
Applying Pattern-based Classification to Sequences of Gestures
Suzanne Aussems (s.aussems@warwick.ac.uk)

Department of Psychology, University of Warwick
University Road, Coventry CV4 7AL, United Kingdom

Mingyuan Chu (mingyuan.chu@mpi.nl)
Max Planck Institute for Psycholinguistics

PO Box 310, 6500 SH Nijmegen, the Netherlands

Sotaro Kita (s.kita@warwick.ac.uk)
Department of Psychology, University of Warwick

University Road, Coventry CV4 7AL, United Kingdom

Menno van Zaanen (mvzaanen@tilburguniversity.edu)
Tilburg center for Cognition and Communication, Tilburg University

PO Box 90153, 5000 LE Tilburg, the Netherlands

Abstract

The pattern-based sequence classification system (PBSC)
identifies regularly occurring patterns in collections of se-
quences and uses these patterns to predict meta-information.
This automated system has been proven useful in identifying
patterns in written language and musical notations. To illus-
trate the wide applicability of this approach, we classify sym-
bolic representations of speech-accompanying gestures pro-
duced by adults in order to predict their level of empathy. Pre-
vious research that focused on isolated gestures has shown
that the frequency and salience with which individuals pro-
duce certain speech-accompanying gestures are related to em-
pathy. The current research extends these analyses of sin-
gle gestures by investigating the relationship between the fre-
quency of multi-gesture sequences of speech-accompanying
gestures and empathy. The results show that patterns found in
multi-gesture sequences prove to be more useful for predict-
ing empathy levels in adults than patterns found in single ges-
tures. This paper thus demonstrates that sequences of gestures
contain additional information compared to gestures in isola-
tion, suggesting that empathic people structure their gestural
sequences differently than less empathic people. More impor-
tantly, this study introduces PBSC as an innovative, effective
method to incorporate time as an extra dimension in gestural
communication, which can be extended to a wide range of se-
quential modalities.

Keywords: Grammatical inference; speech-accompanying
gestures; empathy; pattern-based sequence classification.

Introduction
People naturally accompany their speech with gestures. Sev-
eral studies have reported results indicating that gesture type,
frequency, and salience are related to personality traits, cogni-
tive abilities, and empathy levels (Hostetter & Alibali, 2006;
Chu & Kita, 2011; Hostetter & Potthoff, 2012; Chu, Meyer,
Foulkes, & Kita, 2014). For example, Chu et al. (2014) found
that empathy (i.e., how much people think about other peo-
ple’s thoughts and feelings) predicts the frequency of ges-
tures with an interactive function, that is, conduit and palm-
revealing gestures. Whereas previous studies mainly looked
at the frequency of isolated gestures, the current research
aims to extend these analyses to sequences of gestures. Even

though the frequency of gestures might be the same among
people with different levels of empathy, these people may or-
der different types of gestures, most notably interactive ges-
tures (i.e., conduit and palm-revealing gestures) in different
ways. That is, in some situations more information might be
hidden in frequencies of gesture sequences than in frequen-
cies of single gestures.

Previous studies on cross-linguistic differences in speech-
accompanying gestures (see Kita (2009) for a review) sug-
gested that looking at gesture sequences may be fruitful.
For instance, in verb-framed languages such as Turkish and
Japanese, path information is expressed in one clause and
manner information in another clause, in contrast to English,
in which manner and path are expressed in a single clause.
The verb “rolling down” is expressed in one clause in En-
glish, but it takes two clauses (e.g., “rolling/spinning” and
“descending/downwards path”) to express this verb in Turk-
ish and Japanese. Research has shown that such linguistic
structures influence the ways in which gestural communica-
tion is structured (Özyürek & Kita, 1999; Kita & Özyürek,
2003). Whereas Turkish and Japanese speakers tend to use
one gesture to depict the rolling movement, and one gesture
to depict its downward path, English speakers tend to depict
manner and path in a single gesture. These studies suggest
that in some languages, multi-gesture sequences depict one
event, and accordingly, that the order in which people pro-
duce gestures alongside their speech may follow particular
patterns.

