 + vu′

x

c2

)2

=
a′x

γ2(v)
(

1 + vu′

x

c2

)2

(2.7)

hence

ax =
a′x

γ3(v)
(

1 + vu′

x

c2

)3

For ay,z get

ay,z =
1

γ2(v)
(

1 + vu′

x

c2

)2

[

a′y,z −
vu′

x

c2
a′x

1 + vu′

x

c2

]
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2.6.2 Rindler coordinates

Ok, so this is a bit of advanced special relativity (finally). Whilst the preceding
section showed Lorentz transformed velocity and acceleration components in minute
detail, corresponding to the First-Year Lorentz transformations of coordinates, we
also saw acceleration defined locally as a four-vector. Any local definition using
coordinate independent objects is automatically the most general definition and
always applicable, i.e. well defined. As you might see in the general relativity
lecture, local definitions are in fact the only ones remaining as soon as general
curved spaces are permitted.

The flat spacetime of Minkowski, however, offers yet a third possibility how
to deal with a general concept such as a time-dependent basis, required to define
accelerations and yet have the convenience of Euclidean space where a strictly local
definition of everything is not required. It is possible to map the (almost) entire
Minkowski spacetime with a global coordinate system such as it is done with Carte-
sian coordinates in Euclidean space.

This is quite a big leap since now one could transfer all the physics of simple
spaces to a complicated spacetime as experienced by an accelerated observer, say a
particle or a clock or an observer in a rocket, simply by a single(!) transformation,
i.e. from one coordinate system to another. A bit like going from Cartesian to
Polar coordinates. That would be quite something and it was achieved back in the
60’s. The coordinates corresponding to a uniformly accelerated observer are called
Rindler coordinates.

In the following, we have a short look at them and point out some features.
The real strength of this description is realised when actually describing physics in
such coordinates. That, unfortunately, would require another long lecture course
altogether (which should then also feature coordinate system describing rotating
reference frames - that’s when the real fun starts). Physics in such time-dependent
basis’ can look rather strange and yet they are far more realistic then the static
Minkowski spacetime (we are constantly accelerated quite uniformly on Earth due
to local gravity and rotating too).

Rindler coordinates describe one global reference frame for all observers in
hyperbolic motion (that is another way of saying uniform acceleration, see above,
since such motion results in a hyperbola as world-line). Assume one-dimensional
accelerated motion in x, then the transformations are quite simple:

x0 = X sinhT

x1 = X coshT

x2 = Y ; x3 = Z
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and correspondingly
X2 = (x1)2 − (x0)2

for hyperbolic motion. The capital letters are the Rindler coordinates. The trans-
formation matrix looks like

Aν
µ =

(

∂x0

∂T
∂x0

∂X
∂x1

∂T
∂x1

∂X

)

=

(

X coshT sinhT
X sinhT coshT

)

which gives us a metric (good exercise to calculate metric tensor coefficients, given
a transformation)

ηηηRindler = AAAT ηηηAAA

which is

ηηηRindler =

(

X coshT X sinhT
sinhT coshT

)(

1 0
0 −1

)(

X coshT sinhT
X sinhT coshT

)

=

(

X2 cosh2 T −X2 sinh2 T X coshT sinhT −X coshT sinhT
X sinhT coshT −X sinhT coshT sinh2 T − cosh2 T

)

=

(

X2 0
0 −1

)

hence the line element in Rindler coordinates reads

ds2 = X2 dT 2 − dX2 − dY 2 − dZ2

However, this line element is not defined everywhere! The Rindler coordinates are
not quite fully global. They are only valid in slices or specific regions of Minkowski

Figure 2.5: Space-time diagram of a constant acceleration world-line including the
4 special wedges of uniform acceleration movement and their relation to Rindler
coordinates. Insert the drawing during the lecture.

spacetime. The line element above is valid in regions I and III (see figure).
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So much for the coordinates as such. No let’s have a closer look at instanta-
neous rest frames (or momentary rest frames, same thing). Suppose you define one
for a single object in sector I. Then you can always define an orthonormal set of
basis vectors at that point of the world-line. Such a set is also called a tetrad.

At a fixed moment of time, τ0, a tetrad can always be built as

(eee0)
µ =









1
0
0
0









; (eee1)
µ =









0
1
0
0









; ...

That is we choose eee0 = 1/cuuu(τ0) using the local vector definition as derivative along
a curve at τ0. But here the basis vectors have to be time dependent along the
world-line: eee0(τ), eee1(τ), etc. Now, this is always possible, no problem, as mentioned
before. The trick is, however, to see whether it is possible to get a general, globally
(or thereabout) valid set of basis vectors given a complex spacetime such as for
a uniformly accelerated observer. Often that is indeed possible and the argument
works as follows.

In order to define the general set of basis vectors, choose another (second)
instantaneous rest frame at τ 6= τ0. Again, set (hat’s for transformed coordinates,
basis vectors etc.)

(eee0̂(τ))
µ =

1

c
(u(τ))µ =









cosh
(

gτ
c

)

sinh
(

gτ
c

)

0
0









where the Rindler transformations have been applied. For eee1̂(τ) get (orthogonal to
eee0̂(τ)!)

eee1̂(τ) =
1

g
aaa(τ)

from the properties of the acceleration four-vector with respect to the four-velocity,
i.e. they are always orthogonal. Hence

(eee1̂(τ))
µ =









sinh
(

gτ
c

)

cosh
(

gτ
c

)

0
0








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We can write this now as a proper transformation of basis vectors

(eee0̂(τ))
µ = (eee0(τ0))

µ cosh
(gτ

c

)

+ (eee1(τ0))
µ sinh

(gτ

c

)

(eee1̂(τ))
µ = (eee0(τ0))

µ sinh
(gτ

c

)

+ (eee1(τ0))
µ cosh

(gτ

c

)

(eee2̂(τ))
µ = (eee2(τ0))

µ

(eee3̂(τ))
µ = (eee3(τ0))

µ

which is nothing else than a Lorentz transformation between instantaneous rest
frames. It’s easier to see when identifying

γ = cosh
(gτ

c

)

; βγ = sinh
(gτ

c

)

and gτ/c would be called rapidity parameter for a Lorentz boost. You can see now
that any tetrad transported in this way is purely boosted, which implies that these
transformations represent a non-rotating transport of the tetrad. It can be written
more concisely as

d

dτ
eee0(τ) =

g

c
eee1(τ)

d

dτ
eee1(τ) =

g

c
eee0(τ)

A (even) more general way to describe this transport is

c2
d

dτ
(eeeµ(τ))

ρ = (aρuσ − uρaσ) (eeeµ(τ))σ (2.8)

which is called Fermi-Walker transport of a tetrad.

