
Unsupervised identification of compounds

Suzanne Aussems s.h.j.a.aussems@tilburguniversity.edu
Bas Goris b.c.c.goris@tilburguniversity.edu
Vincent Lichtenberg v.j.j.lichtenberg@tilburguniversity.edu
Nanne van Noord nanne@tilburguniversity.edu
Rick Smetsers r.h.a.m.smetsers@tilburguniversity.edu
Menno van Zaanen mvzaanen@tilburguniversity.edu

Tilburg University, Tilburg, The Netherlands

Keywords: automatic compound recognition, point-wise mutual information, edge detection, unsupervised
machine learning

Abstract

In a variety of languages, compounds (i.e.,
lexemes consisting of more than one stem) are
written as one token. Identifying such com-
pounds together with their compound bound-
aries can help improve the quality of com-
putational linguistic tasks such as machine
translation and spelling correction. In or-
der to create annotated compound datasets,
we need to be able to identify compounds
in various languages. Since manual iden-
tification is very time consuming, we pro-
pose novel, language-independent approaches
to the identification of compounds in sets
of words. A range of methods has been
explored, including unsupervised machine
learning approaches. The most successful ap-
proach focuses on the identification of com-
pound boundaries by identifying irregulari-
ties in letter combinations, exploiting point-
wise mutual information values between let-
ter n-grams. The results of applying of our
methods to a collection of Dutch words show
major improvements over a word-based com-
pound identifier.

1. Introduction

In languages such as German, Russian, Finnish, Ice-
landic, Afrikaans and Dutch, the process of compound-
ing is highly productive. New compounds can be cre-

Appearing in Proceedings of BENELEARN 2013. Copy-
right 2013 by the author(s)/owner(s).

ated by combining two or more simplex words into a
new word (van Huyssteen & van Zaanen, 2004). The
meaning of the compound depends on the meaning
of its parts. For instance, in Dutch, the compound
slakom ‘lettuce bowl ’ consists of the simplex words sla
‘lettuce’ and kom ‘bowl ’. The process of compounding
can be repeated, leading to compounds that have more
than two simplex components, such as slakomverkoper
‘lettuce bowl vendor ’.

Due to the productive nature of the process of com-
pounding, fixed word lists will always be a limiting
factor in describing the dictionaries of languages that
allow for compounding. Automatic identification of
compounds and compound boundaries can help im-
prove upon the quality of linguistic applications such
as machine translators and spelling checkers. For in-
stance, being able to identify the parts of a compound
allows for the translation of the parts (for instance,
if fietspad ‘bicycle path’ is not in the dictionary, but
the compound boundary (fiets + pad) and the sim-
plex words fiets ‘bicycle’ and pad ‘path’ are known,
the word may still be translated). Similarly, spelling
correctors require knowledge of the process of com-
pounding to accept valid compounds.

In certain cases, the concatenation of simplex words
into compounds requires a form of “glue”. For in-
stance, instellingenmenu ‘setup menu’ contains the
simplex words instelling ‘setup’ and menu ‘menu’ with
the morpheme en serving as a glue. Such morphemes
are called linking morphemes (Booij, 1996; Wiese,
1996).

Note that in other languages, such as English, com-
ponents of compounds are written as separate tokens.
The identification of such multi-word compound units

Unsupervised identification of compounds

is not trivial (Mima & Ananiadou, 2000). While there
are certain similarities between multi-word compound
units and single token compounds, the differences are
to such an extent that they require a different approach
(Ryder, 1994).

Previous research concerned with splitting compounds
has been conducted primarily in the context of ma-
chine translation (Koehn & Knight, 2003; Garera &
Yarowsky, 2008; Macherey et al., 2011; Alfonseca
et al., 2008). In previous studies, monolingual and
bilingual approaches can be distinguished.

Several bilingual approaches have successfully used in-
formation from parallel corpora to identify compound
boundaries. Koehn and Knight (2003) break up Ger-
man compounds so that a one-to-one correspondence
to English content words can be established. Part-
of-speech tags and frequency information are used to
align German compound parts to their English trans-
lations. Similarly, Macherey et al. (2011) apply dy-
namic programming to find one-to-one mappings to
English translations of German and Greek compound
parts. The emphasis on finding correct translations
for compounds is also evident in Garera and Yarowsky
(2008). While their approach does not require bilin-
gual training text, the authors use cross language com-
pound evidence obtained from bilingual dictionaries;
an approach similar to Koehn and Knight (2003).