There may be other sequential regularities present in
speech-accompanying gestures. For example, different types
of gestures represent different types of information in nar-
rative, and these gestures may be ordered in a systematic
way. Representational gestures often accompany speech with
“narrative-level” information, which is about events and situ-
ations in the story (e.g, “A cat is looking at a canary bird in
a cage.”). Beat gestures often accompany speech with “meta-
narrative-level” information (McNeill, 1992) which refers to



the structure of the story (e.g., “The cat tries to catch the ca-
nary bird in different ways, but he never succeeds.”). Interac-
tive gestures (Bavelas, Chovil, Lawrie, & Wade, 1992) often
accompany speech with “para-narrative-level” information,
which refers to the interactive exchange between the speaker
and the listener (e.g., “Do you know one of these American
cartoons?”). These types of information may be ordered in
a particular way in narrative; for example, a cluster of meta-
narrative utterances may be followed by a long sequence of
narrative utterances. This would in turn lead to systematic
patterns in sequences of gestures. Manually annotating such
regularities in gestural communication is very time consum-
ing and inefficient, which is why it is important to investigate
if such regularities can be identified automatically.

In this paper we propose a pattern-based classification ap-
proach to extend the analyses of single gestures to multi-
gesture sequences. In order to demonstrate the applicability
of the system, we use empathy scores as meta-information to
classify the gesture sequences. Empathy may be related to
the ways in which people structure information during con-
versation (people with high empathy levels may order in-
formation in ways that are more helpful to the listener than
people with low empathy levels), which may result into par-
ticular sequences of gestures. To our knowledge, this is the
first study that uses a pattern-based learning system to iden-
tify regularly produced sequences of speech-accompanying
gestures and relates these to empathy. We hypothesize that
multi-gesture patterns predict empathy levels in adults better
than information extracted from isolated gestures.

Our classification approach is based on an existing pattern-
based learning system (van Zaanen & Gaustad, 2010). This
system has proven to be useful in identifying patterns in sev-
eral sequential modalities, including semantics in written lan-
guage (van Zaanen & van de Loo, 2012) and musical nota-
tions (van Zaanen, Gaustad, & Feijen, 2011). Our main aim
is to demonstrate the wide applicability of the PBSC system.
In this paper, we show the effectiveness of the system in the
context of gestural communication.

The methodology we use is similar to that of Schmid,
Siebers, Seuß, Kunz, and Lautenbacher (2012), who use a
pattern-based sequence classifier to predict pain levels with
patterns in action units that describe facial expressions. Their
approach requires manual tuning of the learned patterns and
can only make a distinction between two classes (pain or no
pain). In contrast, our system can be applied without man-
ual intervention and can make distinctions between any pre-
selected number of classes, which correspond to different lev-
els of empathy in the current study. Classifying into only
two classes (high and low empathy) may be insufficient, be-
cause it leads to greater variability in people’s empathy levels
within a class. Our system’s ability to increase the number of
classes results in more specific information about the empa-
thy level of a person, which utilizes the uniqueness in gesture
sequences that people produce. We proceed by describing our
system in more detail in the next section.

Pattern-Based Sequence Classification
Pattern-based sequence classification (henceforth PBSC) is
an approach that aims to identify patterns in longer sequences
of symbols. The patterns describe regularities found in se-
quences that come from the same class. Given a sequence,
PBSC uses the identified patterns to assign the sequence to
the class it belongs to. This approach stems from the field of
grammatical inference, which addresses the task of building
a compact representation of a class given a subset of sample
sequences from that class (van Zaanen & Gaustad, 2010). In
contrast to other grammatical inference systems, PBSC aims
to learn a representation that describes the boundaries be-
tween multiple classes (corresponding to the number of em-
pathy levels in the current study), allowing for the classifica-
tion of sequences into their corresponding class. This is done
by extracting patterns in the shape of sub-sequences, i.e., con-
secutive symbols, from the sequences in the training dataset.
For practical purposes, patterns have a predetermined, fixed
length (although combinations of different pattern lengths are
possible as well) which coincides with the notion of n-grams,
where n defines the length of the pattern (Heaps, 1978). The
system only retains and uses patterns that are deemed use-
ful according to some “usefulness” measure or scoring met-
ric. A sequence can then be classified into a class based on
which patterns are found in the sequence and the scores of the
matching patterns.

System Walk-Through
PBSC, like other supervised classification systems, involves
a training and a testing phase. During training, the system
receives a collection of sequences that are labeled with its
underlying class. First, from these sequences, all possible n-
gram patterns (n consecutive symbols) are extracted and for
each pattern the scoring metric is calculated indicating how
well the pattern fits each of the possible classes. This results
in a set of patterns with a score for each class. These patterns
can be seen as vectors in a multi-dimensional space with one
dimension per class. Summing pattern vectors for each oc-
currence in a sequence results in a vector that describes the
sequence in the vector space. Second, based on the patterns,
all training sequences are inserted in the vector space (and
their correct class is known).

