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1
Expectation and probability

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2015.

This is a summary of the main concepts and results in probability
for Statistics. My objective is to give precise definitions and notation
(our profession’s notation is rather ‘fluid’), and enough detail to
reconstruct the proofs of the main results. I also want to correct
a few misconceptions, which have blurred the fundamentally
different natures of probability theory and statistical inference.

1.1 Random quantities and expectations

A random quantity represents a sequence of operations which will
result in a value; real-valued functions of random quantities are
also random quantities. In other words, all random quantities
should have operational definitions. Statistics is about making
inferences about random quantities which have not been observed,
based on the values of those that have. The bridge between what
we have and what we want is provided by our beliefs. Expectations
and probabilities are a way of quantifying our beliefs.

A random quantity is typically denoted X, Y, or Z, often with
subscripts; specified functions are typically denoted as g or h.1 The 1 The symbol ‘ f ’ is reserved for a

statistical model, see Chapter 2.set of possible values X can take is its realm, denoted X ⊂ R. Any
particular specified value of X is denoted x. Where it is necessary to
enumerate X, I write

X :=
{

x(1), . . . , x(r)
}
⊂ R,

and similarly for other letters (e.g. Y as the realm for Y). A random
quantity whose realm contains only a single value is a constant,
typically denoted by a lower-case letter from the top of the alphabet,
such as a, b, or c.

By its operational definition, a random quantity has a finite
realm, and is therefore bounded. But it is sometimes convenient to
treat the realm as countably infinite, or even uncountable. In these
convenient extensions it is the responsibility of the statistician to
ensure that no pathologies are introduced.2 Avoiding the patholo- 2 I term this the Principle of Excluding

Pathologies, PEP.gies of an uncountable realm is why formal probability theory is
so complicated, but in most of this chapter I will treat all realms as
finite, as nature intended. Generalisations are given in Sec. 1.6.
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A collection of random quantities is denoted X := (X1, . . . , Xm).
The joint realm is X and any particular specified value is x := (x1, . . . , xm).
The joint realm is necessarily a subset of the product of the individ-
ual realms,

X ⊂ X1 × · · · ×Xm ⊂ Rm.

Where it is necessary to enumerate X, I write

X :=
{

x(1), . . . , x(r)
}

where x(j) ∈ Rm.

Assertions about random quantities are statements that hold as a
consequence of their definitions; therefore they hold everywhere
on the joint realm. Thus if the definition of X1 and X2 implies that
X1 ≤ X2, then x(j)

1 ≤ x(j)
2 for all j = 1, . . . , r. For our convenience,

the joint realm may be extended to, say, the product of the individ-
ual realms, which would include elements for which x(j)

1 > x(j)
2 .

In this case, our beliefs would need to be augmented to ensure
that the probability attached to such elements is exactly zero (see
Sec. 1.2).

1.1.1 The axioms of Expectation

There is a long-running debate about whether expectation or prob-
ability should be the primitive concept when quantifying beliefs
about X. I strongly favour the former. My expectation of a random
quantity X, denoted E(X), is my ‘best guess’ for X, represented as a
value in R. In Statistics, unlike in probability theory, it is important
to have some idea about what formal concepts actually mean, so
that when I think about my “expectation of sea-level rise in 2100”
this conjours up a number in my mind. ‘Best guess’ seems to work
quite well.

I refer to my expectations about X and functions of X as as my
beliefs about X. My beliefs about X at time t depend on my disposi-
tion at time t: all the things I have learnt and thought about up to
time t, the things I have forgotten, my general attitude, and even
my current state of mind. Beliefs change from day to day—that’s
just the way it is, and we should not attempt to deny or conceal it.
It is not, for example, a characteristic only of ‘bad’ scientists that
their beliefs are subjective and contingent. Of course some beliefs
hardly change, and, moreover, are very common. For example, the
belief that the diversity of living things is due to genetic variation
and heredity, and selection pressure. But the interesting scientific
questions lie at the next level down: why, for example, does sex-
ual reproduction convey a selection advantage? On this topic, the
beliefs of biologists are diverse, and prone to changing.

It may be intuitive, but ‘best guess’ is just a heuristic for expecta-
tion. The theory of expectation is about a special type of ‘best guess’:
one that is coherent.
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Definition 1 (Coherent expectations). Expectations for X and Y are
pairwise coherent exactly when they satisfy the two properties:

1. Lower boundedness: E(X) ≥ minX, and E(Y) ≥ minY.

2. Finite additivity: E(X + Y) = E(X) + E(Y).

Expectations for X are completely coherent exactly when these two
properties hold for all pairs of random quantities that can be defined on X.

This is a common approach in modern mathematics: not to say
what a thing is or means, but how it behaves.3 3 I discuss difficulties with meaning in

Sec. 1.3.1. For an excellent summary
of modern mathematics, see Gowers
(2002).

There are only these two axioms, but they imply a very rich
set of additional constraints on expectations, and on probabilities
(see Sec. 1.2). Here are some immediate important implications of
complete coherence, which are straightforward to prove. First,

E(a1X1 + · · ·+ amXm) = a1 E(X1) + · · ·+ am E(Xm), (LIN)

where a1, . . . , am are constants.4 Second, 4 Slightly tricky. Use additivity to
prove that E(aX) = a E(X) when
a is a positive integer. Then use
E{(a/a)X} = a E{X/a} to prove
that E(qX) = q E(x) for any positive
rational. It is straightforward to
show that E(−X) = −E(X), and so
E(qX) = q E(X) holds for all rationals.
Then complete the argument from the
rationals to the reals in the usual way.

E(a) = a (Normalisation)

if a is a constant. Third,

X ≤ Y =⇒ E(X) ≤ E(Y), (Monotonicity)

with the immediate implication that

minX ≤ E(X) ≤ maxX. (Convexity)

Fourth, Schwartz’s inequality

E(XY)2 ≤ E(X2)E(Y2), (SIQ)

see Williams (1991, sec. 6.8) for a short and elegant proof. Fifth,
Jensen’s inequality: if g : Rm → R is a convex function,5 then 5 Technically, a convex function on the

convex hull of X.

E{g(X)} ≥ g(E{X}). (JEN)

There is a straightforward proof based on the Supporting Hy-
perplane Theorem, see Thm 3.5. Schwartz’s inequality (and its
generalisation the Cauchy-Schwartz inequality) and Jensen’s in-
equality are two of the most important inequalities in the whole of
mathematics.6 6 Although you would have to read,

say, Gowers et al. (2008) to substantiate
this claim.

1.1.2 The Fundamental Theorem of Prevision

Coherence as defined in Def. 1 has a complicated aspect. On the
one hand, it is a very simple and appealing property for a pair
of random quantities. On the other, who knows how much extra
structure is imposed through the extention to all pairs of random
quantities? Bruno de Finetti (1974, ch. 3) provided the crucial
result.7 7 See also Lad (1996, ch. 2) and Whittle

(2000, ch. 15).
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Some terms. A convex combination (w1, . . . , wr) has wj ≥ 0 for
each j, and ∑r

j=1 wj = 1. The set of all convex combinations is the
(r− 1)-dimensional unit simplex, or just (r− 1)-simplex,

Sr−1 :=
{

w ∈ Rr : wj ≥ 0, ∑ j wj = 1
}

. (1.1)

Theorem 1.1 (Fundamental Theorem of Prevision, FTP). Let
X := (X1, . . . , Xm) be a collection of random quantities with joint
realm

X :=
{

x(1), . . . , x(r)
}
⊂ Rm.

Expectations for X are completely coherent if and only if there exists a
convex combination (w1, . . . , wr) such that

∀g : X→ R E{g(X)} =
r

∑
j=1

g(x(j)) · wj. (1.2)

Sec. 1.6.1 gives a generalisation of the FTP to allow for non-finite
realms.

Proof. The⇐ branch is straightforward. For⇒ note that X must
take exactly one of the values in X, and hence

1 =
r

∑
j=1
1X=̇x(j)

where 1p is the indicator function of the first-order sentence p; see
Sec. 1.2 for more details about this notation. By Normalisation and
Linearity,

1 =
r

∑
j=1

E(1X=̇x(j)). (1.3)

By Lower-boundedness, E(1X=̇x(j)) ≥ 0. Hence we can write
wj ← E(1X=̇x(j)), and (w1, . . . , wr) is a convex combination. For
arbitrary function g,

E{g(X)} = E{g(X) · 1}

= E
{

g(X) · ∑ j 1X=̇x(j)

}
from above

= E
{

∑ j g(X) · 1X=̇x(j)

}
= E

{
∑ j g(x(j)) · 1X=̇x(j)

}
good move!

= ∑ j g(x(j)) · E(1X=̇x(j)) by (LIN)

= ∑ j g(x(j)) · wj from above

as required.

Thus the FTP asserts that there is a bijection between the set of
completely coherent expectations for X and the (r − 1)-simplex
Sr−1, where r := |X|. Because Sr−1 is uncountably infinite, being a
convex subset of Rr, the set of completely coherent expectations for
X is uncountably infinite too.

From now on I will always assume that expectations are com-
pletely coherent.
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1.1.3 Moments

There are both practical and theoretical reasons for summarising
beliefs about X in terms of its ‘moments’. There are three types:

‘raw’ moments := E(Xk)

centered moments := E{(X− µ)k} where µ := E(X)

absolute moments := E(|X|k)

for k = 1, 2, . . . . The first ‘raw’ moment is of course the expectation
of X, and is often denoted µ, as above. Examples of the use of these
moments are given in Sec. 1.2.3 and Sec. 1.6.2.

The second centered moment is termed the ‘variance’ of X,
written ‘Var(X)’, and often denoted by σ2. Its square root is termed
the standard deviation of X, and often denoted by σ. Multiplying out
shows that

σ2 = E(X2)− E(X)2

from which we can infer that E(X2) ≥ E(X)2. This is just (SIQ)
with Y ← 1. The variance is a crucial concept because of its role in
Chebyshev’s inequality8 and the Weak Law of Large Numbers, and 8 Chebyshev’s inequality is given in

(1.10).the Central Limit Theorem.
The third and fourth centred moments are used to measure

‘skewness’ and ‘kurtosis’, but these concepts are not as popular as
they used to be. For most people, it is a stretch to have quantitative
beliefs about the skewness or kurtosis of X, unlike the expectation
or the standard deviation.

Jensen’s inequality (JEN) gives a rich set of inequalities for the
moments to satisfy. For if k ≥ 1 then |x|k is a convex function, and
therefore

E(|X|s) = E{(|X|r)s/r} ≥ E(|X|r)s/r : 0 < r ≤ s.

Taking roots gives Lyapunov’s inequality,

E(|X|s)1/s ≥ E(|X|r)1/r : 0 < r ≤ s. (1.4)

So we do not have a free hand when specifying absolute moments:
complete coherence imposes some restrictions. Raw moments can
be bounded by absolute moments using

E(|Xk|)
{
≥ E(|X|)k

≥ |E(Xk)|

}
≥ |E(X)|k : k ≥ 1, (1.5)

known as the triangle inequality when k = 1.

1.2 Probability

When expectation is primitive, probability is defined in terms of
expectation.
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1.2.1 Definition, the FTP again

Let q(x) be a first order sentence; i.e. a statement about x which is
either false or true. Let 1p denote the indicator function of the first-
order sentence p; i.e. the function which is 0 when p is false and
1 when p is true. Then Q := q(X) is a random proposition; random
propositions are typically denoted P, Q, and R. The probability of Q
is defined as

Pr(Q) := E(1Q). (PR)

It is straightforward to check that if E(·) is completely coherent,
then Pr(·) obeys the three axioms of probability.9 Simple direct 9 At least, for finite disjunctions, since

I have not used the stronger axiom of
countable additivity; see Sec. 1.6.1.

proofs can also be provided for some of the implications of the
probability axioms. For example, if q(x) and r(x) are first-order
sentences and q(x) implies r(x) for all x, then 1Q ≤ 1R, and hence
Pr(Q) ≤ Pr(R).

Here is a heuristic for probability, in the same sense that ‘best
guess’ is a heuristic for expectation. Imagine being offered a bet on
Q, which pays £0 if Q is false, and £1 if Q is true. Then because

Pr(Q) = 0 · Pr(¬Q) + 1 · Pr(Q),

I can think of Pr(Q) as my ‘fair price’ for the bet. So this is one
simple way to access beliefs about Pr(Q), I ask “What is the max-
imum I would be prepared to pay for such a bet?” This satisfies
the obvious endpoints that if I thought Q was impossible, I would
pay nothing, and if I thought Q was certain, I would pay up to £1.
So the heuristic is really about a way to envisage probabilities of
propositions that are neither impossible or certain.

Now we can have another look at the FTP from Thm 1.1. Let x(k)

be an element of X, and define

q(X) :=
m∧

i=1

(Xi =̇ x(k)i )

or, in a more efficient notation, q(X) := (X =̇ x(k)).10 Then, setting 10 I use dots to indicate binary predi-
cates in infix notation, so that Xi =̇ xi
is the random proposition which is
true when Xi is equal to xi , and false
otherwise.

g(X)← 1q(X) in (1.2) shows that

Pr(X =̇ x(k)) = wk.

Define the function

pX(x) := Pr(X =̇ x), (1.6)

known as the probability mass function (PMF) of X. By convention,
the PMF of X is defined for the whole of Rm, and set to zero for
values not in X; the support of the PMF is the set

supp pX :=
{

x ∈ Rm : pX(x) > 0
}

, (1.7)

which is a subset of X. The FTP in (1.2) can now be written as

∀g : X→ R E{g(X)} = ∑
x∈X

g(x) · pX(x), (FTP)
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or as
∀g : X→ R E{g(X)} =

∫
Rm

g(x) · pX(x),

for an appropriate definition of the integral operator.
Eq. (FTP) is a theorem when expectation is taken as primitive.

Probabilists, though, axiomatise pX and then (FTP) is the definition
of expectation. My view11 is that the probabilists’ approach is back- 11 Not mine alone! See, for example,

de Finetti (1974/75), Lad (1996),
Whittle (2000), and Goldstein and
Wooff (2007).

to-front for Statistics, where we concern ourselves with our beliefs
about X directly.

In notation, usual practice is to suppress the ‘X’ subscript on
‘pX ’, on the grounds that the random quantities can be inferred
from the argument to the function. I will follow this practice except
where there might be ambiguity.

1.2.2 Marginalisation

Regardless of what is taken as primitive, the starting-point in
Statistics is often a PMF for X, or perhaps a family of PMFs for X
(see Chapter 2). In this case it is important to know how to derive
the PMF of any set of functions of X.