The purpose of these bilingual approaches is to im-
prove the quality of machine translation systems. For
their tasks, parallel corpora augmented with meta-
data are readily available. Monolingual methods aim
to identify compound boundaries without the need of
such information. Alfonseca et al. (2008) apply fre-
quency and probability based methods, and search for
compound components that occur in different anchor
texts pointing to the same document. The combined
features are used in a supervised machine learning clas-
sifier.

Research has been conducted on the segmentation of
words in morphemes. The Morfessor system (Creutz
& Lagus, 2005) implements an unsupervised method
for producing a segmentation of morphemes. Its task
is to model a language that consists of a lexicon of
morphemes, by looking at high-frequency n-grams in
unannotated corpus text. Segmentation is applied by
matching morphemes in the constructed lexicon to
words. As such, its approach is similar to our com-
pound component approach, described in Section 3.1.
Authors report precision scores as high as 63% and re-
call as high as 75% for English word type boundaries,
and precision of 85% and recall of 53% for Finnish
word type boundaries.

Our research is different from previous work in sev-
eral regards. In the first place, our task is different
as we aim to identify compounds and not compound
boundaries. To achieve this, we investigate several un-
supervised methods. In the second place, our monolin-
gual data consists solely of individual lemmas, without
additional frequency data, POS tags or other meta-
information. As such, our methods can be applied to
identify compounds in languages where such informa-
tion is not readily available.

The task of identifying compounds in non-trivial.
There are even cases in which it is unclear whether
a word is a compound (without further context). For
instance, the word minister can mean ‘minister ’ or
‘mini star ’. In the first case, the word is a simplex
word, whereas in the second situation, the word is
a compound mini + ster. Such situations happen
regularly as certain affixes can also serve as simplex
words. For instance, vergeven ‘to forgive’ is not a com-
pound, but can be analyzed as one ver + geven ‘far
to give’. Another such affix is -lijk, for instance in man-
nelijk ‘manly ’, but the simplex word lijk translates to
‘corpse’.

van Huyssteen and van Zaanen (2004) propose
two compound analysis systems for compounds in
Afrikaans, that recognize compound boundaries and
linking morphemes if present. The first system is based
on a longest string-matching algorithm that searches
for known (simplex) words at the beginning and at the
end of a potential compound. If the analysis of a po-
tential compound shows that it consists of valid and
shorter words from a word list, possibly glued together
using valid linking morphemes, the word is considered
a compound. This algorithm forms the basis of the
compound component identifier as described in Sec-
tion 3.1.

The second system is an unsupervised clustering ap-
proach that, based on k-means, groups words in either
a compound or non-compound class. The clustering is
performed based on shallow, word-driven features.

The final system is an unsupervised machine learning
classification approach that decides whether there is a
compound boundary or linking morpheme boundary
between any of the letters in the word. Using a sliding
window, all positions between letters in the word are
considered. The letters left and right of the between-
letter positions are used as features in the machine
learning classifier. The systems described in this pa-
per are unsupervised and as such do not require any
annotated data.

Unsupervised identification of compounds

2. Problem description

Ultimately, we would like to be able to develop sys-
tems that automatically identify compound and link-
ing morpheme boundaries given a compound. How-
ever, developing and evaluating such systems requires
datasets annotated with compound boundaries.

Unfortunately, only a very limited number of anno-
tated compounds datasets exist. For instance, the
CKarma dataset (CText, 2005; Pilon & Puttkammer,
2008) contains 72,849 annotated Afrikaans compounds
and for Dutch, the e-Lex dataset (see Section 4.1) is
available, containing 88,713 annotated compounds.

To create larger datasets of (manually) annotated com-
pounds, or to create such datasets for languages for
which no such datasets yet exist, access to a dataset
containing (only) compounds is required. The research
described here aims to tackle the problem of automat-
ically identifying compounds in large plain text cor-
pora.

Following the identification of compounds, the anno-
tation task is to manually identify the compound and
linking morpheme boundaries. Manually annotating
such a list of types is an expertise, time and resource
intensive task as each word has to be considered.