The terms in the bracket made of acceleration and velocity four-vectors builds
a very general anti-symmetric tensor which fully describes Lorentz boosts. Quick
test using our previous calculation of uuu and aaa:

c2
d

dτ
(eee0(τ))

ρ = (g(eee1)
ρ c(eee0)

σ − c(eee0)
ρ g(eee1)

σ) (eee0(τ))σ = g c (eee1)
ρ

The last information to take away from this discussion is that Fermi-Walker trans-
port is valid for any accelerated motion, not only uniform acceleration. That should
not come as a surprise since we used the most general local basis definitions and
merely compared two of those sets to each other. As soon as you come to general
relativity though, it is this very comparison which will not work anymore due to the
curvature of spacetime and that is where the machinery of general relativity has to
kick in.
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2.6.3 Exercises

(Collection sheet [2,16-19])

1. Show that an observer’s four-acceleration has only 3 independent components
and write the magnitude of the acceleration measured in the observer reference
frame as an invariant.

2. Given a position four-vector xµ, the corresponding four-velocity uµ = dxµ

dτ
and

four-acceleration aµ = duµ

dτ
, show that

aµ = γ4
(v a

c
,
(v a

c

) v

c
+ γ−2a

)

Use the relation γ = dt
dτ
.

3. Consider a space ship moving with constant acceleration g in the x-direction.
It starts at a point x = 0 from rest. Calculate the distance d travelled when
the ship reaches a specific speed v as measured from the initial rest frame.

4. Given a world-line in Cartesian coordinates, x = R cos(ω t), y = R sin(ω t)
and z = 0 with R and ω constant for a particle moving in a circle. Then with

v = Rω and γ =
(

1− R2ω2

c2

)−1/2

:

• Calculate the components of the four-velocity along the world-line.

• Calculate the components of the four-acceleration and its invariant mag-
nitude and comment on the relativistic modifications to the classical value
of a = Rω2.



Chapter 3

Applications: Electromagnetism

Applying special relativity to classical electromagnetism essentially reduces to re-
writing the Maxwell equations and clarifying how existing physics concepts carry
over to a relativistically invariant description, i.e. finding appropriate four-vectors
and tensors for known quantities in the field. As a consequence some calculations
and insights will become much simpler and clearer, others might not.

Let’s remind ourselves first on what this is all about in the shortest possible
way, i.e. quoting the Maxwell equations in hopefully familiar form.

divE =
ρ

ǫ0
(3.1)

divB = 0 (3.2)

curlE = − ∂B

∂t
(3.3)

curlB = µ0

(

j + ǫ0
∂E

∂t

)

(3.4)

and additionally there is the conservation law

div j +
∂ρ

∂t
= 0 (3.5)

where ǫ0 is the permittivity, µ0 the permeability, ρ the charge density, j the current
density and finally the equation of motion (Lorentz force law) is

dp

dt
= q (E + v ×B) (3.6)

One major aim of this chapter is to guide you to the following representation of the
identical set of equations. We will have to tackle quite a few new things on the way
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as might be obvious from just glancing at these below.

∂µF
µν =

√

µ0

ǫ0
jν (3.7)

∂µ(∗F µν) = 0 (3.8)

∂µ j
µ = 0 (3.9)

and the equation of motion (Lorentz force law):

dpµ

dτ
=

q

c
F µν uν (3.10)

That all looks rather more compact but also a little mysterious. First we will have to
have a reminder on differential operators and how to make them Lorentz-invariant.

3.1 Reminder on differential operators

Let’s repeat the four-vector definition in a concise form first: Any set of 4 numbers is
called a Lorentz invariant four-vector if it transforms under Lorentz transformations
as

A′µ =
∂x′µ

∂xν
Aν (3.11)

and a 1-form transforms as

B′
µ =

∂xν

∂x′µ
Bν (3.12)

Now, the four-gradient with respect to variables which form a four-vector transforms
as a 1-form (and vice versa):

∂

∂x′µ
=

∂xν

∂x′µ

∂

∂xν
≡ ∂′

µ (3.13)

and

∂′µ = ηµν ∂′
ν

This results in a coordinate representation

∂µ =
∂

∂xµ

=

(

∂
∂x0

−∇

)

and

∂µ =
∂

∂xµ
=

(

∂
∂x0

∇

)
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The four-divergence then is the result of a contraction of the gradient with a vector
(1-form):

∂µA
µ = ∂µAµ =

∂A0

∂x0
−∇ · A (3.14)

The 4-Laplacian operator then is the invariant formed from the gradient when using
the self-contraction or ’square it’ rule:

∂µ ∂
µ =

∂2

∂(x0)2
− (∇)2 ≡ � (3.15)

As a short remark, it might be useful to remind you of the notation here according
to which x0 = ct in order to get all the c numbers and therefore units correct. Lastly,
there is the four-dimensional volume element to consider, particularly when defining
integrals. Fortunately, the volume element

d4x = d(x0)d3(x)

is a Lorentz-invariant. Here is the quick answer to a simple ’show ...’ question:

d4x′ =
∂(x′0, x′1, x′2, x′3)

∂(x0, x1, x2, x3)
d4x

where the long expression for the fraction represents the Jacobian for coordinate
transformations. In case of Lorentz transformations as coordinate transformations,
the Jacobian is

∂(x′0, x′1, x′2, x′3)

∂(x0, x1, x2, x3)
= det(L) = 1

by definition, hence the transformed volume element is identical to the previous
volume element, i.e. invariant.

3.2 Back to the Maxwell equations

The homogeneous equations

divB = 0

curlE = − ∂B

∂t

are solved simultaneously by introducing the potentials φ and A according to

E = −∇φ− ∂A

∂t
B = curlA (3.16)
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The potentials still have one degree of freedom which needs fixing. This procedure
leads to a process called gauge transformation:

φ → φ− 1

c

∂Λ

∂t
; cA → cA+∇Λ

hence potentials are only true solutions when taking into account a gauge condition,
for instance the Lorenz (no ’t’) condition

div cA+
1

c

∂φ

∂t
= 0 (3.17)

Now for the inhomogeneous equations, using the potentials and the expressions
eqns. 3.16 for E and B, get:

�φ =
ρ

ǫ0
; � cA =

√

µ0

ǫ0
j

where ’this’ � is the three-dimensional Laplacian operator. Now using that the
Laplacian in four dimensions is a Lorentz invariant operator suggests writing the
expressions from above as

�

(

φ
cA

)

=

√

µ0

ǫ0

(

c · ρ
j

)

(Reminder: c = 1/
√
µ0ǫ0 and x0 = ct) Then the four-potential

Aµ =

(

φ
cA

)

is a four-vector if the four-current

jµ =

(

c · ρ
j

)

is a four-vector. So, let’s build a simple model and test this assertion. Assume there
is a charge e moving on a world-line or trajectory zµ(τ). Then one gets for the total
charge and current along the trajectory:

ρ(xµ) = e ·
∫

δ(x0 − z0) δ3(x− z)dz0

= e ·
∫

δ4(xµ − zµ) dτ
dz0

dτ

and

j(xµ) = e ·
∫

δ4(xµ − zµ) dτ
dz

dτ



3.3. FROM POTENTIALS TO FIELDS 67

However, since

uµ(τ) =

(

dz0

dτ
dz
dτ

)

with uµ the four-velocity of the charge on its world-line, can write

jµ(xν) = e ·
∫

δ4(xν − zν) uµ(τ) dτ

as a candidate for a current four-vector. A quick check reveals that dτ is a number,
hence invariant, δ4(xν − zν), the four-dimensional delta function, is invariant (A
point zµ(τ0) in space-time does not change due to a transformation, only gets re-
labelled) and uµ(τ) is a four-vector. Therefore, jµ is a four-vector, composed only
of invariant quantities. Finally, if jµ is a four-vector then also the four-potential Aµ

is a four-vector as discussed previously.