Let g1, . . . , gn be specified functions of x, and set Yi := gi(X) for
i = 1, . . . , n. Then it follows from (FTP) that

p(y) = ∑
x∈X

n

∏
i=1
1gi(x)=̇yi

· p(x). (1.8)

This expression uses the identity 1A∧B = 1A · 1B. In the case where
X = (X A, XB), setting Y ← X A in (1.8) shows that

p(xA) = ∑
xB∈XB

p(xA, xB). (MAR)

This is termed marginalising out XB, and (MAR) is the Marginalisa-
tion Theorem.

In general, computing p(y) from p(x) or marginalising out XB

are both computationally expensive when X or XB are large. One
exception is when X has a Multinormal distribution and Y is a linear
function of X; see Mardia et al. (1979, ch. 3). Another exception for
marginalisation is when

p(x) =
m

∏
i=1

pi(xi),

where often pi is the same for all i (see Sec. 1.5). Unsurprisingly,
these are both very common choices in practice. It is important
to appreciate that the recurring use of these choices does not in-
dicate a statistical regularity in our world, but the preference of
statisticians for tractable computations.

Some notation. (MAR) is an example of a functional equality. My
convention is that this expression denotes a set of equalities, one for
each element in the product of the realms of the free arguments. In
this case, the only free argument is xA, and so this equality holds
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for every xA ∈ XA. Where it is necessary to restrict the domain
of a free argument, the restriction will be given after a ‘:’. Some
examples have already been given, another one is immediately
below in (1.9).

1.2.3 Probabilities and expectations

A very famous and useful inequality links probabilities and expecta-
tions, Markov’s inequality:

Pr(|X| ≥̇ a) ≤ E(|X|)
a

: a > 0. (1.9)

This follows immediately from a · 1|X|≥̇a ≤ |X| and Monotonicity.
Markov’s inequality is versatile, because if g is a non-negative

increasing function, then

g(|x|) ≥ g(a) ⇐⇒ |x| ≥ a.

One application of this is the centered moment bound,

Pr(|X− µ| ≥̇ a) ≤ min
k≥0

E(|X− µ|k)
ak : a > 0, (1.10)

where µ := E(X). This bound shows how the absolute centered
moments of X control the behaviour of the tails of the PMF of X.
The special case of k← 2 is termed Chebyshev’s inequality, for which
the righthand side of (1.10) is σ2/a2, where σ2 := Var(X).

1.3 ‘Hypothetical’ expectations

The material in this section is radical. I want to adjust Your view-
point before we go any further.

1.3.1 Some reflections

There is no true interpretation of anything; interpretation is a vehicle
in the service of human comprehension. The value of interpretation
is in enabling others to think fruitfully about an idea. (Andreas Buja,
quoted in Hastie et al., 2009, p. xii).

Statisticians are not ‘just’ mathematicians. In Statistics, quantities
which are abstractions from a mathematical viewpoint must be
reified,12 so that they quantify aspects of the reality which we expe- 12 Verb: to make something that is

abstract more concrete or real. As used
in the title of Goldstein and Rougier
(2009).

rience together. My expectation E(X) has meaning to me, and this
meaning informs my decision to constrain all of my expectations to
be completely coherent (see Sec. 1.1). I doubt very much that You
and I can agree on precisely what we each mean by ‘expectation’,
but I hope that we have enough common ground that You consider
that knowing the values of some of my expectations, and knowing
that they are completely coherent by construction, is useful when
You consider or revise some of Your expectations.

Although we could wish for a tighter definition of ‘expectation’,
ideally even complete agreement between You and me regarding
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its meaning, nothing I have experienced in my interactions with
other people leads me to think that this is possible. We humans
constantly misunderstand each other. So my beliefs are mine alone,
not just in the value I might attach to an expectation, but even in
what I mean by ‘expectation’. I don’t think there is any point in
constructing an elaborate theory about this, such as “my expecta-
tion of X is the value of a I would choose were I facing a penalty of
(X− a)2.” This is a deus ex machina, designed to crush ambiguity, but
at the expense of our humanity.

I think it is better to acknowledge from the outset basic limits
to our mutual understanding. The viewpoint I want to advocate
in these notes is that these limits do not imply that ‘anything goes’
when it comes to quantifying beliefs. You might find my beliefs
useful, and You might find them more useful if they are completely
coherent. You should distrust anyone who claims to have quantified
‘the’ expectation for X. If You are asked for ‘the’ expectation, You
can reply, “I am happy to give you my expectation, and I hope you
find it useful in quantifying yours.”

This section considers the next stage of this process, what I
term ‘hypothetical expectations’, although typically these would be
termed ‘conditional expectations’ (see Sec. 1.3.3). Mathematicians
are not obliged to attach any meaning to ‘the conditional expecta-
tion of X given that Q is true’. In elementary textbooks it is defined
(perhaps implicitly) as a quotient of expectations:

E(X |Q) :=
E(X1Q)

Pr(Q)
provided that Pr(Q) > 0.

Based on this definition, we can prove lots of Cool Stuff about hypo-
thetical expectations, including relationships between hypothetical
expectations with different Q’s. But statisticians have to go much
further. For a statistician, E(X |Q) has to have enough meaning that
it could be assigned a value. For the Cool Stuff to be useful, this
meaning has to be such as to make the above relation true. This is
the challenge I address in Sec. 1.3.2. As far as I know, no one else
has reified hypothetical expectation in the way that I do. I do not
think that Sec. 1.3.2 is the last word on the meaning of hypothetical
expectation. But I hope that You understand the need for what I
have tried to do.

1.3.2 Definition of hypothetical expectation

Let Q be a random proposition, which may or may not be true.
People are adept at thinking hypothetically, “supposing Q to be
true”. I can have a ‘best guess’ about X supposing Q to be true:
this is my hypothetical expectation denoted as E(X | Q), and usually
expressed as “my expectation of X given Q”. The challenge is to
give this notion enough substance that we can propose sensible
properties that hypothetical expectations should possess. Here is an
informal definition.
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Some notation. A partition is a collection of mutually exclusive and
exhaustive random propositions. If

Q :=
{

Q(1), . . . , Q(k)}
is a partition, then Pr(Q(i) ∧Q(j)) = 0 for i 6= j, and Pr(Q(1) ∨ · · · ∨Q(k)) = 1.

Definition 2 (Hypothetical expectation, informal). Let Q be a partition.
I imagine myself in the closest world in which the value of Q is known.
The hypothetical expectation E(X |Q(j)) is my belief about X when Q(j) is
true in this world.

You can see that this is a very subtle concept—but what did You
expect? The truth of Q(j) holds in an infinite number of imaginary
worlds, and something has to be done to reduce the ambiguity. So
this informal device of the ‘closest world’ is an attempt to mimic
what we do in practice. When reasoning hypothetically, we do not
consider strange new worlds in which Q(j) is true, but worlds that
are similar to our own. Technically, the partition Q which defines
the ‘closest world’ ought to be recorded along with the element Q(j)

in the notation for hypothetical expectation, but I have suppressed
it to avoid clutter.

Following (PR), I define a hypothetical probability for a random
proposition as

Pr(P |Q) := E(1P |Q). (CPR)

It is conventional to call this a conditional probability, which I will do,
although I could also call it a ‘hypothetical probability’.

What can we say about a hypothetical expectation? And does it
need to have any connection at all to ‘actual’ expectation? I provide
a condition for each of these questions, and show how they are
equivalent to a condition which directly expresses a hypothetical
expectation in terms of actual expectations.

Let X be any random quantity and Q be any partition. The first
condition is that

E(X1Q(i) |Q(j)) =

δij E(X |Q(j)) Pr(Q(j)) > 0

arbitrary Pr(Q(j)) = 0
(1.11)

where δij is the Kronecker delta function.13 That is, if I am suppos- 13 I.e. the function which is 1 when
i = j and zero otherwise, which can
also be written as 1i=̇j.

ing Q(j) to be true, then I must believe that Q(i) is false for i 6= j.
It is hard to disagree with this, so I call this the sanity condition
for hypothetical expectations. Note that I make no claims at all
for hypothetical expectations in what I believe to be impossible
situations.

The second condition links hypothetical expectations and ac-
tual expectations. Bruno de Finetti (1972, sec. 9.5) termed it the
conglomerative property:

E(X) =
k

∑
j=1

E(X |Q(j))Pr(Q(j)). (1.12)
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This is a strong condition, but it has an intuitive shape. It states that
I do not have a free hand when specifying all of my hypothetical
expectations, because, when taken together, they must be consistent
with my actual expectation. In fact, the conglomerative property
represents a two-stage approach for specifying my beliefs about X.
First, I think about X hypothetically, over each element of a parti-
tion, and then I combine these values according to the probability
I attach to each element in the partition. Lindley (1985, sec. 3.8)
termed this approach to specifying beliefs about X ‘extending the
conversion’.

What is interesting is that these two conditions are sufficient to
define hypothetical expectation, according to the following result.

Theorem 1.2 (Hypothetical Expectations Theorem, HET). Hypo-
thetical expectations satisfy the sanity condition and the conglomerative
property if and only if they satisfy the relation

E(X1Q) = E(X |Q)Pr(Q) (1.13)

for every random quantity X and every random proposition Q.

As a consequence of this result, (1.13) will be taken as the defin-
ing property of a hypothetical expectation.

Proof. Let X be a random quantity and Q be a random proposition.
Where necessary, embed Q in some partition Q.

⇐. Note that Pr(Q) = 0 implies that E(X1Q) = 0, by (SIQ). Then it
is straightforward to check that (1.13) implies the sanity condition,
substituting X ← X1Q(i) and Q ← Q(j). For the conglomerative
property,

E(X) = E
(

X · ∑ j 1Q(j)

)
as Q is a partition

= ∑ j E(X1Q(j)) by linearity

= ∑ j E(X |Q(j))Pr(Q(j)) by (1.13)

as required.

⇒.

E(X1Q(i)) = ∑ j E(X1Q(i) |Q(j))Pr(Q(j)) (conglomerative property)

= ∑ j δij E(X |Q(j))Pr(Q(j)) by the sanity condition, (1.11)

= E(X |Q(i))Pr(Q(i))

as required.

Eq. (1.13) is a good starting-point for several other useful results.
Putting X ← 1P in (1.13) shows that the conditional probability
always satisfies

Pr(P, Q) = Pr(P |Q)Pr(Q), (1.14)

using the common notation that Pr(P, Q) := Pr(P ∧ Q). This
is a result of great practical importance. It provides a two-stage
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approach for specifying the probability of any conjunction: first
think about Pr(Q), and then about the conditional probability
Pr(P | Q), i.e. “the probability that P is true supposing that Q is
true”. Note from (1.14) that Pr(P |Q) has the unique value

Pr(P |Q) =
Pr(P, Q)

Pr(Q)
(1.15)

when Pr(Q) > 0, but is arbitrary when Pr(Q) = 0.
Another useful result is that if E(·) is completely coherent, then

E(· | Q) is completely coherent whenever Pr(Q) > 0; this follows
from the conditional FTP,

∀g : X→ R E{g(X) |Q} = ∑
x∈X

g(x) · pQ(x) : Pr(Q) > 0

(1.16a)
where

pQ(x) := Pr(X =̇ x |Q) =
1q(x) p(x)

Pr(Q)
. (1.16b)

This result is straightforward to prove, starting from the FTP for
E{g(X)1Q} and then using (1.13). I refer to (1.16b) as the Muddy
Table Theorem, following van Fraassen (1989, ch. 7).

Eq. (1.16) and the FTP show that complete coherence implies
that hypothetical expectations have a recursive property: every re-
sult about expectations E(·) also holds for expectations E(· | Q) if
Pr(Q) > 0; and every result about E(· |Q) also holds for E(· |Q, R) if
Pr(Q, R) > 0; and so on. In other words, we can drop a ‘|Q’ into the
back of all expectations, or a ‘, R’ into the back of all hypothetical
expectations, and whatever result we are interested in still holds,
provided that Pr(Q) > 0 or Pr(Q, R) > 0; and so on.

1.3.3 ‘Conditional’ expectations

I have been careful to write ‘hypothetical’ and not ‘conditional’
expectation for E(X | Q). This is because probability theory makes
a clear distinction between the two, which is honoured in notation,
but often overlooked. The hypothetical expectation E(X | Q) is a
value, just like E(X) is a value. But the conditional expectation is a
random quantity, not a value.

Consider two random quantities, X and Y, where the following
construction generalises immediately to the case where Y is a vector
of random quantities. Now

Q :=
⋃

y∈Y
(Y =̇ y)

is a partition, so we will go ahead and define the function

µX(y) := E(X |Y =̇ y) y ∈ Y. (1.17)

This definition is not unique, because E(X | Y =̇ y) is arbitrary if
Pr(Y =̇ y) = 0. In general, there are an uncountable number of µX
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functions; denote these as µ′X , µ′′X , . . . . For each one of these, define
the corresponding conditional expectation of X given Y,

E′(X |Y) := µ′X(Y)

E′′(X |Y) := µ′′X(Y)
...

(1.18)

Each of these is a random quantity, being a specified function of Y,
termed a version of the conditional expectation. But although these
are different random quantities, it is straightforward to show using
the FTP that they are mean-squared equivalent, i.e.

E
[{

E′(X |Y)−E′′(X |Y)
}2
]
= 0,

more conveniently written as E′(X | Y) ms
= E′′(X | Y). Therefore it

is common to refer to ‘the’ conditional expectation E(X | Y). But,
just to make the point one more time, E(X | Y) is a function of the
random quantity Y, it is not a value.

In my notation I do not need to use two different symbols E and
E for hypothetical expectation and conditional expectation, because
the symbol to the right of the bar is clearly either a random propo-
sition, like Q, or a random quantity, like Y. Most authors do not
make a notational distinction. But I am insisting, because the differ-
ence is so fundamental, and also because it clarifies some important
equalities involving hypothetical and conditional expectations.

The first one is the conglomerative property (1.12), which in this
context is termed the Tower Property of conditional expectation:

E(X) = E{E(X |Y)}, (1.19)

also termed the Law of Iterated Expectation, see (LIE) below in
Sec. 1.4. This equality holds for every version of E(X | Y). It can be
developed recursively, just like a hypothetical expectation. So we
could have, for example,

E(X | Z) ms
= E{E(X |Y, Z) | Z}.

E behaves like an expectation, i.e. it respects the axioms of lower-
boundedness and additivity, but, again, only in mean square.

The Tower Property has an elegant and useful extension, for
computing variances (see Sec. 1.1.3), the variance identity:

Var(X) = E{Var(X |Y)}+ Var{E(X |Y)}, (1.20)

where Var denotes the conditional variance,

Var(X |Y) := E[{X−E(X |Y)}2 |Y]
= E(X2 |Y)−E(X |Y)2.