Systems that identify compounds in corpora should
aim for the identification of as many compounds as
possible (high recall), while limiting the incorporation
of non-compounds as much as possible (high preci-
sion). Compounds that are not identified by the sys-
tem will never be considered for manual annotation at
all, but non-compounds can still be discarded during
the compound boundary annotation.

3. System description

We have experimented with a variety of systems to
identify compounds given a set of words. First, we de-
scribe the compound component identifier, which is a
word-based approach. Second, we propose an unsuper-
vised clustering approach, which aims to identify com-
pounds based on a combination of shallow features.
Finally, we describe approaches that aim to identify
potential compound boundaries based on the point-
wise mutual information values between letters, which
indicate the regularity of letters occurring next to each
other. Letter combinations that do not co-locate reg-
ularly are likely to be compound boundaries.

The systems described here receive only a set of types
as input. No frequency information is given, because
often no reliable counts can be obtained. For instance,
for Afrikaans, no publicly available large scale corpus

exists. In case a system requires additional informa-
tion, this is indicated in the description of the system.
Ideally, the developed systems are completely unsu-
pervised and language independent.

3.1. Compound component identifier

Based on the idea that compounds consist of two or
more meaningful lexical stems, van Huyssteen and
van Zaanen (2004) developed a system, called longest
string-matching, that identifies compound boundaries
in compounds. The algorithm takes a compound as in-
put and recursively searches a dictionary (containing
simplex words) for words that can be concatenated to
form a compound. The system is also able to deal with
linking morphemes, which are provided beforehand.

The compound component (CC) identifier follows the
idea of the longest string-matching approach closely.
However, in contrast to the longest string-matching
algorithm, the CC identifier does not have access to a
list of simplex words. The CC identifier solves this by
making use of all the words in the input dataset. To
be more precise, the CC identifier receives a compre-
hensive set of input data containing both simplex and
compound types. The CC identifier then searches for
types that can be constructed by concatenating two
or more other types from the set. If the CC identi-
fies such a construction, the system classifies it as a
compound.

The CC identifier is provided with a list of valid link-
ing morphemes beforehand. This information is lan-
guage dependent, so the system requires minor super-
vision by an expert. We have taken into account that
very short simplex words lead to over-generation of the
system (identifying too many words as compounds).
Specifically two letter words, which are typically func-
tion words, such as determiners, prepositions or con-
junctions, (for instance in ‘in’, op ‘on’, na ‘after ’, or
en ‘and ’) have a large negative impact. Despite being
valid simplex words, they can be used incorrectly as a
stem in a compound. For instance, the non-compound
inbedden ‘to embed ’ can be split into in + bedden ‘in
+ beds’. To solve this problem, we limit the minimum
component length to three letters.

3.2. k-Means identifier

The idea behind the k-means identifier (KM) is that
a combination of surface properties of words may be
enough to identify words as compounds. For instance,
because compounds are constructed using several sim-
plex words, on average they tend to be longer than
simplex words or contain more syllables. Obviously,
each feature by itself does not provide enough infor-

Unsupervised identification of compounds

mation to decide whether a word is a compound or
not, but a combination of features may yield useful
results.

The input of the KM identifier is, like the other sys-
tems we describe here, a set of types. Shallow features
are extracted, leading to a feature vector for each type.
The collection of feature vectors serves as the input of
a k-means clustering algorithm. The value of k de-
scribes the number of classes, which is set manually
beforehand. All possible combinations of the follow-
ing features have been used in the experiments.

word length the number of characters in the word;

longest vowel cluster length the length of the
longest sequence of adjacent vowels in the word;

vowel cluster count the number of vowel clusters in
the word (serving as a rough approximation of
syllable count);

cumulative bi-gram probability the sum of the
letter bi-gram log probabilities of the word (n-
gram probabilities are always smaller than 1, so
we take the absolute values of the log probabili-
ties);

cumulative tri-gram probability the sum of the
absolute values of the letter tri-gram log proba-
bilities in the word;

cumulative 4-gram probability the sum of the ab-
solute values of the letter 4-gram log probabilities
in the word;

cumulative 5-gram probability the sum of the ab-
solute values of the letter 5-gram log probabilities
in the word;

valid word regex classification boolean classifica-
tion based on a regular expression match that
yields false if a substring of the word consists of a
sequence of three non-alphabetic characters, oth-
erwise the word is classified as true. This feature
was added to reduce noise and the influence of
digit combinations in datasets.