Using the four-potential enables us to quickly write the gauge transformation
in invariant form as well as the Lorenz condition:

Aµ → Aµ − ∂µΛ

∂µA
µ = 0

Likewise we can now write the charge continuity equation in invariant form

∂µ j
µ = 0

which is the first equation from the list of strangely written Maxwell equations at
the start of this section. Finally, to round things off, we can also write the wave
equation in invariant, four-vector, form

�Aµ =

√

µ0

ǫ0
jµ

3.3 From potentials to fields

Once the potentials are present, the next step to deal with fields is fairly straight-
forward, in principle. All that is required is to come up with a Lorentz invariant
concept capturing all the physics of electromagnetic fields. Fortunately, there is such
a suggestive connection in component form when looking at the original Maxwell
equations and the newly found four-potential. In detail:

Ei = −∂iA0 + ∂0 Ai
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and

Bi = −(curlA)i

such as1

B1 = −∂2 A3 + ∂3 A2

B2 = −∂3 A1 + ∂1 A3

B3 = −∂1 A2 + ∂2 A1

Putting all together in the candidate for a proper field description, the field-strength
tensor (Faraday tensor) can be defined as:

Fµν ≡ ∂µAν − ∂ν Aµ = −Fνµ (3.18)

This tensor is antisymmetric by construction! When you interchange the indices,
the sign changes. In component form it is:

Fµν =









0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0









(3.19)

Alternatively get

F µν = ηµρηνσFρσ =









0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0









(3.20)

One nice consistency test consists of applying the four-gradient on the Faraday
tensor:

∂νF
µν = ∂ν∂

µ Aν − ∂ν∂
ν Aµ = −�Aµ

where the Lorenz condition ∂ν A
ν = 0 was used. Finally, applying the wave equa-

tion from before, we end up seeing the first of the Maxwell equations proper, the
inhomogeneous Maxwell equation in invariant form:

∂νF
µν = −

√

µ0

ǫ0
jµ (3.21)

1As usual, indices on three-vectors(!) are really only labels. Their position, up or down, has no
meaning other than labelling components. Why? They are purely spatial components from the
point of view of space-time, i.e. all they see is a Euclidean space where the distinction between
vectors and one-forms does not exist.
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In order to finish this section properly, I will at least have to quote the homogeneous
Maxwell equations. However, we are not quite in a position yet, mathematically, to
motivate them as such. Suffices to say at this stage that the homogeneous Maxwell
equations reduce to four Jacobi identities:

∂α Fµν + ∂µ Fνα + ∂ν Fαµ = 0

For explanations, see later.

3.3.1 Exercises

(Collection sheet [3,1-4])

1. Show that the Maxwell equations

∇ · E =
ρ

ǫ0

∇× B = µ0 j + µ0ǫ0
∂E

∂t
result from the Maxwell equation

∂µ F
µν =

√

µ0

ǫ0
jν ,

where for the four-vector current take

jν =

(

c ρ
j

)

2. Show that the Faraday tensor satisfies the identity ∂α Fβγ+∂β Fγα+∂γ Fαβ = 0
and if α = 1, β = 2, γ = 3, the Maxwell equation ∇ ·B = 0 can be derived.

3. Using the relativistic, inhomogeneous Maxwell equation and the fact that the
Faraday tensor is anti-symmetric, derive the continuity equation ∂µ j

µ = 0.

4. Show that if N is an eigenvector of the Faraday tensor F with a non-zero
eigenvalue s, that is Fµν N

ν = sNµ, then N is a null vector.

(Collection sheet [1,14])

5. Show that a contraction of a vectorV with the ’projection tensor’ Pαβ = ηαβ−
uα uβ projects V into a 3-surface orthogonal to the normalised (|u|2 = 1) four-
velocity vector u. One application of the projection tensor is the translation
of Ohm’s law into a Lorentz invariant expression: Write Ohm’s law j = σE,
with three-vectors j and E and scalar σ invariantly in terms of the four-vector
current j, the Faraday tensor F, σ and the four-velocity u (the velocity of the
conducting element).
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3.4 Particle Dynamics

This section answers the question on how a charge moves in a given, external, field.
This will lead to the relativistic Lorentz force expression. Take

pµ = muµ,

i.e. the expression for the four-momentum as a starting point. Then educated
guessing, using dt = γ dτ , might lead us to a re-write of the non-relativistic Lorentz
force according to

dp

dτ
= q γ (E + v ×B)

=
q

c
(u0E + u× (cB))

Then we would still need a 0-component in order to build a four-vector. This
0-component would have to have the identical dimension as the momentum four-
vector, hence a candidate could be the rate of energy change if we use the speed
factor c wisely. In detail, let’s write

dE

dt
= q(E + v ×B) · v = q E v

Therefore, a good guess for the appropriate four-vector 0-component could be

dp0

dτ
=

q

c
E u

Let’s see how these various guesses can be summarised:

dpµ

dτ
=

d

dτ

(

E/c
p

)

=
q

c









0 Ex Ey Ez

Ex 0 cBz −cBy

Ey −cBz 0 cBx

Ez cBy −cBx 0









·
(

u0

u

)

=
q

c
F µ

ν u
ν (3.22)

Here the momentum four-vector appears in units of momentum. We can also write
it in units of energy which is sometimes more appropriate:

dpµ

dτ
=

d

dτ

(

E
c p

)

= q F µ
ν u

ν
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A term like force times velocity represents a power = energy per time which
lends itself to an interpretation of the expression above as work done per time on a
charge q by the electromagnetic field. Note that nothing in this derivation suggests
that the reverse, i.e the influence of that very charge back onto the field enters
anywhere and rightly so. The treatment of a charge backreaction on a field is far
more complex than the above and is explicitly not covered by the expression (one
of the hidden assumptions about the ’external’ field).

The argument here rather expresses a different aspect, i.e. the charge here
acts like a test particle in mechanics. It’s being used to examine the field, i.e learn
something about the field. This is the essence of the Lorentz force law. It’s all about
examining fields. This suggests that it might be possible to derive conservation laws
for fields from this starting point (like in mechanics when examining test particles
in some potential - not quite the same but you get the idea).

3.4.1 Exercises

(Collection sheet [3,5-6])

1. A particle with charge q and mass m travels through a laboratory with velocity
v in x-direction (laboratory frame) when it encounters a constant electric field
E = (0, Ey, 0).

• State the non-zero components of the Faraday tensor in the laboratory
frame.

• Derive the equations of motion given these initial conditions from the
Lorentz force law (one equation for each component in the laboratory
frame).