So, like the conditional expecation, the conditional variance is a
random quantity. Eq. (1.20) is straightforward to derive, using (1.19)
and the definition of Var immediately above.
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The Tower Property and the variance identity are useful because
in some applications it is possible to derive a closed-form expres-
sion for µX(y) and for σ2

X(y), the hypothetical variance conditional
on Y =̇ y. Then we have simple recipes for computing the expec-
tation and variance of X. Note that although µX and σ2

X are not
unique there is usually a ‘vanilla’ form. For example, the Multi-
normal distribution has an uncountable realm (see Sec. 1.6.3), and
hence Pr(Y =̇ y) = 0 for all y ∈ Y. Nevertheless, it is possible to
state useful expressions for µX and σ2

X .
The general theory of conditional expectation was originally

proposed by the great Soviet mathematician Andrey Kolmogorov,
notably in his book The Foundations of Probability, published in 1933.
Measure Theory is indispensible: see Billingsley (1979) or Williams
(1991) for the details. Another view of conditional expectation is
that it represents a projection; see Whittle (2000) for details.

1.4 Implications of the HET

Now we are back on-track! Regardless of where we start, (1.13) is
the defining relationship for hypothetical expectations and con-
ditional probabilities, from which the following results follow
immediately.

The conglomerative property given in (1.12) is also known as the
Law of Iterated Expectation (LIE), and its special case for probabilities
is known as the Law of Total Probability (LTP)

E(X) = ∑
Q∈Q

E(X |Q)Pr(Q), Pr(P) = ∑
Q∈Q

Pr(P |Q)Pr(Q)

whenever Q is a partition. See below (LIE, LTP) for common expres-
sions for these in terms of PMFs.

Here is a very useful result which I call Taking out What is Known
(TWK), after Williams (1991, sec. 9.7):

E{g(Y) · h(X, Y) | Y =̇ y}
= g(y) · E{h(X, y) | Y =̇ y} : y ∈ supp Y ; (TWK)

recollect the definition of ‘supp’, the support of a PMF, given in
(1.7). Conceptually, this is just an extension of the sanity condition,
(1.11), since it would be weird if Y was not equal to y in the hypo-
thetical world where Y =̇ y was true. Eq. (TWK) can be proved
using the FTP for E{g(Y) · h(X, Y) · 1Y=̇y} and (1.13). It also holds in
mean square for conditional expecations.14 14 For example, E(XY |Y) ms

= Y E(X |Y).
Here are three other very important results relating probability

and conditional probability, for random propositions P, Q, and R:

1. Factorisation Theorem, which just extends (1.14).

Pr(P, Q, R) = Pr(P |Q, R)Pr(Q | R)Pr(R).

2. Sequential Conditioning

Pr(P, Q | R) = Pr(P |Q, R)Pr(Q | R) : Pr(R) > 0.
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3. Bayes’s Theorem15 15 I insist on “Bayes’s”, on the authority
of Fowler’s Modern English Usage,
2rd edn, p. 466. Americans do this
differently.Pr(P |Q) =

Pr(Q | P)Pr(P)
Pr(Q)

: Pr(Q) > 0.

Bayes’s theorem also has an odds form16 16 ‘Odds’ denotes a ratio of probabili-
ties.

Pr(P |Q)

Pr(R |Q)
=

Pr(Q | P)
Pr(Q | R)

Pr(P)
Pr(R)

: Pr(Q, R) > 0.

This is convenient because it cancels Pr(Q). One common special
case is R← ¬P, where ¬P denotes ‘not P’.

Each of these results can be expressed in terms of PMFs, which is
how statisticians usually encounter them in practice. For simplicity,
I write ‘supp X’ to denote ‘supp pX ’ where pX is the marginal PMF
of X, see (MAR).

0. Law of Iterated Expectation, Law of Total Probability

E(X) = ∑
y∈Y

E(X | Y =̇ y) · p(y) (LIE)

p(x) = ∑
y∈Y

p(x | y) · p(y), (LTP)

because
⋃

y∈Y(Y =̇ y) is a partition.

1. Factorisation Theorem

p(x, y) = p(x | y)p(y)

p(x, y, z) = p(x | y, z)p(y | z)p(z),
(FAC)

and so on.

2. Sequential Conditioning

p(x, y | z) = p(x | y, z)p(y | z) : z ∈ supp Z. (SEQ)

3. Bayes’s Theorem

p(x | y) = p(y | x)p(x)
p(y)

: y ∈ supp Y . (BAY)

And in odds form

p(x | y)
p(x′ | y) =

p(y | x)
p(y | x′)

p(x)
p(x′)

: (x′, y) ∈ supp(X, Y). (BOD)

1.5 Conditional independence

Conditional independence is the cornerstone of statistical mod-
elling: it is the most important thing after expectation itself. Condi-
tional independence is a property of beliefs.

Definition 3 (Conditional independence).
Let X, Y , and Z be three collections of random quantities. My beliefs
about X are conditionally independent of Y given Z exactly when

∀g : X→ R E{g(X) |Y =̇ y, Z =̇ z} = E{g(X) |Z =̇ z} : (y, z) ∈ supp(Y , Z).

This is written X ⊥⊥ Y | Z.
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That is to say, whenever I imagine the closest world in which
the values of both Y and Z are known, I find that my hypothetical
beliefs about X do not depend on the value taken by Y , and are the
same as if Y was not known.

The definition in Def. 3 gives meaning to the notion of condi-
tional independence as a property of beliefs, but it is unwieldy to
use in practice. Happily we have the following result.

Theorem 1.3 (Equivalents to conditional independence).
The following statements are equivalent:

(i) X ⊥⊥ Y | Z

(ii) p(x | y, z) = p(x | z) : (y, z) ∈ supp(Y , Z)

(iii) p(x, y | z) = p(x | z) · p(y | z) : z ∈ supp Z

(iv) E{g(X) · h(Y) | Z =̇ z} = E{g(X) | Z =̇ z} · E{h(Y) | Z =̇ z} : z ∈ supp Z.

Proof.

(i) implies (ii) after setting g(x′)← 1x′=̇x.

(ii) implies (iii). Eq. (SEQ) asserts that

p(x, y | z) = p(x | y, z) · p(y | z) : z ∈ supp Z. (†)

Consider the two cases. First, y ∈ supp(Y | Z =̇ z), so that
(y, z) ∈ supp(Y , Z). In this case (ii) and (†) imply (iii). Second,
y 6∈ supp(Y | Z =̇ z). In this case (†) has the form 0 = p(x | y, z) · 0,
and we may take p(x | y, z)← p(x | z), as required.

(iii) implies (i):

E{g(X) | Y =̇ y, Z =̇ z}
= ∑ x g(x) · p(x | y, z) from the CFTP, (1.16)

= ∑ x g(x) · p(x, y | z)
p(y | z) (†) and (y, z) ∈ supp(Y , Z)

= ∑ x g(x) · p(x | z) from (iii)

= E{g(X) | Z =̇ z} CFTP again.

(iii) implies (iv) using the CFTP. (iv) implies (iii) after setting
g(x′)← 1x′=̇x and h(y′)← 1y′=̇y.

The definition of conditional independence can be simplified to
that of independence, simply by dropping Z. So my beliefs about X
and Y are independent exactly when

∀g : X→ R E{g(X) | Y =̇ y} = E{g(X)} : y ∈ supp Y , (1.21)

and this is written X ⊥⊥ Y . There are straightforward modifications
to the equivalent conditions given in Thm 1.3.

Causal chains provide an intuitive illustration of conditional
independence. My beliefs about the power generated at a hy-
droelectric plant, X, are strongly influenced by the depth of the
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reservoir, Z. So much so that, given Z, knowledge of the previous
rainfall on the reservoir catchment, Y, has no further impact on my
beliefs about X. Hence, for me, X ⊥⊥ Y | Z. This illustration also
shows that X ⊥⊥ Y | Z 6=⇒ X ⊥⊥ Y. For if I did not know the depth
of the water, then the previous rainfall would be highly informative
about power generated.

We can also clarify that X ⊥⊥ Y 6=⇒ X ⊥⊥ Y | Z. Suppose that
X and Y are the points from two rolls of a die believed by me to
be fair. In this case, I might reasonably believe that X ⊥⊥ Y, if I
had shaken the die extensively inside a cup before each roll. But
if Z is the sum of the points in the two rolls, then I can predict X
exactly knowing Y and Z, but only approximately using Z alone.
So Y brings information about X that augments the information in
Z, and I do not believe that X ⊥⊥ Y | Z.

These two illustrations show that conditional independence is
its own thing, not simply a necessary or sufficient condition for
independence. My belief that X ⊥⊥ Y | Z is something I accept or
reject after reflecting on how my beliefs about X in the presence
of Z change on the further presence of Y . The asymmetry of X
and Y is an illusion—a fascinating and deep result, which follows
immediately from the symmetry of p(x, y | z) in (iii) of Thm 1.3. The
relationship between conditional independence (symmetric) and
causality (asymmetric) is very subtle; see Pearl (2000) and Dawid
(2002, 2010) for discussions.

Finally, here are some additional useful concepts based on con-
ditional independence. A collection X is mutually conditionally
independent given Z exactly when

∀A, B X A ⊥⊥ XB | Z (1.22)

where X A and XB are non-intersecting subsets of X. I write this as
�X | Z. It is straightforward to show that

�X | Z ⇐⇒ p(x | z) =
m

∏
i=1

pi(xi | z), (MCI)

using Thm 1.3. Likewise, X is mutually independent exactly when
X A ⊥⊥ XB for all non-intersecting X A and XB, written as �X, and
for which

�X ⇐⇒ p(x) =
m

∏
i=1

pi(xi). (MI)

A stronger condition for mutual [conditional] independence is
where pi is the same for all i. In this case, X is [conditionally] inde-
pendent and identically distributed (IID) [given Z]. The [conditionally]
IID model is the unflagging workhorse of modern applied statistics.

1.6 Non-finite realms

For our convenience, it will often be useful to treat the realm of a
random quantity X as non-finite, or even uncountable. These are
abstractions, because the realm of an operationally-defined quantity
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is always finite. But remember the PEP in footnote 2: we have to
make sure that we do not introduce any pathologies.

Some terms. A finite set has a finite number of elements; otherwise
it is non-finite. The size of a set is termed its cardinality, and denoted
|A|. A finite set in a Euclidean space has a finite diameter, i.e. is
bounded; a non-finite set may or may not have finite diameter. A
countable set has the same cardinality as N, the set of positive inte-
gers; i.e. it can be represented as A :=

{
ai : i ∈ N

}
. An uncountable

set has a larger cardinality than N; typically, its cardinality would
be that of the continuum, which is the cardinality of the reals in the
interval [0, 1]. Vilenkin (1995) provides a good introduction to the
complexities of ‘infinity’.

1.6.1 Countable realms

Suppose that the realm of X is non-finite but countable. Since the
FTP is the basic result for complete coherence, we look to its proof
to check for pathologies. And there we see that the ‘only if’ proof
breaks down at (1.3), because the righthand side is no longer the
sum over finite set. The axiom of additivity makes no claims for the
expectation of the sum of an infinite set of random quantities. In
order to retrieve the proof and eliminate the pathology, a stronger
property is required, namely that of countable additivity:

E(X1 + X2 + · · · ) = E(X1) + E(X2) + · · · (Countable additivity)

Now the ‘only if’ part of the proof goes through as before.
I interpret countable additivity as protection against pathologies

that might otherwise arise if the FTP did not hold for random
quantities with countable realms. Other statisticians, though, make
a much bigger deal about the difference between different types
of additivity, on foundational/philosophical grounds. The most
vociferous has been Bruno de Finetti, e.g., de Finetti (1972, ch. 5)
and de Finetti (1974, ch. 3); see also Kadane (2011, sec. 3.5).

1.6.2 Unbounded realms

If we start with expectation as primitive, then infinite expectations
can never arise if we do not want them, even for random quantities
whose realm is unbounded. However, modern practice, which
starts with a PDF17 rather than with a set of expectations, makes 17 I will write ‘PDF’ for ‘PMF/PDF’ in

this subsection.it all too easy create random quantities with infinite expectations
without realising it. This is because modern practice starts with a
convenient choice for the PDF of X, whose tractability often arises
partly from the fact that its support is unbounded: the Normal
distribution, the Gamma, the Poisson, and so on. If expectation is
defined as an infinite sum or an integral, then it may may ‘converge’
to ±∞ or it may have no well-defined limit.

The three choices given above are actually fairly safe, because
they have finite moments, see Sec. 1.1.3. Finite moments implies
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that all functions of X that are bounded in absolute value by a
polynomial will have finite expectations.18 18 However, this result cannot be

extended to real analytic functions,
except in the case when the realm of X
is bounded.

But consider the Student-t distribution with one degree of free-
dom, known as a Cauchy distribution, which has support R. Even
moments are infinite, and odd moments are undefined. Thus if X is
Cauchy, then the expectations of some polynomials of X are infinite,
and of others are undefined. The Cauchy is a very poor choice
for representing beliefs about an operationally-defined random
quantity. Similar problems exist for all Student-t distributions.

Here is where statisticians have to pay attention to the PEP (foot-
note 2). If a random quantity is treated as having an unbounded
realm, then it is the statistician’s responsibility to make sure that
all of the moments remain finite. One elegant way to do this is to
construct more complicated PDFs from mixtures of ‘safe’ distribu-
tions, because these mixtures will have finite moments, according to
the LIE. It may not be an explicit consideration, but the practice of
hierarchical modelling is largely about creating mixtures of this type;
see Lunn et al. (2013, ch. 10) or Gelman et al. (2014, ch. 5).

1.6.3 Uncountable realms

We lapse briefly into a more abstract notation. Let {aλ : λ ∈ Λ} be
any parameterised collection of non-negative values in [0, ∞], where
Λ may be uncountable. We need to define what it means to sum
over these values, in such as way that if the set is countable, then
we retain the usual definition. To this end, define ∑λ∈Λ aλ as the
supremum of ∑λ∈L aλ, for all finite sets L ⊂ Λ. Now consider the
case where ∑λ∈Λ aλ = 1, as it would be were the aλ’s probabilities
on the realm Λ. In this case it is straightforward to show that only
a countable number of the aλ’s can be non-zero. This argument is
taken directly from Schechter (1997, sec. 10.40).

So, returning to more concrete notions, no matter what the
realm of X, finite, countable, or uncountable, at most a countable
number of the elements of X will have non-zero probabilities. If
X is uncountable, we can always ‘thin’ it to countable set, without
changing our beliefs. Of course a countable set is still very large.
The set of rationals in [0, 1] is countable, but comprises an incon-
ceivably minute proportion of the set of reals in [0, 1], which has the
cardinality of the continuum.

