6.3 Microbial growth in a chemostat

The chemostat is a widely-used apparatus used in the study of mi-
crobial physiology and ecology. In such a chemostat (also known as
continuous-flow culture), microbes (such as bacteria and yeast cells)
can be grown under precisely controlled conditions. Fig. 6.9 shows a
diagram. The microbes grow in the main culture vessel which contains
a well-stirred culture medium. This medium is replenished from a reser-
voir shown on the left. As a constant volumetric flow F' of fresh medium
enters the culture vessel propelled by a pump, an overflow?! allows an
equal flow to leave the culture vessel, so that the vessel retains a con-
stant volume V' of culture at all times. The experimenter can control
the pump and thus the flow F; the reservoir nutrient concentration C'g
can of course also be varied at will by the experimenter. However, in
the classic set-up, the experimenter keeps both F' and C'i at fixed values
and waits for the system to settle on a steady state.

21guch a device is alternatively known
as a porcelator.
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Fig. 6.9 The continuous-flow culture
vessel or chemostat.

22 @Derive eqn  (6.22) from

eqn (6.21) and the definitions given.

23 ’@Check this; apply the defini-
tion D = F/V first.
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6.3.1 Basic chemostat equations

Let W denote the microbial biomass in the culture vessel and N the
molar amount of nutrient in the vessel. We have two conservation equa-
tions:

d w
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W =W - P (6.20)
d N
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The term pW represents the increase in biomass due to growth; the fac-
tor u is the per capita reproduction rate, which we called relative growth
rate before but which is known in these systems more commonly as the
specific growth rate. Biomass leaves the system at a rate FW/V
which makes intuitive sense if W/V is viewed as the biomass concentra-
tion in the culture vessel. The second equation describes the amount
of nutrient. The first two terms on the right-hand side again describe
the influx and efflux of nutrient, whereas the third term describes the
conversion of nutrient into biomass. The factor S expresses the stoi-
chiometry of this conversion. The ratio F'/V plays an important role in
the operation of the chemostat and therefore has a name of its own: it
is called the dilution rate, traditionally denoted D. For the nutrient

concentration C' = N/V we have the following dynamics:2

d w
—C=D({(Cr—-C)—Sp—.
dt (Cr=C) = Spy;
The steady state is, as per usual, characterized by the conditions %W =
0 and %C = 0, whence??

(6.22)

w=D and C=Cgr—SW/V at steady state.

The experimenter controls the dilution rate D, which is just a setting
on the pump in the apparatus shown in Fig. 6.9. Since p = D at
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steady state, the experimenter effectively forces the cells to grow at
the rate she desires. In fact, this phenomenon is the great advantage
of continuous culture: after the chemostat settles on steady state, the
cells can be sampled and their physiological state at various stationary
relative growth rates can be studied. Waiting for the system to attain
steady state is standard practice. However, as we shall presently see,
the transient behaviour actually contains important information about
the underlying biology.

The specific growth rate p will generally vary with time, as a function
of the internal state of the organism and perhaps also the ambient con-
ditions (such as the nutrient concentration C'). However, we can already
say something about the dynamical behaviour of the chemostat even
when, for now, we leave p as an unspecified function of time. Consider

the following quantity:
N
X=W+—.
S
This represents the actual biomass in the culture vessel (W) plus the
biomass equivalent of the nutrient in the vessel (N/S). Its time course
is given by:24

(6.23)
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where Xg is the initial condition, the value of X at time ¢ = 0. From
eqn (6.24) we can infer that after an initial transient with relaxation
time D1 (which occurs if we suddenly change the reservoir concentra-
tion CR), the quantity X settles down on its equilibrium value VCr/S.
From then onwards the following useful conservation law for the culture
vessel applies:
W)
v
This equation states that biomass density and nutrient concentration
are complementary.2’

Cr=C(t)+ S (6.25)

6.3.2 Logistic growth in the chemostat

To proceed further, we need to postulate a model for the relative growth
rate p. One simple model is as a simple proportionality:2¢ y = 9C.
Using eqns (6.25) and (6.20) we obtain:

Dy —w (1903 —D-— ?ifW) . (6.26)

dt
But this is just the logistic growth equation in disguise®’. Of course, we
must not forget about the initial transient while X (¢) approaches VCg/S,
so the growth curve may not be logistic during some initial period, but
if we pick the initial nutrient and biomass density in the culture vessel
so that they satisfy eqn (6.25), this equation will be valid for all ¢.

24Derive

the differential equation
for X:
iX = DViCR — DX
dt S

and solve it to find eqn (6.24).

25 @Can you think of a quick way
to see why this result is not so surpris-
ing?