During testing, the system needs to assign a class to a new,
unseen sequence. First, the system builds a vector for the
sequence using the patterns. Next, it identifies the vector (of
the training sequences) that has the lowest cosine distance to
the vector of the test sequence. The class belonging to the
training vector is returned. This corresponds to a k-nearest
neighbor approach (Cover & Hart, 1967) with k = 1.

Scoring Metric
During training, the system aims to identify patterns that are
maximally discriminative between classes. Patterns that oc-
cur frequently in a class are assigned a high score for that
class compared to patterns occurring less frequently in that
class, because frequent patterns describe sequences from that



class better than less frequent patterns. Additionally, pat-
terns that occur only in sequences in a particular class are
more discriminative compared to sequences occurring in all
classes. The combination of these properties are described
in a well-known scoring metric taken from the field of infor-
mation retrieval: tf*idf (Sparck Jones, 1972). This measure,
which is extended to handle patterns (van Zaanen & Gaus-
tad, 2010), consists of two components: term frequency (tf )
which measures the relative frequency of the pattern and in-
verse document frequency (idf ) which measures the discrim-
inative power of the pattern over all classes. The tf is defined
as the relative frequency of the pattern with respect to the to-
tal number of patterns found in the sequences belonging to
that class. The idf is the logarithm of the total number of
classes divided by the number of classes containing the pat-
tern. Thus, tf*idf provides a score describing the discrimina-
tive power of the pattern with respect to each class.

tf i, j =
ni, j

∑k nk, j

idf i = log
|C|

|{c ∈C : ti ∈ c}|

tf*idf i, j = tf i, j× idf i

Here, ni, j describes the number of occurrences of pattern ti
in class c j and C denotes the set of classes under considera-
tion.

Note that a pattern that occurs frequently in a particular
class has a higher tf score compared to the classes in which
the pattern occurs less frequently. However, the tf score of
a pattern is weighted by the idf component. Patterns occur-
ring in all classes will have a zero idf value, in contrast to
patterns occurring in fewer classes, which will have higher
idf values. Patterns that have a tf*idf score of zero for all
classes (because they occur in all classes) are not retained, as
they are useless for classification purposes. Note that when
no matching patterns are found, the system falls back on a
majority class baseline. This baseline measurement leads the
system to classify a sequence into the class that occurs most
frequently in the training data.

The length of the patterns has impact on the tf*idf scores as
well as their practical usefulness in classification. In general,
short patterns occur more frequently in both training and test-
ing data. On the one hand, during training, very short patterns
are likely to occur in all classes, leading to zero scores. On
the other hand, it is more likely to find a short pattern (with
non-zero tf*idf score) in the test data compared to a very long
pattern (corresponding to a very specific sequence of sym-
bols). This means that (depending on the amount of training
data available), there is a sweet spot in which a specific pat-
tern length performs best. Previous research has shown that
the best results are often found with pattern lengths of three
or four symbols (van Zaanen & Gaustad, 2010; van Zaanen
et al., 2011).

Data
We used the dataset developed by Chu et al. (2014), which
represents a sample of 122 English native speakers (71 fe-
male, 51 male) with a mean age of 19.41 years (SD = 4.85).
This dataset contains a total of 11,032 annotated speech-
accompanying gestures elicited by description tasks (for more
information see Chu et al. (2014). In addition, participants
were tested on several cognitive abilities and their level of
empathy. Here, we focus on the relationship between the ges-
tures participants produced alongside their speech and their
level of empathy.

Empathy Quotient
In the study by Chu et al. (2014), the Empathy Quotient ques-
tionnaire (Baron-Cohen & Wheelwright, 2004) was used to
measure the empathy levels of adult participants. This in-
strument comprises 40 questions related to empathy (e.g., “In
a conversation, I tend to focus on my own thoughts than on
what my listener might be thinking”) and 20 filler questions
unrelated to empathy (“I prefer animals to humans”). Par-
ticipants were instructed to rate how strongly they agreed or
disagreed with each statement (agree strongly, agree slightly,
disagree slightly, or disagree strongly). On each item of the
task, participants scored 2 points if the response reflected
empathy strongly, 1 point if the response showed empathy
slightly, or 0 points if the response did not show empathy at
all. A total score was computed to indicate the level of empa-
thy of each participant, with a maximum score of 80.