But this does present a new difficulty, if we proceed without
first thinning X to a countable set. If the realm of X is uncountable
and the distribution function F(x) := Pr(X ≤̇ x) is continuous,
then the probability of X taking any specified value x is zero. To
be clear, in a tiny ball around x there may be a countable number
of elements with non-zero probability, but a single point selected
arbitrarily from the continuum will always fall between the points
of a countable subset of the continuum. So we cannot continue to
define ‘p(x)’ as ‘Pr(X =̇ x)’, because this would be vacuous.

X is a continuous random quantity (it maybe a vector) exactly
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when its distribution function F is continuous. It is an absolutely
continuous random quantity exactly when F is differentiable.19 19 There are also hybrid random

quantities where the distribution is
mostly continuous, but has vertical
jumps, at what are termed ‘atoms’.

Statisticians wanting to tap the continuum for their convenience
almost always choose absolutely continuous random quantities.
For an absolutely continuous X, ‘p’ is defined to be the probability
density function (PDF), satisfying

Pr(x <̇ X ≤̇ x + dx) = p(x)dx. (1.23)

It is undoubtedly confusing to use the same symbol ‘p’ for prob-
ability in the case where X has a finite or countable realm, and
probability density where X has an uncountably infinite realm, but
this convention does make sense in the more general treatment
of probability using Measure Theory, in which sums over X are
treated formally as Lebesgue integrals (Billingsley, 1979; Williams,
1991).

Measure Theory is only required to handle uncountable realms,
for which pathologies can and do arise.20 But uncountable realms 20 See, for example, the Borel paradox,

discussed in Poole and Raftery (2000).are ‘unnatural’, a view reiterated many times since Cantor’s early
work on non-finite sets. This is not just statistical parochialism.
David Hilbert, one of the great mathematicians and an admirer of
Cantor’s work, stated

If we pay close attention, we find that the literature of mathematics is
replete with absurdities and inanities, which can usually be blamed
on the infinite.

And later in the same essay,

[T]he infinite is not to be found anywhere in reality, no matter what
experiences and observations or what kind of science we may adduce.
Could it be, then, that thinking about objects is so unlike the events
involving objects and that it proceeds so differently, so apart from
reality? (Hilbert, 1926, p. 370 and p. 376 in the English translation)

For similar sentiments from eminent statisticians, see, e.g., Hacking
(1965, ch. 5), Basu (1975), Berger and Wolpert (1984, sec. 3.4), or
Cox (2006, sec. 1.6). All of these statisticians acknowledge the
convenience of uncountable realms, but there is no necessity for
uncountable realms. Thus Statistics would have entirely missed its
mark if it could only be developed using Measure Theory. It has
been a deliberate decision on my part not to use Measure Theory in
these notes. Let me finish with a telling quote taken from Kadane
(2011, start of ch. 4):

Does anyone believe that the difference between the Lebesgue
and Riemann integrals can have physical significance, and that
whether say, an airplane would or would not fly could depend on
this difference? If such were claimed, I should not care to fly on that
plane. (Richard Wesley Hamming)
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Modes of statistical inference
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This chapter is an overview of statistical inference, from its origins
in populations and (random) samples, to its modern practice. Over
the last thirty years, the applications of Statistics have diversified
enormously, reflecting the availability of new large datasets, more
powerful computers and better algorithms, improved statistical
models, and a growing societal concern to assess and manage
uncertainty and risk (see, e.g., Smith, 2010, ch. 1). But although the
pace of change has been and will remain rapid, the template of a
modern statistical inference has become fairly stable. Moreover,
the adoption of statistical methods in other communities, such as
Information Theory and Machine Learning, has broadly conformed
to the same template (see, e.g., MacKay, 2003; Murphy, 2012).

In this chapter I distinguish between Bayesian statisticians and
modern statisticians. It is convenient to think of these as two dif-
ferent tribes, but in reality a professional applied statistician is
adaptable. In my experience, some application communities are
more comfortable with one approach than with the other and,
where possible I try to accommodate this. Having said that, it will
be apparent from my assessment that my sympathies lie with the
modern Bayesian approach.

2.1 The origins of Frequentist inference

The origins of the modern theory of Statistics is found in popula-
tions and samples; more specifically, what can be inferred about
a population from a sample, suitably collected? In many ways,
some of which will become evident in this chapter, Statistics has
struggled to escape from these origins.

Consider a population of some kind, of size m. This is simply a
set that can be enumerated in some fashion, although it is helpful
and not misleading to think of people. Each element of the popula-
tion has some measurable characteristics. Denote the characteristics
of the ith element in the population as Xi, with common realm

X :=
{

x(1), . . . , x(r)
}

.

Questions about the population are ultimately questions about the
proportion of the population for which Xi = x(j), for j = 1, . . . , r.
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In this approach it is not possible to address the question “What
are the characteristics of element i?”, but only “What is the fre-
quency of characteristic x(j) in the population?”. For this reason, it
is known as the Frequentist approach to inference.1 1 Although the scope of this label

will be generalised below, notably in
Sec. 2.5.

Incomplete knowledge about the population is a form of epis-
temic uncertainty. To represent her epistemic uncertainty, the Fre-
quentist statistician proposes a model for the population. ‘Model’
in this context has a precise statistical meaning: it is a family of
distributions, where by ‘family’ is meant ‘set’, and where the index
of the family is termed the parameter:

model:
{

f (· ; θ) : θ ∈ Ω
}

where θ is the parameter and Ω is the parameter space. The model
asserts that f (x(j); θ) is the proportion of the population with
Xi = x(j) in family member θ. Hence(

f (x(1); θ), . . . , f (x(r); θ)
)
∈ Sr−1

for each θ ∈ Ω, where Sr−1 is the (r− 1)-dimensional unit simplex,
defined in (1.1).

What does the introduction of a model bring? In the vacuous
model, Ω = Sr−1 and f (x(j); θ) = θj for j = 1, . . . , r. But if the
dimension of Ω is less than r − 1, then the family is restricted in
some way. This restriction is used to represent beliefs about the
population. As a canonical example, it is common to choose a
Normal (or ‘Gaussian’) model for a scalar Xi, which represents the
belief that the population proportions are bell-shaped. In this case,
the only variations in the shape are where it is centred, and how
wide it is. This gives us a two-dimensional parameter θ = (µ, σ2) ∈
R×R++ = Ω, and the model2 2 A notational point. In order to treat

the model like a PMF, I include the
infinitesimal ‘dx’ when the realm is
uncountable; see Sec. 1.6.3.f (x; µ, σ2) = (2πσ2)−

1
2 exp

{
−(x− µ)2

2σ2

}
dx.

The two-dimensional parameter has restricted the vacuous model,
which has a notionally uncountable number of ‘degrees of belief’,
to a model with only two degrees of belief. This is a lot of dimen-
sional reduction or, to put it another way, it represents very strong
beliefs indeed.

Now a sample is collected, denoted Y := (Y1, . . . , Yn), where each
Yi ∈ X. It is necessary to describe how the sample is selected from
the population. One type of selection mechanism has a dramatic
effect in simplifying the inference, which is that the elements in
the sample are selected without reference to the values X1, . . . , Xm.
A sample of this type is termed ignorable; see Gelman et al. (2014,
ch. 8) for more details.

The ubiquitous example of an ignorable selection mechanism is
random sampling, without or with repacement. In random sampling
the entire population is enumerated, a subset of size n is identified
using a random mechanism, and then the values of Xi are collected
for this subset. If the subset is selected in such a way that every one
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of the (m
n) subsets is equally probable, then this is random sampling

without replacement. If the sampling fraction n/m is small, then the
difference between random sampling without replacement and
random sampling with replacement is small; see Freedman (1977)
for details. Random sampling with replacement is typically taken
to represent the more general notion of an ignorable selection
mechanism.

Under random sampling with replacement, the PMF of the
sampled values is

p(y; θ) =
n

∏
i=1

f (yi; θ) for some θ ∈ Ω. (2.1)

In terms of Sec. 1.5, Y is mutually independent (MI) for each θ ∈ Ω.
In fact, even stronger, Y is independent and identically distributed
(IID) for each θ ∈ Ω, often written as

Y1, . . . , Yn
iid∼ f (· ; θ) for some θ ∈ Ω.

This is a very tractable PMF, and the basis for some very elegant
mathematical results.

We should pause for a moment. Except in trivial experiments,
I doubt that anyone in the history of the world has sampled a
population of people at random without/with replacement. This
presupposes that the entire population can be enumerated and
contacted, and that every element of the population who is con-
tacted will respond. Neither of these conditions holds in practice,
and there are many examples of woeful experiments with a large
sampling bias, where the sample collected is not representative of
the population in the way that a random sample would be repre-
sentative. The very first question a statistician should ask about
a sample is whether or not it has sampling bias. This question is
more pertinent than ever in this era of Big Data, where samples
are often ‘samples of opportunity’ rather than samples collected
through a carefully designed selection mechanism. Harford (2014)
has an excellent discussion.

The finishing line for Frequentist inference in now in sight. If we
knew θ, then we would know the population proportions exactly,
and we would also know the answer to our question, which is
some function of the proportions, and hence some function of θ, say
g(θ). One approach is to estimate θ from the sample observations
yobs, and then plug in the estimate to derive a point estimate of the
population proportions. The most popular estimate is the Maximum
Likelihood (ML) estimate,

θ̂(yobs) := argmax
t∈Ω

p(yobs; t) = argmax
t∈Ω

f (yobs; t). (2.2)

Then g
(
θ̂(yobs)

)
is the ML estimate of g(θ). Most statisticians

would be concerned to quantify the variation induced by the ran-
dom sampling (this variation will decrease as n increases), and
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would prefer to compute and present a 95% Confidence Interval for
g(θ) based on yobs.

However, this approach is not as clear-cut as it seems, because
there is an uncountable number of point estimators and confidence
procedures for θ and g(θ), and their properties vary widely, and
depend on the model and on g. In fact it would not be an over-
simplification to say that much of C20th Frequentist statistics has
been about proposing, examining, and sometimes rejecting different
approaches to narrowing the set of possible point estimators and
confidence procedures. Some proposals have been more-or-less
completely abandoned (e.g. the notion that an estimator should be
‘unbiased’); others continue to be used despite having unattractive
features (e.g. the ML estimator, which is sometimes inadmissible).
Much more detail about choosing point estimators and confidence
procedures is given in Chapter 3 and Chapter 4.

Also, many modern statistical inferences do not have the simpli-
fying features of population inference. In particular, the concept
of a population and a model is less well-defined, inference is not
just about parameters, and the PMF of the observations does not
have the tractable product form given in (2.1). So, really, nothing is
clear-cut! Statistics is the antithesis of what many non-statisticians
would like it to be: a more-or-less belief-free approach to assessing
the evidence for a hypothesis, based on some observations. Instead,
there are beliefs encoded in the model, beliefs encoded in the choice
of inferential procedure, and beliefs encoded in the computation.
Statistical training is about recognising the presence of all of these
beliefs, and developing the knowledge and experience to make
good choices, or at least to avoid bad ones.

2.2 Exchangeability

Exchangeability is a qualitative belief about the population. It is
important because it provides a stepping-stone from the Frequen-
tist approach to population inference, to the much more general
approaches presented in the following sections.

Beliefs about a sequence X := (X1, . . . , Xm) are exchangeable
exactly when

∀g : X→ R, ∀π E{g(X1, . . . , Xm)} = E{g(Xπ1 , . . . , Xπm)} (2.3)

where π is a permutation of (1, . . . , m). An equivalent condition
is that the PMF of X is a symmetric function of x. Put simply,
if beliefs about X are exchangeable then only values count: the
question of who had which value is immaterial.

The power of exchangeability comes from the Exchangeability
Representation Theorem (ERT). One version of the ERT is as follows.
Let X be an exchangeable sequence of length m, where m is large,
and let Y := (Y1, . . . , Yn) be a sample from X selected without
reference to the values in X (i.e. ‘ignorably’). If n � m then there
exists a statistical model f and a prior distribution πθ for which, to a
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good approximation (exact as m→ ∞)

p(y) =
∫ n

∏
i=1

f (yi; t) · πθ(t)dt. (2.4)

In other words the model and the prior distribution are jointly
implicit in any exchangeable belief about X. It is very striking that
the qualitative belief of exchangeability for X translates into such a
tightly constrained PMF for Y .

In his original article, de Finetti (1937) proved the ERT for the
special case where X =

{
0, 1
}

; see also Heath and Sudderth (1976).
This result was extended to complete generality by Hewitt and
Savage (1955), and several other proofs have been given. I like
Kingman (1978), although it is technical.

Eq. (2.4) is a joint PMF for (Y , θ) in which θ has been marginalised
out. If we condition the joint distribution on θ =̇ t then

p(y | t) =
n

∏
i=1

f (yi; t), t ∈ supp πθ .

In terms of Sec. 1.5, Y is mutually conditionally independent (MCI)
given θ. This highlights a fundamental difference between (2.1) and
(2.4): in the first case θ is an index of the set Ω, and in the second
case it is a random variable.3 It is confusing to give the Frequentist 3 I am being pedantic here, and not

calling θ a ‘random quantity’, because
it need not be operationally defined.

parameter and the exchangeable random variable the same symbol
θ. But this practice is totally entrenched in our profession’s notation,
and it is too late to change.

It is important to appreciate that the PMF for Y in (2.4) does not
imply any particular PMF for X. In fact, there is an uncountable
number of PMFs for X which are exchangeable, and which have
(2.4) as the marginal PMF for Y . However, one particular candidate
is very attractive, namely

p(x) =
∫ m

∏
i=1

f (xi; t) · πθ(t)dt. (2.5)

It seems to be only short step to start with (2.5) as beliefs about X,
from which (2.4) is the marginal PMF for any ignorable sample
Y . But this is a huge step conceptually, because it proposes a PMF
for the population rather than just the sample, and opens up a
whole new vista for inference. It is now possible to make inferences
directly about each Xi, and the observations yobs can be incorpo-
rated into beliefs about unobserved Xi’s by conditioning on the
proposition Y =̇ yobs.

The application of the ERT to the Frequentist inference of Sec. 2.1
suggests that proposing a prior distribution πθ and conditioning on
Y =̇ yobs is an alternative to choosing an estimator or a confidence
procedure for θ. This was the basis for the Neo-Bayesian movement
which was spearheaded in the 1950s by L.J. Savage (and an honor-
able mention for I.J. Good), based in part on the trenchant criticisms
of the Frequentist approach by Bruno de Finetti and Harold Jeffreys.
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The Neo-Bayesian approach fixed a number problems with the Fre-
quentist approach, notably that it is often inadmissible, discussed in
detail in Chapter 3.4 But, with the benefit of hindsight, I think this 4 A good snapshot of our profession

in transition is given by Savage et al.
(1962).

misses the big picture. What the ERT really did was enable a much
more general concept of the purpose and practice of statistical
modelling, and usher in the ‘modern Bayesian’ era.