3.3. Point-wise mutual information identifier

The approach we describe in this section is based
on the idea that compound boundaries can be found
where “unusual” letter combinations occur. The un-
derlying idea is based on the following observed prop-
erties of language:

1. the unequal distribution of character n-grams
found in languages such as English and Chinese
(Ha et al., 2003);

2. our observation that in simplex and non-
compound words certain letter combinations oc-
cur more often in isolation than together.

These properties may be different between simplex
words and compounds, since compounds contain letter
combinations that disregard the unequal distribution
of letter sequences (specifically around the boundary
of the simplex words in the compound). To clarify,
a compound can consist of two simplex words each
by itself adheres to the non-linear distribution of let-
ter combinations (n-grams). However, the compound
boundary does not, because compound boundary let-
ter combinations simply consist of the beginning and
ending of the simplex components.

To measure the regularity of letter combinations, we
use the point-wise mutual information (PMI) metric.
The following paragraphs explain the process of calcu-
lating these values, but let us exemplify its use first
with the following example. The word boekenbeurs
‘book convention’ has a compound boundary between
boeken and beurs.1 Figure 1 shows that the letter com-
binations on compound boundary enbe, en and be, oc-
cur more often in isolation than together. In other
words, the PMI value for the two bi-grams is low,
which shows that it is surprising that these characters
occur together.

The calculation of the point-wise mutual information
(PMI) metric between two letter n-grams, A and B is
calculated according to Equation 1. The probability
of the concatenated n-grams (AB) is divided by the
product of the probabilities of the n-grams by them-
selves. The results described here are all generated
using n = 2. Note that the results of the fraction
is always smaller than or equal to 1. Taking the log
leads to a negative result where smaller fractions lead
to larger PMI values. The calculation of the probabil-
ity of a letter n-gram is computed using the relative
frequency (see Equation 2).

pmi(A,B) = log
P (AB)

P (A) ∗ P (B)
(1)

P (X) =
count(X)

|corpus|
(2)

1The simplex boeken contains a linking morpheme
boundary, but this is irrelevant when identifying com-
pounds.

Unsupervised identification of compounds

-2
-1

0
1

2

P
M

I
va

lu
e

b
o
-e

k

o
e-

ke

ek
-e

n

ke
-n

b

en
-b

e

n
b

-e
u

b
e-

u
r

eu
-r

s

Figure 1. PMI values for the boundaries in boekenbeurs
‘book convention’. The dashed line is the mean, the dotted
line is one standard deviation below the mean.

Given a word, PMI values are computed by applying
a sliding window over the word. Equation 1 is applied
to each letter n ∗ 2-gram, where the relative frequency
of the two adjacent letter n-grams constitute A and B
respectively. For a word of length k, this procedure
yields a set of k− (n ∗ 2) PMI values (see Equation 3).
Here pmi0 represents the application of the pmi func-
tion on the first letter n ∗ 2-gram in the word. For
example, PMI for letter bi-grams in fietspad ‘bicycle
path’ yields a set of values for letter 4-grams: fiet, iets,
etsp, tspa and spad.

PMI = {pmii}k−(n∗2)i=0 (3)

After calculating PMI the resulting values are stan-
dardized according to Equation 4, where µ is the mean
of the values and σ is the standard deviation. The
standardized PMI values (z) are evaluated on their
distance to µ. If a value exceeds a given threshold
parameter t, which signifies the number of standard
deviations from the mean, a word is identified as be-
ing a compound.

z =
x− µ
σ

(4)

3.4. PMI edge detection identifier

To improve compound identification performance,
edge detection filters are applied to PMI values ob-

tained from the system described in Section 3.3. Edge
detection is a technique widely used in the field of
signal processing to detect discontinuities in multi-
dimensional signals. A small matrix, called a kernel,
is applied to the signal, to either sharpen or smoothen
the input. This is accomplished by means of convolu-
tion between the kernel and the input signal (Ziou &
Tabbone, 1998). Since our data is of a one-dimensional
nature, we utilize vector kernels instead of matrices.
It is expected that compound boundaries (i.e., dips in
PMI values) are more easily detectable after applica-
tion of an edge detection kernel.