Data Representation
In the dataset, each gesture was annotated with information
about its semantics, salience, and handedness. For the in-
put of our PBSC system, we extracted this information and
converted it into three distinct datasets of symbolic gesture
sequences. First, the semantics of the gestures was denoted
by seven unique symbols that provided information about the
different types of gestures, such as representational gestures,
beat gestures, and palm-revealing gestures, unclear represen-
tational gestures, representational gestures specifically used
for indexing the listener, unclear gestures in general, and ges-
tures that did not belong to the mentioned categories. Sec-
ond, the level of salience of the gestures was denoted by four
symbols indicating the part of the arm that was used to pro-
duce the gesture (finger, forearm, hand, or whole arm). Third,
handedness was represented by three symbols that included
information about whether speakers gestured with their right
or left hand, or with both hands. In addition to the denotations
of the latter two gesture representations, we also incorporated
information (five unique symbols) about gestures that were
produced with the arm only, feet, legs, torso, and head.

Classification Tasks
The PBSC system assigns participants to an empathy level
class based on pattern occurrences in the (sequences of) ges-
tures they produce. Having a partition of two classes cor-
responds to classifying into high or low empathy classes,



whereas three classes corresponds to low, mid, or high em-
pathy classes. To define empathy-level classes, we first di-
vided the range of empathy scores from all participants by
the number of classes to obtain the size of sub-range of em-
pathy scores for each class, and then classified participants
into the different empathy-level classes. For example, when
the class size was two, participants who scored anywhere be-
tween the minimum and the minimum + (maximum – min-
imum) / 2 were classified into the low-empathy level class,
and the rest, into the high-empathy level class. The gesture
sequences produced by participants with empathy scores be-
longing to the same class were considered example sequences
from that class. We varied the number of classes in the par-
tition from two to six, which resulted in five classification
tasks. During testing, gesture sequences produced per par-
ticipant were classified and the performance of the system
was measured by classification accuracy (percentage of par-
ticipants classified in the correct empathy level class based
on their gesture sequences). Note that it is expected that the
overall system performance will decrease as the number of
classes increases, because increasing the number of classes
has an impact on the number of class boundaries that PBSC
should learn, which makes the classification task harder. At
the same time, relatively less training data is available per
class when the number of classes is increased (as the partici-
pants are divided over the classes available). In contrast, the
idf factor in the scoring metric performs better with a high
number of classes (with two classes, only one non-zero idf
value is available, with six classes, five distinct idf values are
available).

Comparison of Results

In order to show that sequences of gestures provide more in-
formation about empathy levels than single gestures, we need
to compare the performance of the PBSC system using longer
patterns (n = 2, 3, 4, 5, or 6) with the performance of the
PBSC system using single gestures (n = 1). Thus, our analy-
sis includes six pattern lengths.

The accuracy of the system was measured through 10-fold
cross-validation. This procedure involves randomly breaking
up the dataset into ten folds of equal size and subsequently
training the system based on nine of these folds to test on the
tenth (unseen) fold. This process is then repeated until all ten
folds have been tested once and a mean accuracy is computed
for the system’s performance.

Results
The accuracy of classification by the PBSC (0–100%) was
entered in a 3 (gesture representation) x 5 (classification
task) x 6 (pattern length) ANOVA. The results revealed no
main effect of gesture representation on system performance,
F(2) = 0.251, p= .778. Moreover, gesture representation did
not significantly interact with the other two variables in the
design. Thus, it did not matter if a gesture was described
based on its semantics, salience, or handedness; the system

performance was not affected by the symbolic representation
of the gestures.

In Figure 1, horizontal lines represent the classification
accuracy when the system used information extracted from
single gestures (n = 1). The other lines illustrate the clas-
sification accuracy when the system used gesture sequences
(n = 2, 3, 4, 5, or 6). As can be seen, increasing the number
of classes to classify into (illustrated in the different panels)
leads to lower accuracy scores overall, which is an artifact of
the system.