2.3 The modern Bayesian approach

Here is the general situation. We have random quantities of interest,
X. Another set of random quantities are observables, Y , for which
we acquire observations, yobs. Sometimes Y ⊂ X, but often not.
Our basic objective is to update our beliefs about X using the
values yobs.

One particular approach has proved powerful in practice, and
has strong theoretical support in Philosophy and in Computer Sci-
ence as a model for a rational approach to learning (see, e.g., van
Fraassen, 1989; Paris, 1994). This approach is to represent beliefs
about (X, Y) as a PMF, and to update beliefs about X by condi-
tioning on Y =̇ yobs. This approach is known by the ugly word
conditionalization. There are interesting computational questions
about how best to implement the conditioning, but these are really
questions for Probability Theory (many theoretical statisticians
are applied probabilists). For the applied statistician, the crucial
question is how to construct the PMF for (X, Y).

Exchangeability provides the template for statistical modelling.
Our beliefs about (X, Y) are complicated, because of all the things
we know about how elements of (X, Y) are similar to each other;
e.g., how the reading ability of one child of a specified age relates
to that of the same child at a different age, or another child of
the same or a different age. It would be very challenging to write
down a PMF directly. Instead, the trick is to sneak up on it. We
introduce additional random variables θ ∈ Ω. I will write t for
a representative value for θ, and I will treat Ω, the realm of θ,
as uncountably infinite: this explains the presence of ‘dt’ in the
expressions below; see Sec. 1.6.3.5 What θ represents is entirely up 5 Typically, Ω is a convex subset of a

finite-dimensional Euclidean space.to the statistician: it is simply a device to allow her to specify a joint
distribution for (X, Y , θ) using the simplifications that arise from
conditional independence.6 6 Now would be a good time to look

back at Sec. 1.5.(FAC) asserts that we can always decompose the joint PMF as

p(x, y, t)dt =

p(x | y, t) · p(y | t) · p(t)dt, or

p(y | x, t) · p(x | t) · p(t)dt.
(2.6)

Conditional independence allows us to simplify one or more of
the PMFs on the righthand side, to the point, one hopes, where
a specific choice can be made. It is worth stressing again that the
statistician chooses her parameters θ in order to make these choices
as simple as possible.
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Here are some elementary but useful examples, from Sec. 2.2. In
the special case where Y ⊂ X, we have

p(y | x, t) = 1y=̇x1:n ,

where I have assumed that Y corresponds to the first n elements of
X, without loss of generality. This very specific case implies that
Y ⊥⊥ θ | X, because the righthand side is invariant to t.

For the exchangeable models of Sec. 2.2, the conditional indepen-
dence is �X | θ, or, equivalently,

p(x | t) =
m

∏
i=1

p(xi | t).

Then the statistician chooses p(xi | t) ← f (xi; t). This expression
illustrates a useful convention, that ‘p’ is used to denote generic
PMFs, and other symbols like ‘ f ’ and ‘πθ’ are used to indicate
specified PMFs. So ‘p’ is a function which obeys the rules laid
down in Sec. 1.4, but ‘ f (x; t)’ is a specific choice of function and
evaluates to a number.7 7 In more general cases, f is an algo-

rithm from which we can simulate an
X with the PMF f (· ; t), for each t ∈ Ω.

So, following the second branch of (2.6), the exchangeable model
has

p(x, y, t)dt = 1y=̇x1:n ·
m

∏
i=1

f (xi; t) · πθ(t)dt (2.7)

where p(t) ← πθ(t). It is a pragmatic choice by the statistician,
to introduce θ and to specify p(x, y, t) in terms of f and πθ , rather
than to specify p(x, y) directly. But this approach is so powerful
that it deserves to be presented as a principle.

Definition 4 (Principle of statistical modelling, PSM). Represent the
complicated joint beliefs you want for (X, Y) by introducing additional
random variables θ, specifying a relatively simple joint distribution for
(X, Y , θ) using conditional independence, and then marginalising out θ.

The crucial thing about the PSM is that the parameters are
entirely instrumental: they need have no ‘meaning’, because their
purpose is simply to induce an appropriate PMF for the random
quantities (X, Y) after the parameters have been marginalised out.
Ultimately, all of our inferences concern (X, Y). There may be
situations in which expectations of specified functions of (X, Y) are
expressible in terms of specified functions of θ, but this should not
be presupposed.

From this point of view, Frequentist inference, which focuses
largely on inferences about specified functions of the parameters,
is rather limited. It has proved very hard to extend Frequentist
inference to the general case of inferences about functions of (X, Y).
The usual approach, given below in Sec. 2.5, is acknowledged by
all statisticians to be deficient, although is not possible to assert
categorically that the Bayesian approach is better, since inferences
in the Bayesian approach can be influenced by the choice of prior
distribution for θ.
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* * *

Acceptance of the PSM is the hallmark of modern Bayesians, in
contrast to the neo-Bayesians mentioned above, who were more con-
cerned to correct deficiencies in the Frequentist approach. Dennis
Lindley, who had worked closely with L.J. Savage, was one of the
early modern Bayesians (see, e.g., Lindley and Smith, 1972; Lindley,
1980). A modern statistical model for (X, Y) is constructed from
notions of exchangeability and conditional independence, typically
represented as a hierarchical model. Such a model has several lay-
ers of parameters, quite different from the ‘flat’ parameter space
implied by the Frequentist approach. The potential for strong de-
pendencies among parameters has challenged simplistic notions
about the dimension of the parameter space (see, e.g., Spiegelhalter
et al., 2002, 2014).

2.4 Computation for ‘conditionalization’

The hypothetical expectation or PMF when conditioning on
Y =̇ yobs is indicated by an asterisk. Throughout this section I
will assume that yobs ∈ supp Y , since at this stage anything else
would be daft. Let g be any specified function of (x, y). Then

E∗{g(X, Y)} := E{g(X, Y) | Y =̇ yobs}
= E{g(X, yobs) | Y =̇ yobs} by (TWK)

= ∑
x

∫
g(x, yobs) · p∗(x, t)dt by the CFTP, (1.16).

(2.8)

Examples of p∗(x, t)dt are given later in this section. I do not rule
out including θ among the arguments to g, but useful inferences are
usually about operationally defined random quantities, rather than
statistically convenient random variables.

In much modern practice, a Monte Carlo technique is used to
generate a finite sequence of values for (X, θ) based on p∗(x, t),
and then the sum/integral in (2.8) is replaced by the arithmetic
mean over the sequence; one sequence can serve for any number of
different choices of g. This practice is justified asymptotically under
a number of different Monte Carlo sampling schemes, although the
most popular scheme by far is Markov chain Monte Carlo (MCMC).
There are many textbooks on this topic, see, e.g., Robert and Casella
(2004). For shorter introductions, see Besag et al. (1995) and Besag
(2004).

The power of MCMC techniques such as the Metropolis-Hastings
algorithm is that they can be used to compute hypothetical expec-
tations in cases where p∗(x, t) is only known only up to a multi-
plicative constant. Every p∗(x, t) has p(yobs) in the demoninator,
and this is typically an expensive quantity to evaluate.8 The growth 8 See, e.g., (2.9b) below.

of applications of conditionalization has gone hand-in-hand with
more powerful computers and better MCMC algorithms.
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I’d like to finish this brief comment about MCMC on a caution-
ary note. Implementing an efficient MCMC algorithm involves
quite a lot of mathematics and programming; it is easy to make
a mistake. Here is my scheme for minimising code errors. For a
given model, start by writing a rmodel function which generates a
random (X, Y) for specified parameters. Then write the sampler.
Then test the sampler using the rmodel function and the method
of Cook et al. (2006).9 This testing will require you to perform the 9 Make sure you understand why

this method works because—to be
frank—the paper could be clearer.

inferential calculation many times, so you may want to reduce the
size of (X, Y) while testing. It would be embarrassing to describe
some of the errors this approach has saved me from.

* * *
At this point, if you have done a Bayesian Statistics course you

may be looking at (2.8) and asking “Hang on—where is the ‘pos-
terior distribution’, and where is Bayes’s theorem?” The answer
is that they sometimes appear in p∗(x, t) because of the way that
we have chosen to factorise p(x, y, t). But they are not an essential
feature of conditionalization.

To illustrate the situation where the posterior distribution ap-
pears, consider the exchangeable model based on f and πθ , given in
(2.7). Then

p∗(x, t)dt = p(x, yobs, t)dt
/

p(yobs)

= 1yobs=̇x1:n
·

m

∏
i=1

f (xi; t) · πθ(t)dt
/

p(yobs)

= 1yobs=̇x1:n
·

m

∏
i=n+1

f (xi; t)
n

∏
i=1

f (yobs
i ; t) · πθ(t)dt

/
p(yobs)

= 1yobs=̇x1:n
·

m

∏
i=n+1

f (xi; t) · π∗θ (t)dt

(2.9a)

where π∗θ is the posterior distribution of θ (which follows by Bayes’s
theorem), and

p(yobs) =
∫

p(yobs, t)dt =
∫ n

∏
i=1

f (yobs
i ; t) · πθ(t)dt. (2.9b)

Eq. (2.9) represents an algorithm for evaluating p∗(x, t) for any
choice of f and πθ . As already explained, MCMC methods allow
us to ignore the value of p(yobs) if that is more convenient, so that
only the numerator of (2.9a) is required. Obviously this is a huge
advantage, because (2.9b) can be very expensive to compute if the
parameter space is large.

Here is another very important illustration, which tells a differ-
ent story. In many applications in spatial statistics Xi represents
random quantities from region i, and Yi represents measurements
made on the random quantities in region i, where only a subset
of the regions (the first n) are measured. The natural conditional
independence here is

Yi ⊥⊥ e.e. | Xi i = 1, . . . , n,
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where ‘e.e.’ denotes ‘everything else’. This gives a PMF which
factorises as

p(x, y, t)dt = p(y | x, t) · p(x | t) · p(t)dt

=
n

∏
i=1

p(yi | xi) · p(x | t) · p(t)dt.

In this factorisation p(yi | xi) represents measurement error in region
i. Unlike the exchangeable case, there are no natural conditional
independence beliefs under which p(x | t) factorises; statisticians
typically choose an off-the-shelf model such as a Gauss Markov
random field, see Rue and Held (2005). For more information on
spatial and spatial-temporal modelling, see Cressie and Wikle
(2011).

Using the specific choices

p(yi | xi)← f1(yi | xi), p(x | t)← f2(x; t), and p(t)← πθ(t)

gives

p∗(x, t)dt ∝
n

∏
i=1

f1(yobs
i | xi) · f2(x; t) · πθ(t)dt

where I have suppressed the constant 1/ p(yobs). This expression
is an algorithm for evaluating p∗(x, t) up to an unknown constant,
for any choice of f1, f2, and πθ . As such, it is all that is required for
an MCMC evaluation of any hypothetical expectation E∗. But notice
that it does not re-arrange into a simple expression involving the
posterior distribution of θ. This is because there is no simple closed-
form expression for p(y | t). So the notion of a posterior distribution,
although it always exists in theory, does not always exist as a
simple closed-form expression, even ignoring the multiplicative
constant.

Personally, I do not find the notion of a posterior distribution
for θ useful. It will show up as a simple closed-form expression,
ignoring the multiplicative constant, if p(x, y | t) factorises as
p(x | y, t) · p(y | t), according to the specific choices that have been
made in the statistical model. Otherwise, it is implicit. It is not
important for the inference, which focuses on E∗ for specified func-
tions of (x, y). To compute this inference, MCMC methods can get
along perfectly well without it. Its presence in textbooks is a legacy
of the Neo-Bayesian approach, and also of the preference of authors
to use simple examples based on exchangeability. For me, modern
Bayesian inference is about conditionalization, the Principle of Sta-
tistical Modelling, and the use of numerical methods like MCMC
for computing expectations like (2.8).

2.5 Modern Frequentist inference

The modern Frequentist asserts that beliefs about parameters are
not the kinds of things one could or should describe in terms of
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probabilities. This one difference rules out the use of conditionaliza-
tion to incorporate the observations yobs into updated beliefs about
specified functions of (X, Y).

In fact, it is more nuanced than this, because there are some pa-
rameters that Frequentists are happy to describe with probabilities,
such as random effects. But not all of them. When pressed on this
reluctance, naïve Frequentists may well state that they are troubled
by the ‘subjectivity’ of the prior distribution—as though the model
is somehow ‘non-subjective’. Or they may claim that different prior
distributions will give different outcomes—as though this were
not true of different choices of estimator or confidence procedure.
Many of their estimators and procedures are not guaranteed to be
admissible according to standard loss functions; since inadmissibil-
ity is itself a Frequentist construction, this is not encouraging.10 All 10 Bayesian procedures carry this

guarantee; see Chapter 3 and in
particular Sec. 3.3.

in all, it is not easy to be a modern Frequentist, and it is not surpris-
ing that, as statistical inference has moved away from samples and
populations into more complicated territory, Frequentist inference
has given way to Bayesian inference.

Nevertheless, we must still cover Frequentist inference, because
most applied statistics is being done by people who are not con-
versant with modern statistical methods, and are carrying out the
kinds of analyses which would not have looked modern in the
1970s. What is worse, much of it is being done using bad methods
from the 1970s. I personally have no objection to Frequentist infer-
ence and sometimes use it myself. But it should be done properly.
That is why much of Chapter 3 and all of Chapter 4 is devoted to it.
There are no follow-up chapters on Bayesian inference because the
two previous sections of this chapter have said all that can be said
at this level of generality.

So our modern Frequentist statistician constructs a model { f , Ω}
in much the same way as a modern Bayesian statistician. The dif-
ference is that she is reluctant to take the final step and specify a
‘p(t)’ at the end of (2.6). As already stated, this rules out condition-
alization as the way of updating beliefs about X using Y =̇ yobs,
and other approaches must be found. I will discuss just one here;
for more detail, see the material on confidence procedures in Chap-
ter 4.

Going back to Sec. 2.1, one possibility is simply to replace the
unknown index θ with an estimate based on yobs. For any given
value t ∈ Ω, the model provides the PMF f (x, y; t). Based on the
model, we can compute the conditional PMF

f ∗(x; t) := f (x | yobs; t) =
f (x, yobs; t)

∑x′ f (x′, yobs; t)
.

And then beliefs about g(X, Y) can be expressed as a function of t,

E∗{g(X, Y); t} := ∑
x

g(x, yobs) · f ∗(x; t)

following the same reasoning as at the start of Sec. 2.4. One possi-
bility at this point is to compute and report the lower and upper
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limits

inf
t∈Ω

E∗{g(X, Y); t} and sup
t∈Ω

E∗{g(X, Y); t}.