2. Show that the Lorentz force law dpµ

dτ
= q F µ

ν u
ν contains the non-relativistic

Lorentz force law dp/dt = q (E + v × B) by explicitly calculating the compo-
nents of p.
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3.5 Conservation laws for fields

First of all we need a description of the energy and momentum belonging purely
to the electromagnetic fields. We have a relativistic description of electromagnetic
fields themselves in the form of the Faraday tensor and we have a dynamic force
law, the Lorentz force law, in order to describe the physics of a test particle (charge)
in such fields.

However, at this point we require a new concept which is a major ingredient
of Maxwell’s theory, i.e. that electromagnetic fields contain energy and momentum
all on their own. Note that this idea is quite a big step away from the conventional
notion of matter ’bits and pieces’ or particles, having energy and momentum. Fields
are by definition something ’other’ than matter and still we can indeed ascribe energy
and momentum to them.

Nevertheless, in order to gain some understanding on the energy and momen-
tum content of fields, we can derive a new tensor which will turn out to be specific to
fields alone and contain all that information. The starting point of that derivation
is the Lorentz force law:

dpµ

dτ
=

q

c
F µ

ν u
ν

=
1

c
F µ

ν j
ν

Note the implicit assumption of a point charge as test charge, i.e. the current and
charge density become equivalent to total charge and total current independent of
the volume considered. Strictly speaking q uν should be replaced by an integral over
jν times a delta function at the location of the charge. Since this integral is trivial,
the integral over jν is replaced by the four-vector itself with the implicit assumption
that the ’per volume’ units have disappeared in what follows. Combined with the
inhomogeneous Maxwell equation:

∂νF
µν = −

√

µ0

ǫ0
jµ

when solved for the current

jν = −
√

ǫ0
µ0

∂λF
νλ

Inserting the current into the force law, we obtain:

dpµ

dτ
= −ǫ0 F

µ
ν ∂λF

νλ
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or more conveniently

dpµ
dτ

= −ǫ0 Fµν ∂λF
νλ

= −ǫ0
[

∂λ(FµνF
νλ)− F νλ∂λFµν

]

where the second line follows using the product rule of differentiation. Now that
might seem a right clutter stepping from the first to the second line and really
rather unnecessary but hold out a little longer. This derivation is anything but easy
or straightforward.

In the following we inspect and work purely on the second term in the second
line, i.e. the F νλ∂λFµν . The strategy is to bring in the homogeneous Maxwell
equations which explains also why they were quoted a bit out of context earlier on.
So, hold on, the ride continues. Write:

F νλ∂λFµν =
1

2
F νλ∂λFµν +

1

2
F λν∂νFµλ

where we split the original expression into two identical halfs but re-label the dummy
indices. Note that none of the contracted index pairs change position, merely their
label names change. Why do such a thing? Simply because at this stage we can
factorise one Faraday tensor term out of the sum like so:

F νλ∂λFµν =
1

2
F νλ (∂λFµν + ∂νFλµ)

Note the subtlety in having to exchange index positions twice (one to factor out the
Faraday tensor, secondly at the last Faraday tensor as an educated guess) which
cancels the negative sign from swapping indices of the Faraday tensor. Looking up
the homogeneous Maxwell equations above, one might note that the expression in
the bracket is (as intended, obviously) identical to two terms in that three term
formula, hence inserting the Maxwell equation simplifies the above to:

F νλ∂λFµν = − 1

2
F νλ ∂µFνλ

That now requires a brief but close look at the remaining indices and you can see
identical ones. That comes in very handy indeed when applying the product rule
again to simplify the expression to:

F νλ∂λFµν = − 1

4
∂µ

(

F νλ Fνλ

)

which is the final expression to insert above. We will separately examine this full
contraction operation later.



74 CHAPTER 3. APPLICATIONS: ELECTROMAGNETISM

Coming back to the start of the derivation process, we can now insert and see
where we are:

dpµ
dτ

= −ǫ0 ∂λ

(

FµνF
νλ +

1

4
δλµ (F

σρ Fσρ)

)

(3.23)

where we could conveniently again factorise the partial differentiation and compen-
sate for the missing free indices with the Kronecker delta in order to keep the validity
of the equation. For the full contraction, dummy indices were deliberately chosen
such that they obviously belong together and have nothing to do with the other
indices in the equation, as they should.

Pause and reflect to see that we now obtained an expression which describes
the change of an energy-momentum four-vector in time as a total derivative of a
long(ish) expression in brackets. This is a situation well known from continuum
mechanics and fluids. Accordingly, the terms in brackets were well motivated to
serve as an energy-momentum tensor which describes a continuum state (like a fluid
but here it’s the electromagnetic fields). Hence we define:

Tβα = ǫ0 ηλα

(

FβνF
νλ +

1

4
δλβ (F

σρ Fσρ)

)

(3.24)

as the energy-momentum tensor. The explicit appearance of the Minkowski metric
is not exactly necessary (and often avoided in textbooks) but rather subsumed into
the final expression. It is left explicitly in this case since then we can write eqn. 3.23
as

dpµ
dτ

= −∂ν Tµν =
1

c
Fµλ j

λ

As an example how to calculate anything practically for this tensor, let’s inspect the
00-component, T00:

T00 = ǫ0 F0νF
ν
0 +

ǫ0
4
δ00 (F

σρ Fσρ)

where the last term, the full contraction, really amounts to something you would
always have to calculate separately for each and every component along the diagonal
(due to the Kronecker delta), hence it’s worthwhile to calculate that term once and
be done with it. Here is how that works. Clearly, this is merely one way to arrive at
the final expression. You might wish to check your favourite textbook for alternative
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derivations:

Fσρ F
σρ = −Trace (Fµσ F σν)

= −Tr
(

ηµαF
αβηβσF

σν
)

= −Tr

















1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

















1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

















= −Tr

















0 −E1 −E2 −E3

−E1 0 cB3 −cB2

−E2 −cB3 0 cB1

−E3 cB2 −cB1 0

















0 −E1 −E2 −E3

−E1 0 cB3 −cB2

−E2 −cB3 0 cB1

−E3 cB2 −cB1 0

















= −Tr
[

diag(E2
1 + E2

2 + E2
3 , E

2
1 − c2B2

3 − c2B2
2 ,

E2
2 − c2B2

3 − c2B2
1 , E

2
3 − c2B2

2 − c2B2
1)
]

= −2
(

|E|2 − c2|B|2
)

Therefore, for the T00 calculation, all we need now is the first term

F0νF
ν
0 = |E|2

which leads to

T00 = ǫ0 |E|2 + ǫ0
2

(

c2 |B|2 − |E|2
)

=
ǫ0
2

(

|E|2 + c2 |B|2
)

which is nothing else than the electromagnetic energy density of the fields in the
rest frame of the charge density.

The T0i terms (i = 1, 2, 3) turn out to be proportional to (E × B)i and form
the Poynting vector which describes the energy flux of the fields. The 3 × 3 sub-
matrix Tij finally forms the Maxwell stress tensor of the fields. Therefore the entire
energy–momentum description of the electromagnetic field has been obtained using
this tensor.

