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Fig. 6.8 A linear food chain in a freshwater ecosystem: algae are eaten by daphnids, which are eaten by copepods, which are
eaten by mysids, which are eaten by small fish, which are eaten by big fish. The signs of the coupling factors are indicated.

the whole food chain. This is known as the bottom-up cascade. Now
consider a disturbance which affects only the top predator directly. The
shortest-walk effects are now composed of minus signs, and will thus
have alternating effects on the lower trophic levels.19 This is known as

19 Suppose that the top predator
is negatively affected, e.g. by a toxin
added to the ecosystem. Which levels
will increase, and which will decrease?

the top-down cascade. Such trophic cascades can thus be expected
to be prominent in linear food chains. However, most ecosystems form
food webs rather than linear chains. A key feature is that the predators
are not neatly distributed over discrete trophic levels: they may prey on
several species some of which are “closer” to the primary producer level
than others. This introduces additional walks in the coupling graph,
with different net signs, as predators may “bypass” some intermediate
levels (e. g. the mysid in Fig. 6.8 may also feed on daphnids, bypassing
the copepod level). The result is that food webs are more robust than
linear chains, in the sense that disturbances diminish in magnitude more
quickly as they ripple out from the site of direct disturbance.20

20 Ecologists discuss these ro-
bustness effects in terms of diversity
and connectivity. How are these con-
cepts related to the static susceptibility
matrix and the coupling graph?

6.3 Microbial growth in a chemostat

The chemostat is a widely-used apparatus used in the study of mi-
crobial physiology and ecology. In such a chemostat (also known as
continuous-flow culture), microbes (such as bacteria and yeast cells)
can be grown under precisely controlled conditions. Fig. 6.9 shows a
diagram. The microbes grow in the main culture vessel which contains
a well-stirred culture medium. This medium is replenished from a reser-
voir shown on the left. As a constant volumetric flow F of fresh medium
enters the culture vessel propelled by a pump, an overflow21 allows an 21Such a device is alternatively known

as a porcelator.equal flow to leave the culture vessel, so that the vessel retains a con-
stant volume V of culture at all times. The experimenter can control
the pump and thus the flow F ; the reservoir nutrient concentration CR

can of course also be varied at will by the experimenter. However, in
the classic set-up, the experimenter keeps both F and CR at fixed values
and waits for the system to settle on a steady state.
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Fig. 6.9 The continuous-flow culture
vessel or chemostat.
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Figure 1: The continuous-flow culture vessel or chemostat.
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6.3.1 Basic chemostat equations

Let W denote the microbial biomass in the culture vessel and N the
molar amount of nutrient in the vessel. We have two conservation equa-
tions:

d

dt
W = µW − F

W

V
(6.20)

d

dt
N = FCR − F

N

V
− SµW . (6.21)

The term µW represents the increase in biomass due to growth; the fac-
tor µ is the per capita reproduction rate, which we called relative growth
rate before but which is known in these systems more commonly as the
specific growth rate. Biomass leaves the system at a rate FW/V
which makes intuitive sense if W/V is viewed as the biomass concentra-
tion in the culture vessel. The second equation describes the amount
of nutrient. The first two terms on the right-hand side again describe
the influx and efflux of nutrient, whereas the third term describes the
conversion of nutrient into biomass. The factor S expresses the stoi-
chiometry of this conversion. The ratio F/V plays an important role in
the operation of the chemostat and therefore has a name of its own: it
is called the dilution rate, traditionally denoted D. For the nutrient
concentration C = N/V we have the following dynamics:2222 Derive eqn (6.22) from

eqn (6.21) and the definitions given.
d

dt
C = D (CR − C)− Sµ

W

V
. (6.22)

The steady state is, as per usual, characterized by the conditions d
dtW =

0 and d
dtC = 0, whence2323 Check this; apply the defini-

tion D = F/V first.

µ = D and C = CR − SW/V at steady state.

The experimenter controls the dilution rate D, which is just a setting
on the pump in the apparatus shown in Fig. 6.9. Since µ = D at
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steady state, the experimenter effectively forces the cells to grow at
the rate she desires. In fact, this phenomenon is the great advantage
of continuous culture: after the chemostat settles on steady state, the
cells can be sampled and their physiological state at various stationary
relative growth rates can be studied. Waiting for the system to attain
steady state is standard practice. However, as we shall presently see,
the transient behaviour actually contains important information about
the underlying biology.

The specific growth rate µ will generally vary with time, as a function
of the internal state of the organism and perhaps also the ambient con-
ditions (such as the nutrient concentration C). However, we can already
say something about the dynamical behaviour of the chemostat even
when, for now, we leave µ as an unspecified function of time. Consider
the following quantity:

X = W +
N

S
. (6.23)

This represents the actual biomass in the culture vessel (W ) plus the
biomass equivalent of the nutrient in the vessel (N/S). Its time course
is given by:24

24Derive the differential equation
for X:

d

dt
X = D

V CR

S
−DX

and solve it to find eqn (6.24).