But in practice the range of values is far to large to be useful, unless
Ω is already very tightly constrained. Instead, t is replaced by an
estimate based on yobs. Usually this is the ML estimate introduced
in (2.2), which gives the point estimate

Ê∗{g(X, Y)} := E∗{g(X, Y); θ̂(yobs)}.

This is termed a plug-in estimate, because θ̂(yobs) has been ‘plugged-
in’ for the unknown θ. No one thinks it is a good idea to collapse
the entire parameter space down to one point. This is why the
use of plug-in estimates should be discouraged and replaced by
confidence intervals.

One more issue needs to be cleared up. The ML estimate looks
like a simple thing to compute, using numerical optimisation. And
in some cases it is. These are exactly the cases where the model
factorises as f (x, y; t) = f1(x | y; t) · f2(y; t). This is the case for
the exchangeable model beloved of textbooks, which gives the
impression, quite wrongly, that maximising the probability of the
observations with respect to t ∈ Ω is straightforward. In many
cases, it is practically impossible. Take, for example, the spatial
illustration from the end of Sec. 2.4. We need to find

p(yobs; t) = ∑
x

p(x, yobs; t) = ∑
x

n

∏
i=1

f1(yi | xi) · f2(x; t)

which does not simplify any further. So every evaluation of
p(yobs; t) requires a sum/integral over the whole of X, which
could be massive.

This computational problem was first addressed in Besag (1974)
who proposed to replace p(yobs; t) with a more tractable approx-
imation.11 A more complete answer arrived with Dempster et al. 11 This is one of the iconic papers in

Statistics.(1977), who described the EM algorithm. This is a maximisation
method for models which include latent variables, which would be
x in this case. Like any numerical optimisation method, the con-
vergence of the EM algorithm is typically to a local maximum (or
occasionally a saddlepoint). See Robert and Casella (2004, ch. 5)
for more details and useful variants, and Murphy (2012) for the
widespread use of the EM algorithm in Machine Learning.

2.6 Model checking

Remember that all beliefs are inherently subjective—they pertain
to a person, and can differ from person to person. As I stressed
in Chapter 1, this is not something to to conceal, but to recognise
and acknowledge. Sooner rather than later the statistician has to
confront the issue of whether her beliefs about X are acceptably
represented by her E∗.12 In other words, she has to ask herself 12 I will focus on the modern Bayesian

approach, but the same questions
could be asked of the Frequentist belief
Ê∗, and the same method can be used.
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whether she is prepared to sign her name to beliefs constructed in
this way.

To set the scene, consider this observation from McWilliams
(2007):

[Atmospheric and Ocean Simulation] models yield space-time
patterns remeniscent of nature (e.g., visible in semiquantitative, high-
resolution satellite images), thus passing a meaningful kind of Turing
test between the artifical and the actual. (p. 8709, emphasis added)

This is not a vacuous comparison in climate modelling, because the
ocean simulation is not conditioned on the satellite observations.
Rubin (1984, sec. 5) proposed a method for making the same kind
of comparison in statistical inference. This involves ‘cloning’ the
observations, so that the comparison can be between the actual
observations and the clones.13 The inference passes its Turing test if 13 Prof. Rubin did not write ‘clones’, of

course. See the next footnote.the statistician cannot spot the observations among the clones.
We have to use our imagination to implement this test. Consider

a model which factorises as

p(x, y | t) = pY |X,θ(y | x, t) · pX|θ(x | t)← f1(y | x; t) · f2(x; t),

which is the common situation. Now imagine creating a clone of
the observations, denoted Y ′, with the two properties

Y ′ ⊥⊥ Y | X, θ and pY ′ |X,θ(y
′ | x, t)← f1(y′ | x; t). (2.10)

These are not arbitrary choices, but designed to come as close as
possible to the idea of siblings. It is as though (X, θ) are the genes,
and Y and Y ′ are siblings.14 Then we see whether we can spot yobs 14 So I should really have said ‘sibling’

instead of ‘clone’, but the latter is
cooler. Also there is not a verb to
describe the artifical construction of
siblings.

from among its siblings, conditioned on Y =̇ yobs. This last part is
crucial, if we want to use E∗ rather than E to represent our beliefs.

Starting from (2.10), the conditional PMF is

p∗(x, y′, t)dt = f1(y′ | x; t) · p∗(x, t)dt.

In practice, an MCMC sampler targeting p∗(x, t) is all that is re-
quired. Every now and then, take the current values of (X, θ) in
the chain, and use them to simulate a Y ′ using f1. This will give a
collection of Y ′’s that are approximately IID from p∗(y′).

To run the Turing test, the statistician generates a set of clones,
and then visualises these and the actual observations yobs, to see
if she can spot the actual observations among the clones. The
more clones the better of course, in terms of the power of the test,
but the statistician’s time and patience are also an issue. Often
the observations will be recognisable to a statistician with long
exposure to the application, so that anonymising them among the
clones is not possible. Even in this case, the Turing test can be a
powerful way to assess the model. If the clones are appear different
from the observations then the nature of the difference is a useful
pointer to further model development. There is lots of good advice
on model checking and on visualisation in Gelman et al. (2014,
ch. 6).



38 jonathan rougier

Just for fun, Figure 2.1 is a Turing test for a model of volcanism,
with three named volcanoes and nine clones (from currently unpub-
lished work). There is no immediately apparent difference between
the observations and the clones (labeled as ‘REP’), although on a
detailed inspection it looks as though the minimum repose period
for the observations might be longer than for the clones; the repose
period is the time between eruptions. I would be happy to proceed
with this model.
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Figure 2.1: ‘Turing test’ for a model
of volcanism, where each dot is a
recorded large explosive eruption.
The full dataset was much larger.
This is a summary image designed to
capture some of its key features. In
each case, the full dataset is simulated,
and then the volcano with the largest
number of recorded eruptions is
visualised, shown as ‘REP’. For the
actual dataset, three volcanoes had the
maximum six recorded eruptions, and
they are shown by name. The vertical
dashed lines indicate periods assigned
different recording rates, with the
recording rate since 1950 being 1.



3
Statistical Decision Theory

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2015.

The basic premise of Statistical Decision Theory is that we want to
make inferences about the parameter of a family of distributions.
So the starting point of this chapter is a family of distributions for
the observables Y := (Y1, . . . , Yn), of the general form

Y ∼ f (· ; θ) for some θ ∈ Ω,

where f is the ‘model’, θ is the ‘parameter’, and Ω the ‘parameter
space’, just as in Chapter 2. Nothing in this chapter depends on
whether Y is a scalar or a vector, and so I will write Y throughout.
The parameter space Ω may be finite or non-finite, possibly non-
countable; generally, though, I will treat it as finite, since this turns
out to be much simpler. The value f (y; θ) denotes the probability
of Y =̇ y under family member θ. I will assume throughout this
chapter that f (y; θ) is easily computed.

These basic premises, (i) that we are interested in the value of
the parameter θ, and (ii) that f (y; t) is easily computed, are both
restrictive, as was discussed in Chapter 2. But in this chapter and
the next we are exploring the challenges of Frequentist inference,
which operates in a more restrictive domain than modern Bayesian
inference.

3.1 General Decision Theory

There is a general theory of decision-making, of which Statistical
Decision Theory is a special case. Here I outline the general theory,
subject to one restriction which always holds for Statistical Decision
Theory (to be introduced below). In general we should imagine
the statistician applying decision theory on behalf of a client, but
for simplicity of exposition I will assume the statistician is her own
client.

There is a set of random quantities X with domain X; as above
I treat these as a scalar quantity, without loss of generality. The
statistician contemplates a set of actions, a ∈ A. Associated with
each action is a consequence which depends on X. This is quanti-
fied in terms of a loss function, L : A× X → R, with larger values
indicating worse consequences. Thus L(a, x) is the loss incurred by
the statistician if action a is taken and X turns out to be x.
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Before making her choice of action, the statistician will observe
Y ∈ Y. Her choice should be some function of the value of Y, and
this is represented as a decision rule, δ : Y → A. Of the many ways
in which she might choose δ, one possibility is to minimise her
expected loss, and this is termed the Bayes rule,

δ∗ := argmin
δ∈D

E{L(δ(Y), X)},

where D is the set of all possible rules. The value E{L(δ(Y), X)} is
termed the Bayes risk of decision rule δ, and therefore the Bayes rule
is the decision rule which minimises the Bayes risk.

There is a justly famous result which gives the explicit form for
a Bayes rule. I will give this result under the restriction anticipated
above, which is that the PMF p(x | y) does not depend on the choice
of action. Decision theory can handle the more general case, but it
is seldom appropriate for Statistical Decision Theory.

Theorem 3.1 (Bayes Rule Theorem, BRT). A Bayes rule satisfies

δ∗(y) = argmin
a∈A

E{L(a, X) |Y =̇ y} (3.1)

whenever y ∈ supp Y.1 1 Recollect that supp Y is the subset
of Y for which p(y) > 0, termed the
‘support’ of Y.This astounding result indicates that the minimisation of ex-

pected loss over the space of all functions from Y to A can be
achieved by the pointwise minimisation over A of the expected
loss conditional on Y =̇ y. It converts an apparently intractable
problem into a simple one.

Proof. As usual, we take expectations to be completely coherent.
Then the FTP (Thm 1.1) asserts the existence of a PMF for (X, Y),
which we can factorise as

p(x, y) = p(x | y)p(y)

using the notation and concepts from Chapter 1. Now take any
δ ∈ D, for which

E{L(δ(Y), X)} = ∑ y ∑ x L(δ(y), x) · p(x | y)p(y) by the FTP

≥ ∑ y

{
argmina ∑ x L(a, x)p(x | y)

}
p(y)

= ∑ y

{
∑ x L(δ∗(y), x)p(x | y)

}
p(y) from (3.1) and the CFTP, (1.16)

= ∑ y ∑ x L(δ∗(y), x) · p(x | y)p(y)

= E{L(δ∗(Y), X)} FTP again.

Hence δ∗ provides a lower bound on the expected loss, over all
possible decision rules. Note that the sum over y can actually be
over supp Y if there are y for which p(y) = 0, which ensures that
the conditional expectation inside the curly brackets is always
well-defined.
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3.2 Inference about parameters

Now consider the special case of Statistical Decision Theory, in
which inference is not about some random quantities X, but about
the parameter θ. For simplicity I will assume that the parameter
space is finite.2 Furthermore, because nothing in this chapter 2 See the comment after Thm 3.2 for

extensions.depends on whether each element of the parameter space is a
scalar or a vector, I will treat θ as a scalar and write

Ω :=
{

θ1, . . . , θk
}

,

rather than my usual notation for elements of sets, which is to use
superscripts in parentheses (i.e. I will write θj rather than θ(j)). A
word about notation. I will write ‘θj’ to indicate one of the elements
of Ω, and ‘θ’ to indicate the unknown index of Ω (Frequentist)
or the random variable with realm Ω (Bayesian). This is clearer
than letting one symbol represent several different things, which is
unfortunately a common practice.

The three types of inference about θ are (i) point estimation,
(ii) set estimation, and (iii) hypothesis testing. It is a great concep-
tual and practical simplification that Statistical Decision Theory
distinguishes between these three types simply according to their
action sets, which are:

Type of inference Action set A

Point estimation The parameter space, Ω. See Sec. 3.4.

Set estimation The set of all subsets of Ω, denoted 2Ω. See
Sec. 3.5.

Hypothesis testing A specified partition of Ω, denoted P below.
See Sec. 3.6.

One challenge for Statistical Decision Theory is that finding the
Bayes rule requires specifying a prior distribution over Ω, which I
will denote

π := (π1, . . . , πk) ∈ Sk−1

where Sk−1 is the (k− 1)-dimensional unit simplex, see (1.1). Apply-
ing the BRT (Thm 3.1),

δ∗(y) = argmin
a∈A

E{L(a, θ) |Y =̇ y}

= argmin
a∈A

∑ j L(a, θj) · p(θj | y) by the CFTP,

where the conditional PMF is

p(θj | y) =
f (y; θj) · πj

Pr(Y =̇ y)
=

f (y; θj) · πj

∑j′ f (y; θj′) · πj′
(3.2)

by Bayes’s Theorem. So the Bayes rule will not be an attractive
way to choose a decision rule for Frequentist statisticians, who are
reluctant to specify a prior distribution for θ. These statisticians
need a different approach to choosing a decision rule.
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The accepted approach for Frequentist statisticians is to nar-
row the set of possible decision rules by ruling out those that are
obviously bad. Define the risk function for rule δ as

R(δ, θj) := E{L(δ(Y), θj); θj}
= ∑ y L(δ(y), θj) · f (y; θj). (3.3)

That is, R(δ, θj) is the expected loss from rule δ when θ = θj. A
decision rule δ dominates another rule δ′ exactly when

R(δ, θj) ≤ R(δ′, θj) for all θj ∈ Ω,

with a strict inequality for at least one θj ∈ Ω. If you had both δ

and δ′, you would never want to use δ′.3 A decison rule is admissible 3 Here I am assuming that all other
considerations are the same in the
two cases: e.g. δ(y) and δ′(y) take
about the same amount of resource to
compute.

exactly when it is not dominated by any other rule; otherwise it is
inadmissible. So the accepted approach is to reduce the set of pos-
sible decision rules under consideration by only using admissible
rules.

It is hard to disagree with this approach, although one wonders
how big the set of admissible rules will be, and how easy it is to
enumerate the set of admissible rules in order to choose between
them. This is the subject of Sec. 3.3. To summarise,

Theorem 3.2 (Wald’s Complete Class Theorem, CCT). In the case
where both the action set A and the parameter space Ω are finite, a de-
cision rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π with strictly positive values.

There are generalisations of this theorem to non-finite realms for
Y, non-finite action sets, and non-finite parameter spaces; however,
the results are highly technical. See Schervish (1995, ch. 3), Berger
(1985, chs 4, 8), and Ghosh and Meeden (1997, ch. 2) for more
details and references to the original literature.

So what does the CCT say? First of all, if you select a Bayes
rule according to some prior distribution π � 0 then you cannot
ever choose an inadmissible decision rule.4 So the CCT states that 4 Here I am using a fairly common

notion for vector inequalities. If all
components of x are non-negative, I
write x ≥ 0. It in addition at least one
component is positive, I write x > 0.
If all components are positive I write
x � 0. For comparing two vectors,
x ≥ y exactly when x− y ≥ 0, and so
on.

there is a very simple way to protect yourself from choosing an
inadmissible decision rule. Second, if you cannot produce a π � 0
for which your proposed rule δ is a Bayes Rule, then you cannot
show that δ is admissible.