Coming closer now to conservation laws for the fields, we note that a free field
does not have any sources, i.e. the source term, the current four-vector, vanishes
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and hence the divergence of the tensor should vanish which is consistent with the
expression at the start of the derivation, i.e.

∂αT
αν = 0

if the four-current jν = 0, i.e. this defines the free field description. Similar conser-
vation laws can be formulated under the presence of sources but we leave this topic
at this point and turn our attention more towards the invariants of the field.

3.5.1 Addendum on duals and the Hodge operator

First needed is the permutation symbol, also called the Levi-Civita tensor. This is
the one exception from the rule of never needing more than rank 2 tensors during
the lecture. It is defined as:

ǫαβγδ =







0 if 2 or more indices are equal
+1 if indices permute evenly
−1 if indices permute odd

and the definition ǫ0123 ≡ + 1. Its main application is to define oriented volumes,
for examples for integrals. The purpose of introducing this symbol here, however is
a different one. Let’s look quickly at one more relevant property before coming to
that purpose: The epsilon tensor is invariant under Lorentz transformations!

ǫαβγδLσ
αL

τ
βL

ρ
γL

ω
δ = ǫ′στρωdet(LLL) = ǫ′στρω

since the determinant of the Lorentz transformation is equal unity. You can then
calculate the lower index version, ǫαβγδ by lowering each index separately with the
Minkowski metric and get for example

ǫαβγδ = ǫστρωηασηβτηγρηδω = ǫστρωdet(ηηη) = −ǫστρω

i.e. the sign changes if all indices are changed in position. That determinant is
far from being obvious, admittedly but it is a consequence of the very definition of
this total antisymmetric tensor ǫǫǫ. If you remember your first year maths and the
definition of any determinant, typically for a 2× 2 or 3× 3 matrix then it involved
such a total antisymmetric ’symbol’ in order to get all the signs right. This is
what happens here. In order to convince yourself, you could go through the (αβγδ)
permutations and the corresponding (στρω) permutations.

Anyway, the purpose of introducing this tensor is that it will be used to define
for every antisymmetric tensor of rank p the dual tensor of rank n-p (where here
n= 4 always).
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This is of interest in particular for the only antisymmetric tensor you have
seen so far, the Faraday tensor. Let’s define the Hodge operator ∗ by forming the
dual of a rank p antisymmetric tensor to a rank n-p tensor and apply to the p= 2
case:

∗F µν =
1

2!
ǫµνστ Fστ (3.25)

Now what does that mean? In components, ∗F µν has E and B components swapped,
such as:

∗F 01 =
1

2
ǫ01στFστ

=
1

2

(

ǫ0123F23 + ǫ0132F32

)

=
1

2
((+1) (−cB1) + (−1) cB1) = −cB1

Finally, one can form explicitly the two invariants involving the Faraday tensor:

1. Full contraction:
F µν Fµν = −2 (|E|2 − c2|B|2)

which we had derived earlier, see above, and

2. Cross contraction, Hodge dual with Faraday

∗F µν Fµν = −4 cEB

There is also the possibility to get to the final Maxwell equation in its compact form
as quoted at the start:

∂µ (∗F µν) = 0

This can be tested quickly according to

∂µ (∗F µν) =
1

2
ǫµνστ ∂µFστ

=
1

2
ǫµνστ ∂µ (∂σAτ − ∂τAσ) = 0

since differentiation is symmetric and the epsilon symbol is totally antisymmetric.
The correspondence to the previous representation of the homogeneous Maxwell
equations can also be established straightforwardly by simply counting through the
indices and perform the summation for all possible ν-values:

1

2
ǫµνστ ∂µFστ = ∂µFστ + ∂τFµσ + ∂σFτµ = 0

Next on the list are explicit field transformations.
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3.5.2 Exercises

(Collection sheet [3,7-10])

1. A particular electromagnetic field has its E field at an angle θ to its B field
and θ is invariant to all observers. Calculate the value of θ using the invariants
of the electromagnetic field.

2. Given a plane wave in Cartesian coordinates

Ey = E0 sin(ω t− k x) ; Bz = B0 sin(ω t− k x),

where E0 = cB0, calculate the energy-momentum tensor. Test your result
by requiring the trace of the tensor to vanish identically, T µ

µ = 0. Use the
expression

T µν = F µ
α F αν − ηµν

(

|E2| − c2|B|2
)

for the energy-momentum tensor.

3. Assume that for an electromagnetic wave the following relations are satisfied
in all reference frames: E B = 0; E2 = c2 B2. If K is a three-vector in the
direction of propagation of the wave, then also the following relations are true:
K E = K B = 0. Show that these relations are also Lorentz invariant like
the first set of relations above by showing their equivalence to the statement
nµ Fµν = 0, where nµ is the wave four-vector oriented in the direction of
propagation of the wave and Fµν is the Faraday tensor.

4. Calculate the value of the Lorentz invariant expression ∗F µν Fµν .
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3.6 Field transformations

This section specialises now to pure Lorentz transformations of the Faraday tensor.
The idea is to demonstrate explicit effects due to such transformations on electric
and magnetic fields. The prescription is always the same and rather straightforward:

F ′µν(xxx′) = Lµ
α L

ν
β F

αβ(xxx)

Note the explicit display of the coordinate dependence of the fields (on the coordinate
four-vector). A transformation of a field also always requires a transformation of
the coordinate dependence!

Let’s do this explicitly for a given Lorentz-transformation:

Lµ
ν =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









Get for the transformed Faraday tensor, F’:

LLLT









0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0









LLL

= LLL









γβE1 −γE1 −E2 −E3

γE1 −E1γβ −cB3 cB2

γE2 − cγβB3 γβE2 + cγB3 0 −cB1

γE3 + cγβB2 −γβE3 − cγB2 cB1 0









=









γ2βE1 − γ2βE1 −γ2E1 + γ2β2E1 −γE2 + cγβB3 −γE3 − cγβB2

γ2E1 − γ2β2E1 γ2βE1 − γ2βE1 γβE2 − cγB3 γβE3 + cγB2

γE2 − cγβB3 γβE2 + cγB3 0 −cB1

γE3 + cγβB2 −γβE3 − cγB2 cB1 0









=









0 −E1 −γ(E2 − cβB3) −γ(E3 + cβB2)
E1 0 −γ(cB3 − βE2) γ(cB2 + βE3)

γ(E2 − cβB3) γ(cB3 − βE2) 0 −cB1

γ(E3 + cβB2) −γ(cB2 + βE3) cB1 0









Therefore the E and B fields become mixed for a moving observer. However, this is
merely what happens to the field components. Once you have explicit expressions,
formulae, for the fields, also the coordinates need transforming. One exercise to
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demonstrate this procedure would be the humble point charge, simply because you
know the expression for the fields, i.e. the Coulomb field:

B = 0

E =
e

r2
r

|r|
Therefore, let’s do the entire exercise, transform the fields and the field arguments,
i.e. coordinates.

