Violeta N Kovacheva'

Nasir M Rajpoot**

' Department of Systems
Biology,

The University of Warwick,
Coventry CV4 7AL, UK.
?Mathematics Institute,
The University of Warwick,
Coventry CV4 7AL, UK.

* Department of Computer
Science,

The University of Warwick,
Coventry CV4 7AL, UK.
“Department of Computer
Science and Engineering,
Qatar University, Qatar.

Correspondence:
Violeta N. Kovacheva,
E: v.n.kovacheva@
warwick.ac.uk

Nasir M. Rajpoot,
E: Nasir.Rajpoot@ieee.org

Cancer Image Analysis

Advances in Discovery of Complex
Biomarkers for Colorectal Cancer
Using Multiplexed Proteomics Imaging

Abstract

Multiplexed proteomics imaging techniques such as
the Toponome Imaging System (TIS) can yield high-
resolution images of multiple proteins co-localised
within individual cells. This enables the study of
protein interactions and tumour heterogeneity both
within and between cancer samples. Our group has
recently developed methods for cell-level analysis of
the multiplexed proteomics image data obtained from
colorectal cancer samples. These methods together
with the highly informative multiplexed proteomics
image data hold great promise for discovering
complex biomarkers that can aid the development of
personalised medicine.

Introduction

Cancer is continuously revealed to be ever more
complex than previously thought. Recent studies
using a variety of new proteomics technologies have
revealed a surprisingly large degree of variation
between individual cancer cells from the same tumour
[1,2]. Current clinical practice uses biomarkers limited
to the simultaneous analysis of only a handful of
proteins. These biomarkers fail to assess the true
complexity of cancer, and the resulting biomarkers
have a low prognostic value [3]. This may be because
tumour cell heterogeneity strongly influences treat-
ment-unresponsiveness and treatment-resistance [4].
Hence, there is a need for novel multiplex markers
that simultaneously capture the expression of
numerous proteins with relation to each other.
Therefore, an imaging system capable of studying
heterogeneity in situ is potentially a very useful clin-
ical research tool.

New bioimaging techniques have recently been
proposed to visualise the co-location or interaction of
several proteins in cells in intact tissue specimen.
These include MALDI imaging [5], Raman microscopy
[6], Toponome Imaging System (TIS) [7], MxIF [8]

and multi-spectral imaging methods [9]. TIS is an
automated high-throughput technique able to co-map
up to a hundred different proteins or other tag-recog-
nisable bio-molecules in the same spatial location on
a single tissue section [10]. It runs cycles of fluores-
cence tagging, imaging and soft bleaching in situ and
generates multi-channel image data, where each indi-
vidual channel provides information about the abun-
dance level of a specific protein molecule. While colo-
cation does not necessarily imply interaction, it is a
potential indication for an interaction that is not
necessarily direct. The images were acquired using a
TIS microscope (ToposNomos Ltd., Munich,
Germany), which has a sub-cellular maximum lateral
resolution of 206 x 206 nm/pixel [11]. This allows the
determination of sub-cellular protein network archi-
tectures.

Developing quantitative methods to analyse the
large amounts of data generated can aid the develop-
ment of new sensitive and specific multiplex
biomarkers - also termed as complex biomarkers - for
risk stratification and diagnosis, as well as anti-cancer
drug discovery by identifying ‘hub’ proteins that are
essential regulators of protein networks [12].

Methods

Recently, a departure has been made from the pixel-
level analysis, commonly employed in the analysis of
combinatorial molecular phenotypes (CMPs) [7] or
molecular co-expression patterns (MCEPs) [13-15] in
TIS imaging data. Examining the image data at a cell
level allows us to study the heterogeneity of cell
phenotypes within cancer samples. Briefly, the
samples used for the recent cell-level analysis frame-
works developed by our group at Warwick had been
surgically removed from colon cancer patients. One
sample was taken from the surface of the tumour
mass, and another one was selected from apparently
healthy colonic mucosa at least 10cm away from the
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Figure 1: Segmentation of the cell nuclei on a section of a colon cancer sample as described in [19]. The
outline of each identified nucleus is shown in green. The length of the scale bar is 10pm.
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Figure 2: The social network of proteins. Each node represents a protein and each edge colour (as shown
on the colour bar) shows a protein pair with different level of co-expression in the normal and cancer
samples. Here, a large positive value (shown in red) indicates that the protein pair is more co-dependent
and more frequently occurring in cancer samples, whereas a large negative value (shown in blue) means
that the protein pair is more active in normal tissue. Only edges with the top 10% and the bottom 10% of

the DiSWOP values are shown [19].