Kernel convolution usually requires values from out-
side the range of the PMI values. Therefore, “edges”
(i.e., the first and last PMI values) are extended with
length k, which is calculated according to Equation 5.
Then, a sliding window is applied and dot products of
the kernel and the PMI values are calculated accord-
ing to Equation 6. Resulting values are standardized
according to Equation 4 and evaluated on the number
of standard deviations they differ from the mean. As
such, evaluation is identical to that of “regular” PMI
values, described in Section 3.3.

k = b |kernel|
2
c (5)

PMIfiltered =


|kernel|∑
i=0

pmij+(i−k)kerneli


|PMI|

j=0

(6)

Two types of convolution kernels are evaluated here,
based on Gaussian (Equation 7) and sigmoid (Equa-
tion 8) functions respectively. Kernel values are calcu-
lated based on a template and an input parameter p.
To ensure that the output values are of the same rel-
ative magnitude as the input values, the kernel values
are normalized so that the sum of their values equals 1.
All kernels we evaluated are of length three (yielding
context k = b 32c = 1).

kernelGaussian,p =

{
1

3
− p, 1

3
+ 2p,

1

3
− p
}

(7)

kernelsigmoid,p =

{
1

3
− p, 1

3
,

1

3
+ p

}
(8)

As shown in Figure 2 (compared to Figure 1) dif-
ferences between PMI values get larger when edge-
detection is applied to the PMI of the word boeken-
beurs. It is expected that edge detection techniques

Unsupervised identification of compounds

-1
.0

-0
.5

0
.0

0
.5

P
M

I
va

lu
e

b
o
-e

k

o
e-

ke

ek
-e

n

ke
-n

b

en
-b

e

n
b

-e
u

b
e-

u
r

eu
-r

s

Figure 2. Sigmoid edge detection with p = 1 applied to
PMI values for the boundaries of the word boekenbeurs.
The dashed line is the mean, the dotted line is one standard
deviation below the mean.

amplify compound boundaries and help identifying
compounds.

4. Results

4.1. Dataset

All systems are tested on the Dutch e-Lex
dataset (http://tst-centrale.org/nl/producten/
lexica/e-lex/7-25), which contains a total of 96,219
morphologically segmented lemma entries. The mor-
phological segmentations of the lemmata were used
during evaluation of our systems to determine which
words were compounds. We identified compounds by
parsing hierarchical morphological segmentations. A
total of 68,686 lemma entries that contain composi-
tional morphology were identified as compounds. The
remaining 27,533 words are simplex words possibly an-
notated with derivational morphology structure.

4.2. System results

The results of all systems can be found in Table 1.
The compound component identifier has the highest
precision, which was expected as it exploits the fact
that compounds are built from simplex words and e-
Lex contains a substantial amount of simplex words.
The CC identifier does not have any manually tunable
parameters. As such, it can not be modified to improve
recall.

Table 1. Results for all systems on the e-Lex dataset. P
is precision, R is recall and F1 is F1 score. For k-means
experiments, feature combinations for optimal Fβ scores
are selected. For the PMI experiments, N, G and S
indicates that no edge detection, Gaussian or sigmoid
filters have been applied, p indicates the kernel parameter
value and t refers to the threshold used for classification.
Italics indicate system dependent best results. Overall
best results are shown in boldface.

P R F1

Compound component identifier
89.603 63.268 74.166

k-means identifier
max F0.5, k = 2 83.842 61.573 71.002
max F1, k = 2 76.236 80.134 78.136
max F2, k = 2 76.236 80.134 78.136

Point-wise mutual information identifier
N, t = 1 74.683 73.842 74.260
N, t = 0.1 73.092 99.999 84.454
N, t = 0.3 73.103 99.987 84.457
G, p = 0.3, t = 1 74.754 78.051 76.367
G, p = 0.5, t = 0.2 73.096 99.999 84.456
G, p = 0.7, t = 0.2 73.118 99.975 84.463
S, p = 0.3, t = 1 73.816 88.989 80.695
S, p = −1.9, t = 0.1 73.093 99.999 84.455

The k-means identifier is applied to the data with k =
2 target classes. In each experiment, the class that fits
the compound class best, is selected as the compound
class. The best results are found when using only a
sub-set of the features. When optimizing on F0.5, the
longest vowel cluster length and cumulative 5-gram
probability features are used. When optimizing F1 or
F2, only the vowel cluster count feature is used.