Assume a point charge at rest in a system S and transform to another system
S’ which moves parallel to the x-axis at some speed v. Get started by evaluating
the fields at a point P with S and S’ synchronized at t = t′ = 0. Then label P in S
with xµ and in S’ with x′µ.

Spare yourself some clutter in expressions by abbreviating the perpendicular
coordinates, y and z, by setting b2 = y2+ z2 = y′2+ z′2 which is nothing else but the
distance of P to the x-axis at the synchronization moment (x and x’ axis coincide).
Then the distance r from the origin of S to P is r2 = b2 + x2. Hence expressed in
primed coordinates, get

r2 = b2 + γ2 (x′ + βx′0)2

where the x’ above is the x’-coordinate and not the vector and βx′0 = vt′.

Having clarified the coordinates, one can write immediately the explicit field
descriptions for a point charge using the Coulomb field formula. Starting with the
x-component:

E ′
1 = E1 =

e x

r3
= e

γ(x′ + vt′)

[γ2(x′ + vt′)2 + b2]3/2

Note, the equality at the start of the above is the result of the Lorentz transfor-
mation of the Faraday tensor shown earlier. It’s the identical set of assumptions,
i.e. reference frames moving parallel along x with speed v. Additionally, the point
charge in S does not move, hence there is no magnetic field in the original Faraday
tensor. Nevertheless, as seen above, there are non-zero magnetic field values in the
transformed Faraday tensor, all comprised of E-field components. Therefore all you
need to do (and can do) is calculate the E-field components like above and in the
following. The E2 component transforms as follows:

E ′
2 = γE2 = γ

e y

r3
= e

γy′

[γ2(x′ + vt′)2 + b2]3/2

and similarly for the E ′
3 component. Summarising the three expression for the three

components of E ′, say at t′ = 0, get

E ′(r′) = e
γr′

[γ2x′2 + b2]3/2
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which when simplifying the denominator according to

γ2x′2 + b2 = γ2 (x′2 + (1− β2) b2) = γ2 (r′2 − β2b2)

gives

E ′(r′) = e
r′ (1− β2)

[r′2 − β2b2]3/2

This derivation is useful in order to see explicitly that the character, the topology,
of the field does not change after a Lorentz transformation. The original field is
purely radial and also the transformed field is purely radial. However, the geomet-
rical behaviour (spatial dependence) of the field magnitude has changed. Explicitly
calculated it is

|E ′| = e
1− β2

r′2
(

1− β2 sin2 θ′
)3/2

using sin θ′ = b/r′. Therefore what you get as the transformed electric field orthog-
onal to the x’-axis (sin θ′ = 1) would be

|E ′|⊥ =
e

r′2(1− β2)1/2
=

eγ

r′2

and parallel to the x’-axis (sin θ′ = 0):

|E ′||| =
e

r′2
(1− β2) =

e

γ2r′2

This concludes the field transformation exercise. A brief look at these equations
already reveals the general behaviour of fields of a moving point charge relative to a
resting observer: As the speed increases, the gamma-factor increases, boosting the
field magnitude in the transversal direction (transversal to the direction of relative
motion) and diminishing quadratically the strength in the longitudinal direction.
The initially spherical Coulomb field of a point charge turns elliptical as relative
speed increases.

Clearly, field transformation exercises are quite attractive and useful to train
all elements of special relativity. It should also be clear that such calculations are
indeed quite simple on a conceptual level. If not, here is a recipe: (a) construct the
initial Faraday tensor according to the exercise assumptions. Quite often it will not
be the fully general Faraday tensor which needs being transformed. More often than
not, the exercise would specify that only very few of the 6 independent components
are actually non-zero. Then (b) transform the Faraday tensor as demonstrated
above with the appropriate Lorentz transformation. Finally, make sure that you
also transform the coordinates if you have to make calculations (give expressions)
involving the transformed system (all the primed quantities in the example above).
That’s it, simple as that.
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The next topic, time-dependent fields, is a little less trivial but as compensation
offers far fewer opportunities to construct questions, so take it as an educational
exercise, dipping your toes again into a more advanced topic.

3.6.1 Exercises

(Collection sheet [3,11-13])

1. By using the electromagnetic field transformations below, show that the quan-
tity E B is Lorentz invariant. Assume the field transformation for a frame S’
that moves with velocity v in x-direction in the frame S:

E ′
x = Ex ; E ′

y = γ (Ey − v Bz) ; E ′
z = γ (Ez + v By)

B′
x = Bx ; B′

y = γ

(

By +
v Ez

c2

)

; B′
z = γ

(

Bz −
v Ey

c2

)

2. A large parallel plate capacitor with plates parallel to the x-y plane and plate
distance d moves in x-direction with velocity v relative to the laboratory frame
(un-primed coordinates). The plates are biased with a constant voltage differ-
ence U in the rest frame of the plates (primed coordinates). Find the electric
and magnetic field components in the laboratory frame, neglecting edge effects.

3. Field transformation:

• Calculate the electric field components of a particle with charge e moving
with a constant velocity v in the x-direction. This involves calculating
the Lorentz transformed electric field as well as the explicitly transformed
Coulomb field expression for a point charge.

• Let the magnitude of the electric field at a distance D1 in front of the
moving charge be equal to E0. The magnitude of the field is identical, E0,
perpendicular to the direction of motion at some distance D2. Calculate
D2 in terms of D1.

3.7 Time-dependent fields

This section serves to give you access to more advanced topics in relativistic elec-
tromagnetism and a few still controversial topics in the field. It is not suited to an
assessment, hence this material is non-examinable.
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The attraction, however, of time-dependent fields in electromagnetism is the
close connection to quantisation and field theories. Most conceptual problems in
those advanced topics can find a classical counterpart in time-dependent electro-
magnetism, enabling you to gain a deeper understanding of puzzling concepts in
field theory or quantum mechanics with more accessible physical models in electro-
magnetism. One of the most important tools to make any ground on that journey
is a proper, conceptually clear definition of radiation. Nothing else will be shown
in this final chapter of the lecture but all self-study topics lead on from this base.
Nevertheless, this chapter, being more a showcase than a proper lecture, will skip
quite a few lengthy subjects and simply quote results as a shortcut to get to the
important points.

Keywords for further studies could be: radiation and the equivalence principle,
the radiation reaction and its fundamental challenges due to the assumed point-like
nature of elementary charges, radiation at event horizons - information (energy)
losses or not etc.

3.7.1 Lienard-Wiechert potential

The Lienard-Wiechert potential is the result of highly non-trivial work seeking to
solve the inhomogeneous wave equation:

�Aµ =

√

µ0

ǫ0
jµ

for an arbitrarily moving point charge. For those interested in the process, the most
straightforward way is the Green function method but we will not pursue this path
any further.

The more physically important concept introduced in the derivation of the
Lienard-Wiechert potential is the retardation condition between source and receiver.
This is a crucial concept, closely related to the heart of special relativity, i.e. the
finite speed of light. First of all, it’s important to realise that radiation enables the
study of non-local physics by relating two points, source and receiver in a hopefully
unique and well-defined way. Likewise, it forces theory to confront the surprisingly
uncomfortable concept of a backreaction on the source.