26Although simple, this model is rea-
sonable since the cells cannot grow
when there is no nutrient, so we would
expect 4 = 0 when C = 0, and we
would also suppose that a linear ap-
proximation is reasonably accurate for
some range of sufficiently low values
of C.

2TCast eqn (6.26) in the traditional
form of the Verhulst equation by defin-
ing r and K in terms of the present pa-
rameters



100  Growth of populations and of individuals

Fig. 6.10 Glycogen (poly-glucose)
granules in Escherichia coli cells: an
example of nutrient storage in micro-
organisms.

28By the general state we mean not
only the steady state, but transients as
well.

6.3.3 Towards a model for the relative growth rate

In the last section the chemostat equations were introduced. The crucial
task for the mathematical modeller is to relate the relative growth rate p
to the ambient conditions and/or the internal state of the cells. In this
section we follow this modelling process in detail, to highlight the back-
and-forth between observations and theory (cf. Fig. 1.6).

As we saw before, the microbial culture in the vessel settles, after a
while, on a steady state when the dilution rate D of the chemostat and
the reservoir nutrient concentration Cr are kept at a fixed value. In
the steady state, we can observe the biomass W, the nutrient concen-
tration C, and the relative growth rate & which at steady state equals
the dilution rate D (the bar over the symbols signifies stationarity in
time). Obtaining these data for a range of dilution rate settings, the
experimenter accumulates a data set consisting of triples {7, W, C} (i.e.
a table with three columns). The next step is to look for systematic re-
lationships in this data set. Plotting 7 against C, the experimenter finds
that the data points closely adhere to the following simple mathematical
expression:

C
B+C
where o and  are two positive parameters which the experimenter is
able to estimate using the non-linear least squares criterion (see Sec-
tion 4.2). This hyperbolic relationship immediately reminds the exper-
imenter of the Michaelis-Menten relationship for the nutrient uptake
system (see Section 2.3), which suggests that § represents the K, of
this uptake system. Moreover, this identification suggests a more gen-
eral principle:

n=a (6.27)

The specific growth rate is directly proportional to the saturation frac-
tion of the uptake system (which is given by C/(K, + C)). Q)
This principle is proposed to apply also to the transient situation, where
C is time-varying.

Next, the experimenter acquires an instrument which allows her to
analyse the chemical contents of the cells. It is found that the cells have
internal stores of the nutrient. The total amount of this nutrient in the
culture at steady state is denoted @ (Q for quota). The experimenter
calls the ratio @/W the relative nutrient quota. Plotting the steady-
state growth rate against the relative nutrient quota, again a very good
agreement is found with a simple mathematical relationship:

uvéfg;V (6.28)

where v and § are two new positive parameters. This suggests another
principle for the general®® state:

The specific growth rate is a hyperbolic function of the relative nutrient
quota. (I1)

We now have two equations, and two principles, and the experimenter
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wants to determine which is valid. Let us begin with the easy question:
can equations (6.27) and (6.28) both be valid descriptions of the steady-
state data? The answer is: certainly. Moreover, we can inform the
experimenter?® that she will find another hyperbolic relationship if she
plots the relative nutrient quota against the concentration:

Q_ ad C

W r-a B/-a+C (0:29)

To her delight, this comes out as predicted. The choice between princi-
ples (I) and (II) is more complicated. These are putative laws which ex-
tend beyond the regime under which the data were obtained (the steady
state). Fortunately, modelling can help here, by predicting how the cul-
ture will respond dynamically to perturbations, if one or the other prin-
ciple is assumed. The perturbations might be step changes in dilution
rate or feed reservoir nutrient concentration. For each perturbation, we
can evaluate the chemostat equations to work out what should happen.

Principle (I) leads to the following system of differential equations:*°
d C
— — — D .
dtW W<a6+0 ) (6.30)
d aSW C
—C=D(Cr—-0C) — _— 6.31
dt (Cr=C) = == x B+C (6:31)

The experimenter carries out the perturbations and finds a poor agree-
ment with the predictions: in general, the cells seem to respond more
sluggishly to changes in nutrient concentration C. For instance, in a
wash-out experiment were Cg is set to zero at time ¢t = 0 (this is done
by connecting the supply tube to a reservoir containing medium without
nutrient), the predicted curve for the nutrient concentration in the cul-
ture vessel agrees very well with the data, whereas the biomass shows a
distinct lag before it starts to decrease, as shown in Fig. 6.11. Also, the
experimenter enlists the help of a biochemist who determines the K,
of the nutrient uptake system, and finds that the latter is much larger
than 8, whereas principle (I) asserts that they should be about equal,
allowing for slight variations due to the fact that different experimental
approaches were used.3!