The ANOVA revealed a significant interaction effect be-
tween pattern length and classification task on classification
accuracy, F(20) = 7.901, p < .001. Tukey’s HSD compar-
isons indicated that when the system classified participants
into two or three classes of empathy, varying pattern lengths
did not affect classification accuracy significantly. This is due
to the fact that the idf has limited impact in these situations.
In fact, when classifying into two classes, the system often
falls back on the majority class baseline. When participants
were assigned to four classes, the PBSC system that used se-
quences of three or more gestures to predict adults’ empathy
levels outperformed the PBSC system that used single ges-
tures (p < .001). Additionally, the classification accuracy of
the system was significantly higher when using sequences of
three or more gestures than when extracting information from
sequences of two gestures (p = .009 for n=3, p < .001 for
all other pattern lengths). This indicates that long patterns
lead to higher classification accuracy than short patterns. Pat-
tern lengths had an effect when participants were classified
into five classes: the system that used sequences of two or
more gestures to predict empathy outperformed the system
that used single gestures (p < .001). It is not surprising that
a significant pattern length effect was found for these classi-
fication tasks. With a high number of classes to classify into,
the idf weight is more useful (for all pattern lengths), allow-
ing for a more fine-grained weighing of the corresponding tf
score. Increasing the number of classes even more, leads to
a decrease in amount of training (and testing) data per class,
which is why we found no interaction effect when partici-
pants were classified into six classes of empathy. When the
number of classes is higher than five, the amount of training
data per class becomes too small to accurately find patterns
in sequences of gestures. With the amount of data available
from the dataset developed by Chu et al. (2014), the sweet
spot seems to lie around four or five empathy-level classes
and sequences of three or more gestures. When more data
is available, we expect that a higher number of classes and
longer pattern lengths lead to even better classification re-
sults.

Conclusion & Future Work
PBSC is a pattern-based classification approach, which has
proven to be useful in predicting meta-information in a range
of sequential modalities (e.g., written language, musical no-
tations). To contribute to the wide applicability of the PBSC,
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Figure 1: Accuracy of classifying participants into empathy-level classes based on their gesture sequences (y-axis), using 10-
fold cross-validation. The analyses were split based on the different gesture representations (symbol types), pattern length
(x-axis), and classification tasks (different panels). Horizontal lines represent classification accuracy with single gestures.

we demonstrate that the approach can also be successfully
used in the context of gestural communication. As a practi-
cal example, we examined the relationship between patterns
in sequences of speech-accompanying gestures produced by
adults and their level of empathy.

We found that patterns describing sequences of gestures
provide more discriminative power compared to patterns de-
scribing single gestures when predicting empathy levels of
gesturing participants. That is, the relative frequency of
multi-gesture patterns predicted participants’ empathy scores
better than the relative frequencies of gestures in isolation.
This was the case for all three symbolic gesture representa-
tions: semantics, salience, and handedness. We found evi-
dence for this when comparing symbol patterns consisting of
one symbol with longer patterns. The differences lie within
the tasks in which participants were classified into four or
five empathy classes, because these classification tasks pro-
vided the system with enough training data in each class to
allow for optimal discriminative power of the idf component
of our scoring metric. This, in turn, led to more pronounced
differences between the patterns. When classifying into four
classes, we found additional evidence that long patterns con-
tain more information than short patterns, as patterns of two
symbols were outperformed by longer patterns. We conclude
that gestures are not produced in isolation; in fact, our re-

sults indicated that they are related to each other in time. The
PBSC identified this information and successfully used it to
predict empathy levels in adults.

Previous research has shown that gestures are shaped in
part by speakers’ desire to communicate information clearly
to their listeners (Hostetter, Alibali, & Schrager, 2011). Em-
pathy levels may be related to the ways in which people struc-
ture information in conversation. Speech-accompanying ges-
tures are related to information threads in the flow of the con-
versation. Speakers with a high empathy level may think
more about how well the listener can follow the conversa-
tion and structure the order of information, accordingly. This
may lead to specific patterns gesture sequences because dif-
ferent types of gestures are associated with different types
of utterances (e.g., representational gestures with narrative
utterances and beat gestures with meta-narrative utterances
(McNeill, 1992)). Our results suggest that empathic people
structure their gestural communication at the discourse level
in ways that are different from less empathic people.

Several directions for future work may be considered.
First, an in-depth, qualitative analysis of the patterns may be
carried out to investigate, for instance, whether differences
are caused by clustering of certain types of gestures at vari-
ous points in narrative and/or systematicities in the use of in-
teractive gestures alongside speech. The most discriminative



patterns between the classes could provide insight into which
gesture sequences are typical for a particular empathy level.
Second, PBSC allows for alternative gesture representations,
for instance, combining representations of different aspects
of a gesture into one complex symbol. This can be used to
investigate the relative importance of different aspects of ges-
tures. Third, a cross-linguistic comparison may be interest-
ing. Information provided in multi-pattern gesture sequences
might become more pronounced in, for instance, Turkish and
Japanese conversations, because in these languages certain
aspects of motion events in gesture are more often sequential-
ized than in English. Fourth, the relationship between multi-
gesture sequences and other personality traits than empathy
or particular cognitive abilities can also be investigated. Fi-
nally, we believe that the PBSC approach can be applied to
many other situations that deal with the classification of sym-
bolic sequences (e.g., the visual, auditory, and motor sensory
domains).
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