In order to be able to discuss any of the above, a clear directional concept must
be introduced and one such possibility is the retardation condition. This condition
requires for any point P in space-time to physically interact, i.e. be influenced by,
only points such as Q on P’s past light-cone. In particular P shall interact only
with electromagnetic fields originating from its past light cone, i.e. points such as Q
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Figure 3.1: Space-time diagram showing the retardation requirements on two points
on the light-cone, P and Q. Retardation requires P to receive signals from Q only
from the past, i.e. Q being on the past light-cone of P.

from an arbitrary world-line intersected by P’s past light-cone. Q would be in this
case the source of radiation and P the receiver.

This geometrically defined condition can also be put into algebra. Consider
the wold-line of a point charge zµ(τ) in a fixed reference frame. Then, as we have
seen earlier in the lecture, we have a velocity and acceleration defined at any point
along the world-line according to:

vµ(τ) =
d

dτ
zµ(τ)

aµ(τ) =
d

dτ
vµ(τ)

Now assume that the coordinates for the point P are given by xµ. Connect a point
Q on the world-line with P by defining:

Rµ ≡ xµ − zµ(τ0)

or for any Q
Rµ ≡ xµ − zµ(τ)

with the important constraint
RµRµ = 0

i.e. the connection, Rµ, must be a light-like four-vector.

The task is to identify an invariant distance measure between P and Q. Many
of the kinematic concepts from earlier in the lecture will be a great help at this
point. As you know, at any point along a world-line, a momentary system of rest
can be defined which in turn enables the definition of a local set of basis vectors.
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Figure 3.2: Space-time diagram showing the connection vector between P and Q
and its decomposition into invariant projections onto the momentary basis vectors
along the arbitrary world-line zµ(τ).

The time-like basis vector was identified as the normalised four-velocity at that point
and all remaining three space-like vectors are perpendicular to it.

A decomposition of the light-like connection four-vector into its projections on
the basis vectors is hence always possible and unique. For instance, Rµ projected
onto the time-like basis vector will define a scaling factor ρ by which the unit vector
must be multiplied to give the projected length. The unique property of light–like
four-vectors enables now to conclude, most conveniently, that it is the very same
scaling factor ρ by which all projection can be calculated on all unit basis vectors, i.e.
also the space-like basis vectors times ρ give the projected lengths of Rµ respectively.
The reason being that the light-cone is uniquely invariant in special relativity.

Algebraically, we can write:

ρ e0 = ρ
1

c
vµ

and for the space-like unit vectors, call them nµ here for convenience

nµnµ = −1; nµvµ = 0

get the decomposition

Rµ = ρ

(

nµ(τ0) +
1

c
vµ(τ0)

)

or

ρ = −nµR
µ =

1

c
vµR

µ > 0

which is the precise definition of the retardation condition.
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Once this is settled, the Lienard-Wiechert potential takes an especially simple
form

Aµ =
e

c

vµ

ρ

which is in fact the fully invariant solution of the inhomogeneous wave equation for
any charge world-line zµ(τ).

From this starting point, we can attempt to get the electromagnetic fields for
such a potential using the field tensor definition from above

F µν = ∂µAν − ∂ν Aµ

However, how do you differentiate in this scenario? Any change in P, our observation
point, the point where to evaluate the potential (and hence the fields), necessarily
changes Q! Hence the instance τ0 (associated with Q) depends on xµ (coordinates
of P). These are the tricky bits of dealing with non-local physics. Differentiation is
always a local process but the retardation condition requires to transport the local
differentiation along the connection to a second point, i.e. introducing additional
dependencies. It is still all quite elementary, see below, but needs proper considera-
tion when calculating anything. It is at this point, for example, where quantum field
theories have to introduce challenging recipes in order to stay well defined. Here,
all is needed now can be summarised as

∂µ Aν = −e

c

vν

ρ2
∂µρ+

e

c

1

ρ
aν ∂µτ

where the task is to calculate ∂µρ and ∂µτ . Start with the known condition RµRµ =
0:

Rµ

(

dxµ

dτ
− vµ

)

= 0 =

(

nµ +
vµ

c

) (

dxµ

dτ
− vµ

)

from which follows
(

nµ +
vµ

c

)

dxµ

dτ
− c = 0

hence
(

nµ +
vµ

c

)

dxµ

cdτ
= 1

hence
1

c

(

nµ +
vµ

c

)

=
∂τ

∂xµ

= ∂µτ

simply the inverse of the more conventional dxµ/dτ . Likewise for the second missing
derivative, we get:

∂µ (−nµR
µ) = −nµ −Rµ(∂νnν)
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= −nµ −Rµ

[

dnν

dτ
∂ντ

]

where focussing on the square bracket term only gives:

[

((vσnσ)aν − (aσnσ)vν)−
1

c

(

nν +
vν

c

)]

= −(aσnσ) ≡ − an

where most terms disappear due to the orthogonality between vvv and nnn and you
might also recognise the Fermi-Walker transport relation (first two terms). The
abbreviation an is really only a convenience. The subscript ’n’ is not an index.
Finally, put together these results in the following derivative of the Lienard-Wiechert
potential:

∂µ Aν = −e

c

vν

ρ2
(nµ + anR

µ) +
e

c2
1

ρ
aν

(

nµ +
vµ

c

)

So, collecting terms results in

F µν =
e

c

1

ρ2
(vµnν − vνnµ)

+
e

c2
1

ρ

[

aν
vµ

c
− aµ

vν

c
+ nµ (aν − ancv

ν) + nν (ancv
µ − aµ)

]

Two main terms become obvious: one Coulomb-like term ∝ 1
ρ2

and one so called

radiation-like term ∝ 1
ρ
. These two parts can be written in a little more compact

notation:

F µν
I =

e

c

1

ρ2
v[µ

Rν]

ρ

using a[µbν] = aµbν − aνbµ and

F µν
II =

e

c2
1

ρ

(

anv
[µR

ν]

ρ
+ a[ν

Rµ]

ρ

)

All that remains then is to plug F µν into the energy-momentum tensor and define
radiation according to either

1. the asymptotic definition (near-field and far-field concepts) or

2. operational, i.e. quasi-local, hence at any finite distance from the charge.

Assume you do get the energy-momentum tensor (fairly involved calculation but
brilliant practice of index notation, see reference below) then you might wish to split
the tensor into three parts; two describe Coulomb-like distance behaviour of energy-
momentum whereas the third part yields a directly conserved part, i.e. a tensor
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with vanishing divergence, i.e. source-free. It is this third part, T µν
III which describes

radiation since it describes a purely light-like flux of energy-momentum according
to T µν

IIIRµ = 0. This constitutes the operational definition of radiation which is the
preferred one conceptually. Surprisingly, this definition has been published only in
1970 (C. Teitelboim, Phys. Rev. D1 (1970) 1572). A full discussion of challenges and
solutions for classical electromagnetic radiation can be picked up on in F. Rohrlich,
Classical charged particles, 1965.