But here is where you must pay close attention to logic. Suppose
that δ′ is inadmissible and δ is admissible. It does not follow that
δ dominates δ′. So just knowing of an admissible rule does not
mean that you should abandon your inadmissible rule δ′. You
can argue that although you know that δ′ is inadmissible, you do
not know of a rule which dominates it. All you know, from the
CCT, is the family of rules within which the dominating rule must
live: it will be a Bayes rule for some π � 0. This may seem a
bit esoteric, but it is crucial in understanding modern parametric
inference. Statisticians sometimes use inadmissible rules according
to standard loss functions. They can argue that yes, their rule δ is or
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may be inadmissible, which is unfortunate, but since the identity of
the dominating rule is not known, it is not wrong to go on using δ.
Nevertheless, it would be better to use an admissible rule.

3.3 The Complete Class Theorem

This section can be skipped once the previous section has been read.
But it describes a very beautiful result, Thm 3.2 above, originally
due to an iconic figure in Statistics, Abraham Wald.5 I assume 5 For his tragic story, see https://en.

wikipedia.org/wiki/Abraham_Wald.throughout this section that all sets are finite: the realm Y, the
action set A, and the parameter space Ω.

The CCT is if-and-only-if. Let π be any prior distribution on Ω.
Both branches use a simple result that relates the Bayes Risk of a
decision rule δ to its Risk Function:

E{L(δ(Y), θ)} = ∑ j E{L(δ(Y), θj); θj} · πj by (LIE) and (TWK)

= ∑ j R(δ, θj) · πj. (†)

The first branch is easy to prove.

Theorem 3.3. If δ is a Bayes rule for prior distribution π � 0, then it is
admissible.

Proof. By contradiction. Suppose that the Bayes rule δ is not admis-
sible; i.e. there exists a rule δ′ which dominates it. In this case

E{L(δ(Y), θ)} = ∑ j R(δ, θj) · πj from (†)

> ∑ j R(δ′, θj) · πj if π � 0

= E{L(δ′(Y), θ)}

and hence δ cannot have been a Bayes rule, because δ′ has a smaller
expected loss. The strict inequality holds if δ′ dominates δ and
π � 0. Without it, we cannot deduce a contradiction.

The second branch of the CCT is harder to prove. The proof
uses one of the great theorems in Mathematics, the Supporting
Hyperplane Theorem (SHT, given below in Thm 3.5).

Theorem 3.4. If δ is admissible, then it is a Bayes rule for some prior
distribution π � 0.

For a given loss function L and model f , construct the risk matrix,

Rij := R(δi, θj)

over the set of all decision rules. If there are m decision rules al-
thogether (m is finite because Y and A are both finite), then R repre-
sents m points in k-dimensional space, where k is the cardinality of
Ω.

Now consider randomised rules, indexed by w ∈ Sm−1. For
randomised rule w, actual rule δi is selected with probability wi.

https://en.wikipedia.org/wiki/Abraham_Wald
https://en.wikipedia.org/wiki/Abraham_Wald
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The risk for rule w is

R(w, θj) := ∑ i E{L(δi(Y), θj); θj} · wi by the (LIE)

= ∑ i R(δi, θj) · wi.

If we also allow randomised rules—and there is no reason to dis-
allow them, as the original rules are all still available as special
cases—then the set of risks for all possible randomised rules is the
convex hull of the rows of the risk matrix R, denoted [R] ⊂ Rk, and
termed the risk set.6 We can focus on the risk set because every 6 If x(1), . . . , x(m) are m points in

Rk, then the convex hull of these
points is the set of x ∈ Rk for which
x = w1x(1) + · · ·+ wmx(m) for some
w ∈ Sm−1.

point in [R] corresponds to at least one choice of w ∈ Sm−1.
Only a very small subset of the risk set will be admissible. A

point r ∈ [R] is admissible exactly when it is on the lower boundary
of [R]. More formally, define the ‘quantant’ of r to be the set

Q(r) :=
{

x ∈ Rk : x ≤ r
}

(see footnote 4). By definition, r is dominated by every r′ for
which r′ ∈ Q(r) \ {r}. So r ∈ [R] is admissible exactly when
[R] ∩Q(r) = {r}. The set of r for satisfying this condition is the
lower boundary of [R], denoted λ(R).

Now we have to show that every point in λ(R) is a Bayes rule for
some π � 0. For this we use the SHT, the proof of which can be
found in any book on convex analysis.

Theorem 3.5 (Supporting Hyperplane Theorem, SHT). Let [R] be a
convex set in Rk, and let r be a point on the boundary of [R]. Then there
exists an a ∈ Rk not equal to 0 such that

aTr = min
r′∈[R]

aTr′.

So let r ∈ λ(R) be any admissible risk. Let a ∈ Rk be the co-
efficients of its supporting hyperplane. Because r is on the lower
boundary of [R], a� 0.7 Set 7 Proof: because if r is on the lower

boundary, the slightest decrease in any
component of r must move r outside
[R].πj :=

aj

∑ j′ aj′
j = 1, . . . , k,

so that π ∈ Sk−1 and π � 0. Then the SHT asserts that

∑ j rj · πj ≤ ∑ j r′j · πj for all r′ ∈ [R]. (‡)

Let w be any randomised strategy with risk r. Since ∑ j rj · πj is
the expected loss of w (see †), (‡) asserts that w is a Bayes rule for
prior distribution π. Because r was an arbitrary point on λ(R),
and hence an arbitrary admissible rule, this completes the proof of
Thm 3.4.

3.4 Point estimation

For point estimation the action space is A = Ω, and the loss func-
tion L(θj, θj′) represents the (negative) consequence of choosing θj
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as a point estimate of θ, when the ‘true’ value of θ is θj′ . Note that
this is questionable, if θ does not correspond to an operationally-
defined quantity such as the population mean. If θ is a convenient
abstraction, then there is no ‘true’ value.

There will be situations where an obvious loss function L : Ω×Ω→ R

presents itself. But not very often. Hence the need for a generic loss
function which is acceptable over a wide range of situations. A
natural choice in the very common case where Ω is a convex subset
of Rd is a convex loss function,8 8 If Ω is convex then it is uncountable,

and hence definitely not finite. But
this does not have any disturbing
implications for the following analysis.

L(θj, θj′)← h(θj − θj′) (3.4)

where h : Rd → R is a smooth non-negative convex function
with h(0) = 0. This type of loss function asserts that small errors
are much more tolerable than large ones. One possible further
restriction would be that h is an even function.9 This would assert 9 I.e. h(−x) = h(x).

that under-prediction incurs the same loss as over-prediction. There
are many situations where this is not appropriate, but in these cases
a generic loss function should be replaced by a more specific one.

Proceeding further along the same lines, an even, differentiable
and strictly convex loss function can be approximated by a quadratic
loss function,

h(x) ∝ xTQ x (3.5)

where Q is a symmetric positive-definite d× d matrix. This follows
directly from a Taylor series expansion of h around 0:

h(x) = 0 + 0 + 1
2 xT∇2h(0) x + 0 + O(‖x‖4)

where the first 0 is because h(0) = 0, the second 0 is because
∇h(0) = 0 since h is minimised at x = 0, and the third 0 is because
h is an even function. ∇2h is the hessian matrix of second deriva-
tives, and it is symmetric by construction, and positive definite at
x = 0, if h is strictly convex and minimised at 0.

In the absence of anything more specific the quadratic loss
function is the generic loss function for point estimation. Hence the
following result is widely applicable.

Theorem 3.6. Under a quadratic loss function, the Bayes rule for point
prediction is the conditional expectation

δ∗(y) = E(θ |Y =̇ y).

A Bayes rule for a point estimation is known as a Bayes estima-
tor. Note that although the matrix Q is involved in defining the
quadratic loss function in (3.5), it does not influence the Bayes es-
timator. Thus the Bayes estimator is the same for an uncountably
large class of loss functions. Depending on your point of view, this
is either its most attractive or its most disturbing feature.

Proof. Here is a proof that does not involve differentiation. The BRT
(Thm 3.1) asserts that

δ∗(y) = argmin
t∈Ω

E{L(t, θ) |Y =̇ y}. (3.6)
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So let ψ(y) := E(θ |Y =̇ y). For simplicity, treat θ as a scalar. Then

L(t, θ) ∝ (t− θ)2

= (t− ψ(y) + ψ(y)− θ)2

= (t− ψ(y))2 + 2(t− ψ(y))(ψ(y)− θ) + (ψ(y)− θ)2.

Take expectations conditional on Y =̇ y to get

E{L(t, θ) |Y =̇ y} ∝ (t− ψ(y))2 + E{(ψ(y)− θ)2 |Y =̇ y}. (†)

Only the first term contains t, and this term is minimised over t by
setting t← ψ(y), as was to be shown.

The extension to vector θ with loss function (3.5) is straight-
forward, but involves more ink. It is crucial that Q in (3.5) is posi-
tive definite, because otherwise the first term in (†), which becomes
(t− ψ(y))TQ (t− ψ(y)), is not minimised if and only if t = ψ(y).

Note that the same result holds in the more general case of a
point prediction of random quantities X based on observables Y:
under quadratic loss, the Bayes estimator is E(X |Y =̇ y).

* * *

Now apply the CCT (Thm 3.2) to this result. For quadratic loss, a
point estimator for θ is admissible if and only if it is the conditional
expectation with respect to some prior distribution π � 0.10 10 This is under the conditions of

Thm 3.2, or with appropriate exten-
sions of them in the non-finite cases.

Among the casualties of this conclusion is the Maximum Likelihood
Estimator (MLE),

θ̂(y) := argmax
t∈Ω

f (y; t).

Stein’s paradox showed that under quadratic loss, the MLE is not
admissible in the case of a Multinormal distribution with known
variance, by producing an estimator which dominated it. This result
caused such consternation when first published that it might be
termed ‘Stein’s bombshell’. See Efron and Morris (1977) for more
details, and Samworth (2012) for an accessible proof. Interestingly,
the MLE is still the dominant point estimator in applied statistics,
even though its admissibility under quadratic loss is questionable.

3.5 Set estimators

For set estimation the action space is A = 2Ω, and the loss function
L(C, θj) represents the (negative) consequences of choosing C ⊂ Ω
as a set estimate of θ, when the ‘true’ value of θ is θj. The points
made at the start of Sec. 3.4 also apply here.

There are two contrary requirements for set estimators of θ.
We want the sets to be small, but we also want them to contain θ.
There is a simple way to represent these two requirements as a loss
function, which is to use

L(C, t)← |C|+ κ · (1− 1t∈C) for some κ > 0 (3.7a)

where |C| is the cardinality of C.11 The value of κ controls the 11 Here and below I am treating Ω as
countable, for simplicity.
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trade-off between the two requirements. If κ ↓ 0 then minimising
the expected loss will always produce the empty set. If κ ↑ ∞
then minimising the expected loss will always produce Ω. For κ

in-between, the outcome will depend on beliefs about Y and the
value y.

It is important to note that the crucial result, Thm 3.7 below,
continues to hold for the much more general set of loss functions

L(C, t)← g(|C|) + h(1− 1t∈C) (3.7b)

where g is non-decreasing and h is strictly increasing. This is a
large set of loss functions, which should satisfy most statisticians
who do not have a specific loss function already in mind.

For point estimators there was a simple characterisation of the
Bayes rule for quadratic loss functions (Thm 3.6). For set estimators
the situation is not so simple. However, for loss functions of the
form (3.7) there is a simple necessary condition for a rule to be a
Bayes rule.

Theorem 3.7. Under a loss function of the form (3.7), δ : Y → 2Ω is a
Bayes rule only if:

∀y, ∀θj ∈ δ(y) θj′ 6∈ δ(y) =⇒ p(θj′ | y) ≤ p(θj | y) (3.8)

where p(θj | y) was defined in (3.2).

Proof. The proof is by contradiction. Fix y and let C ← δ(y). We
show that if (3.8) does not hold, then C does not minimise the ex-
pected loss conditional on Y =̇ y, as required by the BRT (Thm 3.1).
Now,

E{L(C, θ) |Y =̇ y} = |C|+ κ · (1− Pr{θ ∈ C |Y =̇ y}) (†)

using (3.7a), for simplicity. Let θj ∈ C, and let θj′ 6∈ C, but with
p(θj′ | y) > p(θj | y), contradicting (3.8). In this case, θj and θj′

could be swapped in C, leaving the first term in (†) the same, but
decreasing the second. Hence C could not have minimised the
expected loss conditional on Y =̇ y, and δ could not have been a
Bayes rule.

To give condition (3.8) a simple name, I will refer to it as the
‘level set’ property, since it almost asserts that δ(y) must always be
a level set of the probabilities

{
p(θj |Y =̇ y) : θj ∈ Ω

}
.12 Chapter 4

12 I can only say ‘almost’ because
the property is ambiguous about
the inclusion of θj and θj′ for which
p(θj |Y =̇ y) = p(θj′ |Y =̇ y), while a
level set is unambiguous.

provides a tighter definition of this property.
Now relate this result to the CCT (Thm 3.2). First, Thm 3.7

asserts that δ having the level set property for all y is necessary
(but not sufficient) for δ to be a Bayes rule for loss functions of the
form (3.7). Second, the CCT asserts that being a Bayes rule is a
necessary (but not sufficient) condition for δ to be admissible.13 So 13 As before, terms and conditions

apply in the non-finite cases.unless δ has the level set property for all y then it is impossible for
δ to be admissible for loss functions of the form (3.7). This result is
embodied in Bayesian approaches to set estimation for θ.
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Definition 5 (High Posterior Probability (HPP) set). The rule
δ : Y→ 2Ω is a level-(1 − α) HPP set exactly when it is the smallest
set for which Pr(θ ∈ δ(y) |Y =̇ y) ≥ 1− α.

This definition acknowledges that for a given level, say (1− α)← 0.95,
it might not be possible to find a set C for which Pr(θ ∈ C |Y =̇ y) = 0.95,
so instead we settle for the smallest set whose probability is at least
0.95.14 The requirement that δ(y) is the smallest set automatically 14 If Ω is uncountable, then it is usually

possible to hit 0.95 exactly, in which
case C is an ‘exact’ 95% High Posterior
Density (HPD) set.

ensures that it satisfies the level set property.
Now it is not the case that the collection of, say, level 0.95 HPP

sets (taken over all y ∈ Y) is consistent with the Bayes rule for (3.7)
for some specified κ. So the level 0.95 HPP sets cannot claim to be
a Bayes rule for (3.7). But they satisfy the necessary condition to be
admissible for (3.7), which is a good start. Moreover, the level of an
HPP set is much easier to interpret than the value of κ.