X(t) =
V CR

S
+

(
V CR

S
−X0

)
exp{−Dt} (6.24)

where X0 is the initial condition, the value of X at time t = 0. From
eqn (6.24) we can infer that after an initial transient with relaxation
time D−1 (which occurs if we suddenly change the reservoir concentra-
tion CR), the quantity X settles down on its equilibrium value V CR/S.
From then onwards the following useful conservation law for the culture
vessel applies:

CR = C(t) + S
W (t)

V
. (6.25)

This equation states that biomass density and nutrient concentration
are complementary.25

25 Can you think of a quick way
to see why this result is not so surpris-
ing?

6.3.2 Logistic growth in the chemostat

To proceed further, we need to postulate a model for the relative growth
rate µ. One simple model is as a simple proportionality:26 µ = ϑC.

26Although simple, this model is rea-
sonable since the cells cannot grow
when there is no nutrient, so we would
expect µ = 0 when C = 0, and we
would also suppose that a linear ap-
proximation is reasonably accurate for
some range of sufficiently low values
of C.

Using eqns (6.25) and (6.20) we obtain:

d

dt
W = W

(
ϑCR −D − ϑS

V
W

)
. (6.26)

But this is just the logistic growth equation in disguise27. Of course, we
27Cast eqn (6.26) in the traditional
form of the Verhulst equation by defin-
ing r and K in terms of the present pa-
rameters

must not forget about the initial transient while X(t) approaches V CR/S,
so the growth curve may not be logistic during some initial period, but
if we pick the initial nutrient and biomass density in the culture vessel
so that they satisfy eqn (6.25), this equation will be valid for all t.
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6.3.3 Towards a model for the relative growth rate

In the last section the chemostat equations were introduced. The crucial
task for the mathematical modeller is to relate the relative growth rate µ
to the ambient conditions and/or the internal state of the cells. In this
section we follow this modelling process in detail, to highlight the back-
and-forth between observations and theory (cf. Fig. 1.6).

As we saw before, the microbial culture in the vessel settles, after a
while, on a steady state when the dilution rate D of the chemostat and
the reservoir nutrient concentration CR are kept at a fixed value. In
the steady state, we can observe the biomass W , the nutrient concen-
tration C, and the relative growth rate µ which at steady state equals
the dilution rate D (the bar over the symbols signifies stationarity in
time). Obtaining these data for a range of dilution rate settings, the
experimenter accumulates a data set consisting of triples {µ,W,C} (i.e.
a table with three columns). The next step is to look for systematic re-
lationships in this data set. Plotting µ against C, the experimenter finds
that the data points closely adhere to the following simple mathematical
expression:

µ = α
C

β + C
(6.27)

where α and β are two positive parameters which the experimenter is
able to estimate using the non-linear least squares criterion (see Sec-
tion 4.2). This hyperbolic relationship immediately reminds the exper-
imenter of the Michaelis-Menten relationship for the nutrient uptake
system (see Section 2.3), which suggests that β represents the Km of
this uptake system. Moreover, this identification suggests a more gen-
eral principle:
The specific growth rate is directly proportional to the saturation frac-
tion of the uptake system (which is given by C/(Km + C)). (I)
This principle is proposed to apply also to the transient situation, where
C is time-varying.

Fig. 6.10 Glycogen (poly-glucose)
granules in Escherichia coli cells: an
example of nutrient storage in micro-
organisms.

Next, the experimenter acquires an instrument which allows her to
analyse the chemical contents of the cells. It is found that the cells have
internal stores of the nutrient. The total amount of this nutrient in the
culture at steady state is denoted Q (Q for quota). The experimenter
calls the ratio Q/W the relative nutrient quota. Plotting the steady-
state growth rate against the relative nutrient quota, again a very good
agreement is found with a simple mathematical relationship:

µ = γ
Q/W

δ + Q/W
(6.28)

where γ and δ are two new positive parameters. This suggests another
principle for the general28 state:28By the general state we mean not

only the steady state, but transients as
well. The specific growth rate is a hyperbolic function of the relative nutrient

quota. (II)
We now have two equations, and two principles, and the experimenter
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wants to determine which is valid. Let us begin with the easy question:
can equations (6.27) and (6.28) both be valid descriptions of the steady-
state data? The answer is: certainly. Moreover, we can inform the
experimenter29 that she will find another hyperbolic relationship if she 29 Derive eqn (6.29) from

eqns (6.27) and (6.28).plots the relative nutrient quota against the concentration:

Q

W
=

αδ

γ − α
× C

βγ/(γ − α) + C
. (6.29)

To her delight, this comes out as predicted. The choice between princi-
ples (I) and (II) is more complicated. These are putative laws which ex-
tend beyond the regime under which the data were obtained (the steady
state). Fortunately, modelling can help here, by predicting how the cul-
ture will respond dynamically to perturbations, if one or the other prin-
ciple is assumed. The perturbations might be step changes in dilution
rate or feed reservoir nutrient concentration. For each perturbation, we
can evaluate the chemostat equations to work out what should happen.
Principle (I) leads to the following system of differential equations:30 30 Derive eqns(6.30) and (6.31)

by combining the chemostat equations
of Section 6.3.1 with eqn (6.27).d

dt
W = W

(
α

C

β + C
−D

)
(6.30)

d

dt
C = D (CR − C)− αSW

V
× C

β + C
. (6.31)

The experimenter carries out the perturbations and finds a poor agree-
ment with the predictions: in general, the cells seem to respond more
sluggishly to changes in nutrient concentration C. For instance, in a
wash-out experiment were CR is set to zero at time t = 0 (this is done
by connecting the supply tube to a reservoir containing medium without
nutrient), the predicted curve for the nutrient concentration in the cul-
ture vessel agrees very well with the data, whereas the biomass shows a
distinct lag before it starts to decrease, as shown in Fig. 6.11. Also, the
experimenter enlists the help of a biochemist who determines the Km

of the nutrient uptake system, and finds that the latter is much larger
than β, whereas principle (I) asserts that they should be about equal,
allowing for slight variations due to the fact that different experimental
approaches were used.31

31 Consider a microbiologist who
firmly believes in principle (I). As far
as he is concerned, the chemostat curve
is simply a way of determining Km.
He asserts a discrepancy between two
methods of measuring Km. What
could be done to change this microbiol-
ogist’s mind?

The experimentalist now asks us, the modellers, for another dynamic
prediction, this time assuming principle (II). Since any decent model
must satisfy basic conservation principles, we might as well take a con-
servation law as our starting point:32

32 Justify eqn (6.32).d

dt
Q = VmW

C

Km + C
− SµW −DQ (6.32)

where VmW expresses the maximum nutrient uptake rate, Vm being a
proportionality constant that expresses how much of the uptake machin-
ery is present per unit biomass. The constant S represents the stoichio-
metric conversion of nutrient into biomass, and D is the dilution rate of
the chemostat. The steady state associated with eqn (6.32) is compatible
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Fig. 6.11 Comparison of biomass (top
curve) and nutrient concentration (bot-
tom curve) predicted from principle (I)
with data in a wash-out experiment.
Whereas the data do not accord well
with principle (I), they are well de-
scribed by principle (II) (curve not
shown, as the data correspond closely
to the curve obtained under princi-
ple II).
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Figure 4.5: Comparison of biomass (top curve) and nutrient concentration (bottom
curve) predicted from principle (I) with data in a wash-out experiment.

is found with a simple mathematical relationship:

µ = γ
Q/W

δ + Q/W
(4.20)

where γ and δ are two new positive parameters. This suggests another principle
for the general (i.e. transient as well as steady) state:

The specific growth rate is a hyperbolic function of the nutrient quota.
(II)

We now have two equations, and two principles, and the experimenter wants
to decide which is valid. Let us begin with the easy question: can equations (??)
and (??) both be valid descriptions of the steady-state data? The answer is: of
course, and, moreover, after a little algebra we can inform the experimenter that
she will find another hyperbolic relationship if she plots the nutrient quota against
the concentration:

Q

W
=

αδ

γ − α
× C

βγ/(γ − α) + C
. (4.21)

To her delight, this comes out as predicted.
The choice between principles (I) and (II) is more complicated. These are

putative laws which extend beyond the regime under which the data were obtained
(the steady state). But modelling can help here, by predicting how the culture will

with equations (6.27)–(6.29) only if the parameter values satisfy certain
identities. Specifically, compatibility requires the following parameter
identifications:3333 Demonstrate this. Start from

steady state (assume C constant, put
d
dt Q = 0 and set µ = D) and com-
pare the equation you obtain with equa-
tions (6.27)–(6.29).