This concludes the lecture.



Appendix A

More on index notation

Let’s collect a few basic relations first1: Components of a vector (one-form) from
the vector (one-form) in an arbitrary basis. I’ll leave out the (one-form) extension
from now on and use index notation, naturally, i.e. upper indices represent vectors,
lower indices represent one-forms.

vi = vvv · gggi ; vi = vvv · gggi

Likewise a representation of a vector in an arbitrary basis

vvv = vi gggi = vi ggg
i

where (as a reminder) the index ’i’ is a contracted index, sometimes called dummy
index or loose index. Contraction means the operation of summation over that very
index. It’s a matter of training to deal with contracted indices confidently, hence
these exercises might help. The notation requires indices over which to sum to be
positioned diagonally with respect to each other, always an upper with its lower
counterpart or vice versa. Each contraction therefore must have its own index,
distinct from any other contraction operation in order not to confuse them.

Rank 2 tensors have similar relations to vectors:

T ij = gggi · T gggj ; Tij = gggi · T gggj

using
TTT j = T gggj = Tijggg

i

this last equation derives from multiplying the basis vector gggi to the relation above
for Tij . It doesn’t matter here whether you multiply from the left or right since all

1Most of this material comes from [3]

89
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multiplications in the relations so far commute, i.e. multiplication and dot product.
If you are uncomfortable commuting over the tensor T then you are right to do so,
in principle. Just imagine it to be a matrix and they generally do not commute with
anything other than numbers. However, here the tensor is always contracted to a
vector (or one-form) at the least, hence commutation is fine.

So, multiplying gggi above gets you there but only if you remember that gggigggi = 1
by definition. The basis vectors and basis one-forms are the reverse basis of each
other respectively.

gggigggj = δij

A.1 Einstein summation convention, again

Vanderlinde [6] gives two rules to remember on index notation and Einstein sum-
mation convention:

1. Every index appearing once in an expression can take on values according
to dimension. Notation: latin letters 1,2,3 typically; greek letters 0,1,2,3 for
special relativity. Thus Ai denotes any member of the set {A1, A2, A3} and
Aik of the set {A11, A12, A13, A21, A22, A23, A31, A32, A33}.

2. If a free index appears twice in a term, once as superscript and once as
subscript or vice versa (the diagonal relation) summation over that index is
implied.

Ai
i ≡ A1

1 + A2
2 + A3

3

AiB
i ≡ A1B

1 + A2B
2 + A3B

3

AiB
kC i ≡ Bk (A1C

1 + A2C
2 + A3C

3)

An expression such as AiB
i is independent of the letter ’i’, hence the letter is

called a dummy index.

A.2 The metric tensor is special

A.2.1 The metric components and the identity tensor

Well, apart from the huge importance for physics ascribed to the metric tensor in
general relativity, it’s a little special also generally, for tensors and manipulations
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of them. It all follows from considering the components of the identity tensor.
Strange as that might sound, there is more to it than merely

1 = gggi · gggi = gggi · gggi
In fact, mixed tensor δij is naturally considered to be the representation of the
identity tensor 1ij components. But what about the (0, 2) or (2, 0) representations?

Let’s define, rather provocatively, the components of the identity tensor as

1ij = gij, 1ij = δij, 1ij = δij, 1ij = gij

with (and this is the key point):

gij = gggi gggj, gij = gggi gggj

That makes sense when considering the representation of any tensor T from above
in terms of arbitrary basis vectors ggg. Here, all we’ve done is suppress the I symbol
for the identity tensor since it’s redundant.

Right, that needs some justification. Starting from the identity Ivvv = vvv let’s
get the components of the identity tensor:

I(vj gggj)

= Igggj vj = 111j v
j

= 1ijggg
ivj = 1ijggg

i(gggj · vvv)
=

(

1ijggg
igggj

)

vvv = vvv

hence the identity tensor can be represented by 1ijggg
igggj, no surprise since that is

valid for any tensor, but now we also have

gij ≡ gggigggj = gggiIgggj
by simply inserting a redundant 1 in between the basis vectors, i.e. the identity
tensor and now get, inserting the component representation of it

= gggi1ijggg
igggjgggj = 1ij

since the basis vector and one-forms were defined as such to be inverse and 1ij are
simply numbers, the components of the identity tensor.

Now we still don’t know the explicit form of the gij = 1ij but that is fine since
this will heavily depend on the basis vectors. What we have, however, is a way
to understand what makes the metric tensor special, in particular its next property
singles it out from all other same-structure tensors - an operation called index raising
or lowering.
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A.2.2 Raising and lowering indices with the metric tensor

Typically this operation of raising and lowering indices is simply given as something
the metric tensor is used for, nothing else. Here is how that comes about. First
of all, changing positions of indices only looks trivial using index notation. What
really happens are fundamental structural changes to the objects you work with. A
(3, 1) tensor is something other than a (4, 0) tensor, both of rank 4, granted but for
calculations they can be very different indeed.

We have seen the index lowering operation before, acting out on the dot-
product between two ’vectors’, i.e. when deriving that this rather corresponds to
a product between a vector and a one-form, loosely speaking. Let’s revisit this
operation:

s2 = gµν x
µ xν = xν x

ν

The metric tensor ’pulls’ the dummy index µ down by contraction and replacing
it with the index ν. That’s one graphical description of what happens. Of course,
nothing of that kind actually happens at all.

Let’s write this in some more detail, assuming a basis eeeµ:

s2 = gµν x
µ xν = eeeµeeeν xxxeee

µxxxeeeν

using the expressions above to express the metric tensor coefficients in a given basis
and the vector components. Now commute the inner vector xxx with the basis one-
form eeeν to get

= eeeµxxxeeeν eee
µxxxeeeν

= xxxeeeµ δ
µ
ν xxxeee

ν = xν x
ν

and it’s the mixed identity tensor components which actually perform the contrac-
tion (sum over µ here, trivially due to the Kronecker delta properties) and replace-
ment µ → ν, not the metric tensor as such. Raising indices works exactly the
same. Also, from these elementary calculations it should be clear that this process
works on any rank tensor, except numbers (no index, nothing to manipulate), of
any structure.
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backreaction, 73

continuity equation, 59
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Lorentz, 8
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equation
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Euclidean, 19
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principle, 9
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definition, 29
dual, 67
energy-momentum, 65
epsilon, 67
Faraday, 60, 69

tetrad, 52
time dilation, 35
time-like, 31, 36

basis, 36, 74
transformation, 7, 27

basis, 53
field, 69
Galileian, 6
gauge, 58
inverse, 13
linear, 9, 27
Rindler, 50
tensor, 28

vector, 4, 19–21, 79
basis, 21, 25, 79
contravariant, 23
covariant, 23
definition, 24
four-, 30, 35, 56, 69
position, 6

velocity, 5, 6, 10, 13, 43, 50, 73
phase, 41

wave, 40
null-vector, 43
one-form, 41

wave equation, 59, 72, 75