The experimentalist now asks us, the modellers, for another dynamic
prediction, this time assuming principle (II). Since any decent model
must satisfy basic conservation principles, we might as well take a con-
servation law as our starting point:32

C

d
EQ - VmWKm +C

- SuW — DQ (6.32)
where V,,W expresses the maximum nutrient uptake rate, V,, being a
proportionality constant that expresses how much of the uptake machin-
ery is present per unit biomass. The constant S represents the stoichio-
metric conversion of nutrient into biomass, and D is the dilution rate of
the chemostat. The steady state associated with eqn (6.32) is compatible

29 @Derive eqn  (6.29) from
eqns (6.27) and (6.28).

30 @Derive eqns(6.30) and (6.31)
by combining the chemostat equations
of Section 6.3.1 with eqn (6.27).

31 @Consider a microbiologist who
firmly believes in principle (I). As far
as he is concerned, the chemostat curve
is simply a way of determining Kp,.
He asserts a discrepancy between two
methods of measuring K. ‘What
could be done to change this microbiol-
ogist’s mind?

32 @Justify eqn (6.32).
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Fig. 6.11 Comparison of biomass (top
curve) and nutrient concentration (bot-
tom curve) predicted from principle (I)
with data in a wash-out experiment.
Whereas the data do not accord well
with principle (I), they are well de-
scribed by principle (II) (curve not
shown, as the data correspond closely
to the curve obtained under princi-
ple II).

33 @Demonstrate this. Start from
steady state (assume C constant, put
%Q = 0 and set p = D) and com-
pare the equation you obtain with equa-
tions (6.27)—(6.29).

35 @Derive eqn (6.34); use the quo-
tient rule.

time ¢

with equations (6.27)—(6.29) only if the parameter values satisfy certain
identities. Specifically, compatibility requires the following parameter

identifications:33
~ Vm ﬁS ~

where we have used the symbol i to indicate the maximum growth
rate.>* On these identifications we obtain a very simple equation for the
dynamics of the relative nutrient quota:3?
d [V C
49 _g(Vm_C _Q (6.34)
dt W n Kp+C W
This equation states that the relative nutrient quota relaxes exponen-
tially toward the saturation fraction of the uptake machinery. This equa-
tion forms a dynamical system together with the chemostat equations.
which for principle (IT) take the following form:

d - Qw

ZW=w (“S T O/ D> (6.35)
d VW c
GC=D(Cr—0) = = x s (6.36)

This model explains the discrepancy found in the wash-out experiment.
Since the relative growth rate depends directly on the relative nutrient
quota Q/W which lags behind the external nutrient concentration, mi-
crobial growth tends to continue at almost the steady state rate for some
time after C'r has been set to zero. This may seem to violate basic con-
servation principles, since the external nutrient concentration behaves

34There is a conceptual problem with the identification § = S if we view principle (IT) and eqn (6.28) as a description of how the
microbe’s internal regulatory system adjusts the growth rate as a function of the relative nutrient quota. On this interpretation,
6 is a property of the molecular machinery involved in regulation, and hence some complex compound involving the rate at

which certain molecules bind DNA et cetera.

It is not a priori clear why this compound should equal the macrochemical

conversion constant S. This does not really present an insurmountable problem for the experimental findings: if § and S are
roughly of the same order, the actual equations are somewhat more complicated than hyperbolas but they will still have the
same general shape and conform to the data. Similarly, instead of eqn (6.34) we obtain slightly more complex dynamics.



much the same under principles (I) and (II). However, the additional
growth in the latter case is effectively paid for by depleting the nutrient
store in the cells.

Does the story end there? Should the experimenter conclude that
principle (I) is false and that principle (II) is true? No. The situation
is more subtle. A careful study of the two systems of dynamical equa-
tions reveals that the lag effect will be very small if the relative nutrient
quota stays well below S. This will be the case if the parameter V,,
is relatively small. This parameter expresses how many building blocks
(glucose, amino acids) the microbial cell allocates toward the molecu-
lar machinery which processes the nutrient. Thus, the organism can in
fact switch between “principle (I) mode” and “principle (II) mode” by
adjusting the amount of machinery it synthesises.?® Moreover, microbes
generally require more than one chemical species from their environment
to grow and subsists (e. g. a carbon nutrient, an energy nutrient, and
various minerals) and thus the growth rate will depend on the ambient
concentrations of various substances (as well as the internal stores of
these species). This additional complexity is taken into account in mul-
tiple nutrient limitation theory 3" which relies on further iterations
between experimental observations and theoretical predictions.

3670 be precise, the cell also has the
option of (partially) disabling the cat-
alytic machinery that is already in
place, for instance by means of attach-
ing chemical moieties to this machinery.

37See Exercise 6.9 for a brief introduc-
tion.