α = µ̂
Vm

µ̂S + Vm
; β = Km

µ̂S

µ̂S + Vm
; γ = µ̂ ; δ = S (6.33)

where we have used the symbol µ̂ to indicate the maximum growth
rate.34 On these identifications we obtain a very simple equation for the
dynamics of the relative nutrient quota:3535 Derive eqn (6.34); use the quo-

tient rule.
d

dt

Q

W
= µ̂

(
Vm

µ̂

C

Km + C
− Q

W

)
. (6.34)

This equation states that the relative nutrient quota relaxes exponen-
tially toward the saturation fraction of the uptake machinery. This equa-
tion forms a dynamical system together with the chemostat equations.
which for principle (II) take the following form:

d

dt
W = W

(
µ̂

Q/W

S + Q/W
−D

)
(6.35)

d

dt
C = D (CR − C)− VmW

V
× C

Km + C
. (6.36)

This model explains the discrepancy found in the wash-out experiment.
Since the relative growth rate depends directly on the relative nutrient
quota Q/W which lags behind the external nutrient concentration, mi-
crobial growth tends to continue at almost the steady state rate for some
time after CR has been set to zero. This may seem to violate basic con-
servation principles, since the external nutrient concentration behaves

34There is a conceptual problem with the identification δ = S if we view principle (II) and eqn (6.28) as a description of how the
microbe’s internal regulatory system adjusts the growth rate as a function of the relative nutrient quota. On this interpretation,
δ is a property of the molecular machinery involved in regulation, and hence some complex compound involving the rate at
which certain molecules bind DNA et cetera. It is not a priori clear why this compound should equal the macrochemical
conversion constant S. This does not really present an insurmountable problem for the experimental findings: if δ and S are
roughly of the same order, the actual equations are somewhat more complicated than hyperbolas but they will still have the
same general shape and conform to the data. Similarly, instead of eqn (6.34) we obtain slightly more complex dynamics.
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much the same under principles (I) and (II). However, the additional
growth in the latter case is effectively paid for by depleting the nutrient
store in the cells.

Does the story end there? Should the experimenter conclude that
principle (I) is false and that principle (II) is true? No. The situation
is more subtle. A careful study of the two systems of dynamical equa-
tions reveals that the lag effect will be very small if the relative nutrient
quota stays well below S. This will be the case if the parameter Vm

is relatively small. This parameter expresses how many building blocks
(glucose, amino acids) the microbial cell allocates toward the molecu-
lar machinery which processes the nutrient. Thus, the organism can in
fact switch between “principle (I) mode” and “principle (II) mode” by
adjusting the amount of machinery it synthesises.36 Moreover, microbes

36To be precise, the cell also has the
option of (partially) disabling the cat-
alytic machinery that is already in
place, for instance by means of attach-
ing chemical moieties to this machinery.

generally require more than one chemical species from their environment
to grow and subsists (e. g. a carbon nutrient, an energy nutrient, and
various minerals) and thus the growth rate will depend on the ambient
concentrations of various substances (as well as the internal stores of
these species). This additional complexity is taken into account in mul-
tiple nutrient limitation theory,37 which relies on further iterations

37See Exercise 6.9 for a brief introduc-
tion.

between experimental observations and theoretical predictions.

Fig. 6.12 Human growth pattern.

6.4 Growth of individuals

The relationships between food intake, metabolism, body composition
and growth of individual organisms are complex and of fundamental im-
portance for our understanding of diseases such as obesity and diabetes.
We restrict our attention here to organisms that keep essentially the
same 3-dimensional shape as they grow; this includes most vertebrates,
for most of their life span (e.g. Fig. 6.12), as well as many invertebrates
(but generally not the plants, fungi, protists or monera). For such an-
imals, a length measure L can be defined,38 such that the maximum

38An obvious length measure for hu-
mans is the body height from top to
toe; for flexible animals such as small
rodents, the tail length is more suitable.

capacity for nutrient uptake scales as L2 whereas maintenance-related
catabolism of nutrient proceeds at a rate proportional to L3.

Organisms are composed of many different chemical elements which
they process metabolically from one or more sources such as food stuffs.39

39Aristotle called the conversion of
food into organic traits “concoction”
(pepsis).

These elements, together with more complex groups, such as cofactors
which the animals can neither synthesise nor break down and which
are ingested and excreted as unaltered entities, together comprise the
elemental nutrients,40 denoted in general by the symbol ∗ (where

40There are also chemical species which
the animal cannot synthesise but can
break down—these are essential nu-
trients.

∗ ∈ {C, H, O, N, S, P . . . }). The amount of an elemental nutrient
present in the animal is called the quota, denoted as Q∗. The dynamics
of the quota is given by the balance equation,

d

dt
Q∗ = A∗L

2 −B∗L
3 − C∗

d

dt

(
L3

)
(6.37)

where A∗ is the assimilation coefficient,41 B∗ is the maintenance 41Assimilation is not the same as inges-
tion; fæces contain foodstuffs that were
ingested but not assimilated.

expenditure coefficient, and C∗ is the growth investment coeffi-
cient.