In an attempt to improve precision and recall values
separately, experiments have been conducted by max-
imizing commonly used Fβ measures. The F0.5 mea-
sure weights precision higher than recall and the F2

measure puts more emphasis on recall than precision
as shown in Equation 9. It is interesting to note that
the F0.5 optimized k-means identifier is able to pro-
duce results comparable to the compound component
identifier, even though the sources of information are
completely different.

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
(9)

The threshold t for evaluating PMI values is set to val-
ues between 0.1 and 3.5 standard deviations from the
mean. The best F1 and recall scores for all three PMI
variants (unfiltered, sigmoid and Gaussian) are found

Unsupervised identification of compounds

-10 -5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p values

F
1

sc
o
re

t=0.1
t=0.3

t=0.5
t=1.0

t=2.0
t=3.0

Figure 3. F1 score results for the sigmoid filter with varying
t and p values.

with t values between 0.1 and 0.3. The best results
of all three systems are comparable. Best precision is
obtained with slightly higher thresholds, ranging be-
tween 0.5 and 1. Increasing the threshold to values
higher than 1 rapidly degrades performance: unfiltered
PMI values evaluated to a threshold of 1.5 already re-
sult in a F1 score of 45.570, while a threshold of 3.5
only yields a F1 score of 1.744, which is similar to the
Gaussian and sigmoid results.

Precision obtained by PMI variants never reach those
generated by the compound component and k-means
methods.

Even though the Gaussian, sigmoid and unfiltered
PMI settings all yield significantly different distribu-
tions of F1 scores , their behavior is similar when vary-
ing the values of the parameter p (varying the impact
of the values in the context). Both increasing or de-
creasing p to a certain extent lead to similar precision,
recall, and F1 scores. The best F1 scores are obtained
with p around 0. Performance rapidly decreases with
larger absolute p values. This is illustrated in Figure 3.
Here we see the F1 score results of the sigmoid filter
with various values for t and p. This indicates that
essentially the application of the kernels does not lead
to improved results.

5. Conclusion

In this paper we have investigated different approaches
to the identification of compounds in a set of words.
These systems will be used to select compounds that
will be structurally annotated for compound bound-
aries by human annotators in a later stage.

The compound component (CC) system is based on
a similar system that has been used in the past to
identify compound boundaries automatically. The CC
system identifies compounds in a set of words by iden-
tifying components (which are simplex words) in the
given set of words. This system leads to a high preci-
sion. A second approach, based on the unsupervised k-
means clustering using shallow features of words leads
to similar performance using different information.

We compared these results against a third approach,
which is based on point-wise mutual information
(PMI) values of the consecutive letter combinations
in the word. These systems result in the highest recall
(near 100%) and F1 scores (over 84%).

As future work, we are interested in using the PMI
system to identify the actual compound boundaries
(similarly to the use of the original CC system and
others described as previous research earlier). How-
ever, preliminary results show that the PMI systems
also identify boundaries that are not actual compound
boundaries, but may correspond to other morpholog-
ical boundaries. In the setting described here, this is
not a problem. A word is considered a compound if
at least one boundary is found. However, identifying
too many boundaries has a negative effect on the pre-
cision of the identification of compound boundaries.
Future work will concentrate on the development of
systems that identify compound boundaries based on
the compound identification systems.

Ultimately, we would like to use these systems to iden-
tify potential compounds from large plain text cor-
pora. For Dutch we plan to identify compounds in the
SoNaR corpus (Oostdijk et al., 2008; Oostdijk et al.,
In press). SoNaR is a large collection of written con-
temporary Dutch texts. It contains approximately 500
million tokens and as such it provides a good start-
ing point to identify naturally occurring compounds
in Dutch.

Acknowledgments

The research described in this paper has been per-
formed in the context of the Automatic Compound
Processing (AuCoPro) project. This is a collabo-
ration between researchers from North-West Univer-

Unsupervised identification of compounds

sity (Potchefstroom, South Africa), the University
of Antwerp (Belgium) and Tilburg University (The
Netherlands). The project concentrates on the iden-
tification of compound boundaries (Tilburg) and the
semantic relations between the elements in compounds
(Antwerp). This research is performed both on Dutch
and Afrikaans (Potchefstroom).