visible margin of the tumour. Two visual
fields were manually selected in each tissue
sample, resulting in four TIS data sets from
a single patient. A library of 12 antibody
tags, some of which are known tumour
markers or cancer stem cell markers, was
used. These were CD133, CK19, Cyclin A,
Muc2, CEA, CD166, CD36, CD44, CD57,
CK20, Cyclin D1 and EpCAM. The stacks
also included a DAPI tag used to identify the
cell nuclei. The image stacks obtained are
then pre-processed using the following
steps. Firstly, the images are aligned using
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the RAMTaB (Robust Alignment of Multi-
Tag Bioimages) algorithm [16]. This is done
in order to prevent potentially erroneous co-
mapping resulting from the slight mis-align-
ment of the multi-tag images obtained using
TIS. Background autofluorescence is digi-
tally removed so any remaining signal
should be true protein expression. The
images are then segmented using a modified
form of a graph cut based method [17]
applied to the DAPI channel [18] (Figure 1).
This is necessary in order to extract pixel
locations of the nuclei and their immediate

neighbourhood only, as the DAPI tag stains
the DNA. This provides a rough approxima-
tion of the cells and removes possible noise
from the stromal and lumen areas.

One of the cell-level analysis frameworks
was presented by Khan et al. [20]. This
work is an extension of a previous study
[18] mining for cell phenotypes based on
their high-dimensional protein co-expres-
sion profiles. Khan’s study showed that the
raw protein expression vectors have a non-
linear high-dimensional structure, which
can be effectively visualised using a
symmetric neighbourhood embedding
approach. The three-dimentional vectors
obtained were found to outperform the orig-
inal high-dimensional raw protein expres-
sion vectors in terms of their ability to
discriminate between normal and cancer
tissue samples on the basis of their pheno-
typic distributions [20].

Another related study proposed a way to
analyse phenotypes obtained according to
protein-protein dependence profiles of the
cells [19]. Here, we proposed a new
measure called Difference in Sum of
Weighted cO-dependence Profiles (DiSWOP)
that can highlight protein pairs that are
more co-dependent and more frequently
occurring in cancer than in normal samples,
or vice versa. The measure weights the
dependency score of a protein pair with the
phenotype probability in the sample, and
sums all occurrences of the protein pair in
all the cancerous samples and in all the
normal samples. The sums are normalised
by the number of samples. It then subtracts
the score for the normal from the score for
the cancer samples, hence giving a positive
score if a pair appears more frequently and
with higher dependency scores in the
cancerous samples [19]. Applying this
measure to cell phenotypes obtained using
Affinity Propagation clustering [21], several
protein pairs were highlighted in terms of a
small social network of proteins, as shown
in Figure 2 [19]. One of these pairs is CEA
and EpCAM, which came out as more co-
dependent in the cancer samples. This
protein pair has also been found experimen-
tally to interact via the pathway
CEA-SOX9-Claudin7-EpCAM, which is
involved in determining the morphology of
the colon epithelium [22-25]. The protein
pairs highlighted by the measure are very
similar when other phenotyping methods
are used. This has been demonstrated by
using Bayesian hierarchical clustering with
a Gaussian prior [26] on half of the protein
pairs, which discriminate best between
cancer and normal tissue [25]. In addition,
further validation of the measure has been
done using synthetically generated image
data [19].

Discussion and conclusions

The methods presented above have been
applied only on a small number of samples
- 3 [20] and 11 [19, 25]. In an on going
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project, we are in the process of validating
these methods on larger datasets. From the
biological point of view, TIS provides an
indication, sometimes a strong indication, of
protein interactions and so direct interaction
will need to be further tested by other exper-

imental techniques such as immunoprecipi-
tation. Other interactions may be less direct,
and will need study via protein pathways.
Despite this, the methods presented here
allow us to consider protein expression and
interactions localised within individual

cells. This could aid the understanding of
tumour heterogeneity and function of single
cells within the cancerous tissue, and could
be the key to discovering multiplex
biomarkers that can help with diagnosis and
prognosis of cancer patients. M
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