The project is co-funded by a joint research grant of
the Nederlandse Taalunie (Dutch Language Union)
and the Department of Arts and Culture (DAC) of
South Africa and a grant of the National Research
Foundation (NRF) (grant number 81794).

We would also like to thank Sylvie Bruys, who helped
during the initial phase of the project and who has
manually annotated compound data.

References

Alfonseca, E., Bilac, S., & Pharies, S. (2008). Ger-
man decompounding in a difficult corpus. CICLing
Conference on Computational Linguistics and Intel-
ligent Text Processing (pp. 128–139). Berlin, Heidel-
berg: Springer.

Booij, G. (1996). Verbindingsklanken in samenstellin-
gen en de nieuwe spellingregeling. Nederlandse
Taalkunde, 2, 126–134.

Creutz, M., & Lagus, K. (2005). Unsupervised mor-
pheme segmentation and morphology induction from
text corpora using morfessor 1.0 (Technical Report).
Helsinki University of Technology.

CText (2005). Ckarma: C5 kompositumanaliseerder
vir robuuste morfologiese analise (Technical Re-
port). Centre for Text Technology (CText), North-
West University, Potchefstroom, South Africa.

Garera, N., & Yarowsky, D. (2008). Translating
compounds by learning component gloss translation
models via multiple languages. Proceedings of the
3rd International Conference on Natural Language
Processing (IJCNLP) (pp. 403–410).

Ha, L. Q., Sicilia-garcia, E. I., Ming, J., & Smith,
F. J. (2003). Extension of Zipf’s law to word and
character n-grams for English and Chinese. Journal
of Computational Linguistics and Chinese Language
Processing, 8, 77–102.

Koehn, P., & Knight, K. (2003). Empirical methods
for compound splitting. Proceedings of the 11th An-
nual Meeting of the European Chapter of the As-
sociation for Computational Linguistics (EACL);
Dublin, Ireland (pp. 187–194).

Macherey, K., Dai, A. M., Talbot, D., Popat, A. C.,
& Och, F. (2011). Language-independent compound
splitting with morphological operations. Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics; Portland, OR, USA (pp.
1395–1404). New Brunswick:NJ, USA: Association
for Computational Linguistics.

Mima, H., & Ananiadou, S. (2000). An application
and evaluation of the c/nc-value approach for the
automatic term recognition of multi-word units in
japanese. Terminology, 6, 175–194. Special issue on
Japanese Term Extraction.

Oostdijk, N., Reynaert, M., Hoste, V., & Schuur-
man, I. (In press). The construction of a 500-
million-word reference corpus of contemporary writ-
ten dutch. In P. Spyns and J. Odijk (Eds.), Essential
speech and language technology for dutch: Results
by the stevin-programme, chapter 13. Berlin Heidel-
berg, Germany: Springer-Verlag.

Oostdijk, N., Reynaert, M., Monachesi, P., van No-
ord, G., Ordelman, R., Schuurman, I., & Vandegh-
inste, V. (2008). From D-Coi to SoNaR: A reference
corpus for dutch. Proceedings on the sixth interna-
tional conference on language resources and evalua-
tion (LREC 2008); Marrakech, Marokko (pp. 1437–
1444). ELRA.

Pilon, S., & Puttkammer, M. J. andVan Huyssteen,
G. B. (2008). Die ontwikkeling van ’n woordafbreker
en kompositumanaliseerder vir afrikaans (the devel-
opment of a hyphenator and compound analyser for
afrikaans). Literator, 29, 21–41.

Ryder, M. E. (1994). Ordered chaos: The interpreta-
tion of english noun-noun compounds, vol. 123. Uni-
versity of California press.

van Huyssteen, G. B., & van Zaanen, M. M.
(2004). Learning compound boundaries for afrikaans
spelling checking. Pre-Proceedings of the Workshop
on International Proofing Tools and Language Tech-
nologies; Patras, Greece (pp. 101–108).

Wiese, R. (1996). The phonology of german. New
York: NY, USA: Oxford University Press.

Ziou, D., & Tabbone, S. (1998). Edge detection tech-
niques - an overview. International Journal of Pat-
tern Recognition and Image Analysis, 8, 537–559.