Things are trickier for Frequentist approaches, which must
proceed without a prior distribution for θ ∈ Ω, and thus cannot
compute p(θj | Y =̇ y). Frequentist approaches to set estimation
are based on confidence procedures, which are covered in detail
in Chapter 4. We can make a strong recommendation based on
Thm 3.7. Denote the Frequentist model as

{
f , Ω

}
, for which a prior

distribution π would imply

p(θj |Y =̇ y) =
f (y; θj) · πj

∑j′ f (y; θj′) · πj′
.

Clearly, if πj = 1/k for all j, then p(θj | Y =̇ y) ∝ f (y; θj), which
which implies that they have the same level sets. So the recommen-
dation is

• Base confidence procedures on level sets of
{

f (y; θj) : θj ∈ Ω
}

.

This recommendation ensures that confidence procedures satisfy
the necessary condition to be admissible for (3.7). I will be adopting
this recommendation in Chapter 4.

3.6 Hypothesis tests

For hypothesis tests, the action space is a partition of Ω, denoted

H :=
{

H0, H1, . . . , Hd
}

.

Each element of H is termed a hypothesis; it is traditional to number
the hypotheses from zero. The loss function L(Hi, θj) represents the
(negative) consequences of choosing element Hi, when the ’true’
value of θ is θj. It would be usual for the loss function to satisfy

θj ∈ Hi =⇒ L(Hi, θj) = min
i′

L(Hi′ , θj)

on the grounds that an incorrect choice of element should never
incur a smaller loss than the correct choice.

I will be quite cavalier about hypothesis tests. If the statistician
has a complete loss function, then the CCT (Thm 3.2) applies,
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a π � 0 must be found, and there is nothing more to be said.
The famous Neyman-Pearson (NP) Lemma is of this type. It has
Ω = {θ0, θ1}, with Hi = {θi}, and loss function

L θ0 θ1

H0 0 `1

H1 `0 0

with `0, `1 > 0. The NP Lemma asserts that a decision rule for
choosing between H0 and H1 is admissible if and only if it has the
form

f (y; θ0)

f (y; θ1)


< c choose H1

= c toss a coin

> c choose H0

for some c > 0. This is just the CCT (Thm 3.2).15 15 In fact, c = (π1/π0) · (`1/`0), where
(π0, π1) is the prior probability for
which π1 = 1− π0.

The NP Lemma is particularly simple, corresponding to a choice
in a family with only two elements. In situations more complicated
than this, it is extremely challenging and time-consuming to specify
a loss function. And yet statisticians would still like to choose
between hypotheses, in decision problems whose outcome does not
seem to justify the effort required to specify the loss function.16 16 Just to be clear, important decisions

should not be based on cut-price
procedures: an important decision
warrants the effort required to specify
a loss function.

There is a generic loss function for hypothesis tests, but it is
hardly defensible. The 0-1 (’zero-one’) loss function is

L(Hi, θj)← 1− 1θj∈Hi ,

i.e., zero if θj is in Hi, and one if it is not. Its Bayes rule is to select
the hypothesis with the largest conditional probability. It is hard
to think of a reason why the 0-1 loss function would approximate
a wide range of actual loss functions, unlike in the cases of generic
loss functions for point estimation and set estimation. This is not
to say that it is wrong to select the hypothesis with the largest
conditional probability; only that the 0-1 loss function does not
provide a very compelling reason.

* * *
There is another approach which has proved much more popular.

In fact, it is the dominant approach to hypothesis testing. This is to
co-opt the theory of set estimators, for which there is a defensible
generic loss function, which has strong implications for the selec-
tion of decision rules (see Sec. 3.5). The statistician can use her set
estimator δ : Y→ 2Ω to make at least some distinctions between the
members of H, on the basis of the value of the observable, yobs:

• ‘Accept’ Hi exactly when δ(yobs) ⊂ Hi,

• ‘Reject’ Hi exactly when δ(yobs) ∩ Hi = ∅,

• ‘Undecided’ about Hi otherwise.

Note that these three terms are given in scare quotes, to indicate
that they acquire a technical meaning in this context. We do not use
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the scare quotes in practice, but we always bear in mind that we
are not “accepting Hi” in the vernacular sense, but simply asserting
that δ(yobs) ⊂ Hi for our particular choice of δ.

One very common special case is where H =
{

H0, H1
}

, and one
of the elements, say H0, is a a very small set, even possibly a sin-
gleton.17 This special case is known as Null Hypothesis Significance 17 Where Hi is a singleton, it is known

as a simple hypothesis; otherwise it is a
composite hypothesis.

Testing (NHST), where H0 is known as the ‘null hypothesis’. In this
case is is virtually impossible to accept H0, because set estimators
hardly ever shrink down to the size of H0. So instead we either
reject H0 and accept H1, or, if we are undecided, we ‘fail to reject’
H0.

This type of hypothesis testing is practiced mainly by Frequentist
statisticians, and so I will continue in a Frequentist vein. In the
Frequentist approach, it is conventional to use a 95% confidence set
as the set estimator for hypothesis testing. Other levels, notably 90%
and 99%, are occasionally used. If H0 is rejected using a 95% confi-
dence set, then this is reported as “H0 is rejected at a significance
level of 5%” (occasionally 10% or 1%). Confidence sets are covered
in detail in Chapter 4.

This seems quite clear-cut, but we must end on a note of caution.
First, the statistician has not solved the decision problem of choos-
ing an element of H. She has solved a different problem. Based on
a set estimator, she may reject H0 on the basis of yobs, but that does
not mean she should proceed as though H0 is false. This would
require her to solve the correct decision problem, for which she
would have to supply a loss function. So, first caution:

• Rejecting H0 is not the same as deciding that H0 is false. Signifi-
cance tests do not solve decision problems.

Second, loss functions of the form (3.7) may be generic, but that
does not mean that there is only one 95% confidence procedure.18 18 The same point can be made about

95% HPP sets, for which there is one
for each prior distribution over Ω.

As Chapter 4 will show, there are an uncountable number of ways
of constructing a 95% confidence procedure. In fact, there are an
uncountable number of ways of constructing a 95% confidence
procedure based on level sets of the likelihood function. So the
statistician still needs to make and to justify two subjective choices,
leading to the second caution:

• Accepting or rejecting a hypothesis is contingent on the choice of
confidence procedure, as well as on the level.
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This chapter is a continuation of Chapter 3, and the same condi-
tions hold; re-read the introduction to Chapter 3 if necessary, and
the start of Sec. 3.2. In brief, interest focuses on the parameter θ in
the model

Y ∼ f (· ; θ) for some θ ∈ Ω, (4.1)

where Y are observables and f (y; θ) is assumed to be easily com-
puted. The parameter space is denoted

Ω :=
{

θ1, . . . , θk
}

for simplicity, even though the parameter may be vector-valued,
and the parameter space may be uncountable; typically the para-
meter space is a convex subset of a finite-dimensional Euclidean
space. An element of Ω is denoted θj, while θ is used to denote the
unknown ‘true’ index of Ω.1 The observed value of Y is denoted 1 This is a façon de parler. There is no

requirement for (4.1) to be true, thank
goodness!

yobs.

New notation. In this chapter we have the tricky situation in which
a specified function g : Y×Ω → R becomes a random quantity
when Y is a random quantity. Then the distribution of g(Y, θj)

depends on the value of θ. Often the value of θ will be the same
value as the second argument to g, but this is not implied by simply
writing g(Y, θj). So it is best to make the value of θ explicit, when
writing about the distribution of g(Y, θj). Hence I write g(Y, θj)

∣∣
θ=θj

to indicate the random quantity g(Y, θj) when Y ∼ f (· ; θj).

4.1 Confidence procedures and confidence sets

A confidence procedure is a special type of decision rule for the
problem of set estimation. Hence it is a function of the form
C : Y→ 2Ω, where 2Ω is the set of all sets of Ω.2 Decision rules 2 In this chapter I am using ‘C’ for a

confidence procedure, rather than ‘δ’
for a decision rule.

for set estimators were discussed in Sec. 3.5.
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Definition 6 (Confidence procedure). C : Y → 2Ω is a level-(1− α)

confidence procedure exactly when

Pr{θj ∈ C(Y); θj} ≥ 1− α for all θj ∈ Ω.

If the probability equals (1− α) for all θj, then C is an exact level-(1− α)

confidence procedure.3 3 Exact is a special case. But when it
necessary to emphasize that C is not
exact, the term ‘conservative’ is used.The value Pr{θj ∈ C(Y); θj} is termed the coverage of C at θj.

Thus a 95% confidence procedure has coverage of at least 95%
for all θj, and an exact 95% confidence procedure has coverage
of exactly 95% for all θj. The diameter of C(y) can grow rapidly
with its coverage.4 In fact, the relation must be extrememly convex 4 The diameter of a set in a metric

space such as Euclidean space is the
maximum of the distance between two
points in the set.

when coverage is nearly one, because, in the case where Ω = R,
the diameter at coverage = 1 is unbounded. So an increase in the
coverage from, say 95% to 99%, could correspond to a doubling
or more of the diameter of the confidence procedure. For this
reason, exact confidence procedures are highly valued, because a
conservative 95% confidence procedure can deliver sets that are
much larger than an exact one.

But, immediately a note of caution. It seems obvious that exact
confidence procedures should be preferred to conservative ones,
but this is easily exposed as a mistake. Suppose that Ω = R.
Then the following procedure is an exact level-(1− α) confidence
procedure for θ. First, draw a random variable U with a standard
uniform distribution.5 Then set 5 See footnote 7.

C(y) :=

R U ≤ 1− α

{0} otherwise.
(†)

This is an exact level-(1− α) confidence procedure for θ, but also
a meaningless one because it does not depend on y. If it is ob-
jected that this procedure is invalid because it includes an auxiliary
random variable, then this rules out the method of generating
approximately exact confidence procedures using bootstrap cali-
bration (Sec. 4.3.3). And if it is objected that confidence procedures
must depend on y, then (†) could easily be adapted so that y is the
seed of a numerical random number generator for U. So something
else is wrong with (†). In fact, it fails a necessary condition for ad-
missibility that was derived in Sec. 3.5. This will be discussed in
Sec. 4.2.

It is helpful to distinguish between the confidence procedure
C, which is a function of y, and the result when C is evaluated at
y ← yobs, which is a set in Ω. I like the terms used in Morey et al.
(2015), which I will also adapt to P-values in Sec. 4.5.

Definition 7 (Confidence set). C(yobs) is a level-(1− α) confidence set
exactly when C is a level-(1− α) confidence procedure.

So a confidence procedure is a function, and a confidence set
is a set. If Ω ⊂ R and C(yobs) is convex, i.e. an interval, then
a confidence set (interval) is represented by a lower and upper
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value. We should write, for example, “using procedure C, the 95%
confidence interval for θ is [0.55, 0.74]”, inserting “exact” if the
confidence procedure C is exact.

4.2 Families of confidence procedures

The trick with confidence procedures is to construct one with a
specified level, or, failing that, a specified lower bound on the level.
One could propose an arbitrary C : Y → 2Ω, and then laboriously
compute the coverage for every θj ∈ Ω. At that point one would
know the level of C as a confidence procedure, but it is unlikely to
be 95%; adjusting C and iterating this procedure many times until
the minimum coverage was equal to 95% would be exceedingly
tedious. So we need to go backwards: start with the level, e.g. 95%,
then construct a C guaranteed to have this level.

Define a family of confidence procedures as C : Y× [0, 1]→ 2Ω, where
C(·; α) is a level-(1− α) confidence procedure for each α. If we start
with a family of confidence procedures for a specified model, then
we can compute a confidence set for any level we choose.

It turns out that families of confidence procedures all have the
same form. The key concept is stochastic dominance. Let X and Y be
two scalar random quantities. Then X stochastically dominates Y
exactly when

Pr(X ≤̇ v) ≤ Pr(Y ≤̇ v) for all v ∈ R.

Visually, the distribution function for X is never to the left of the
distribution function for Y.6 Although it is not in general use, I 6 Recollect that the distribu-

tion function of X has the form
F(x) := Pr(X ≤̇ x) for x ∈ R.

define the following term.

Definition 8 (Super-uniform). The random quantity X is super-
uniform exactly when it stochastically dominates a standard uniform
random quantity.7 7 A standard uniform random quantity

being one with distribution function
F(u) = max{0, min{u, 1}}.In other words, X is super-uniform exactly when Pr(X ≤ u) ≤ u

for all 0 ≤ u ≤ 1. Note that if X is super-uniform then its support
is bounded below by 0, but not necessarily bounded above by 1.
Now here is a representation theorem for families of confidence
procedures.8 8 Look back to ‘New notation’ at the

start of the Chapter for the definition
of g(Y; θj)

∣∣
θ=θj

.Theorem 4.1 (Families of Confidence Procedures, FCP). Let
g : Y×Ω→ R. Then

C(y; α) :=
{

θj ∈ Ω : g(y, θj) > α
}

(4.2)

is a family of level-(1− α) confidence procedures if and only if g(Y, θj)
∣∣
θ=θj

is super-uniform for all θj ∈ Ω. C(·; α) is exact if and only if g(Y, θj)
∣∣
θ=θj

is uniform for all θj.

Proof.
(⇐). Let g(Y, θj)

∣∣
θ=θj

be super-uniform for all θj. Then, for arbitrary
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θj,

Pr{θj ∈ C(Y; α); θj} = Pr{g(Y, θj) >̇ α; θj}
= 1− Pr{g(Y, θj) ≤̇ α; θj}
= 1− (≤ α) ≥ 1− α

as required. For the case where g(Y, θj)
∣∣
θ=θj

is uniform, the inequal-

ity is replaced by an equality.

(⇒). This is basically the same argument in reverse. Let C(·; α)

defined in (4.2) be a level-(1− α) confidence procedure. Then, for
arbtrary θj,

Pr{g(Y, θj) >̇ α; θj} ≥ 1− α.

Hence Pr{g(Y, θj) ≤̇ α; θj} ≤ α, showing that g(Y, θj)
∣∣
θ=θj

is super-

uniform as required. Again, if C(·; α) is exact, then the inequality is
replaced by a equality, and g(Y, θj)

∣∣
θ=θj

is uniform.

Families of confidence procedures have the very intuitive nesting
property, that

α < α′ =⇒ C(y; α) ⊃ C(y; α′). (4.3)

In other words, higher-level confidence sets are always supersets
of lower-level confidence sets from the same family. This has some-
times been used as part of the definition of a family of confidence
procedures (see, e.g., Cox and Hinkley, 1974, ch. 7), but I prefer to
see it as an unavoidable consequence of the fact that all families
must be defined using (4.2) for some g.

* * *
Sec. 3.5 made a recommendation about set estimators for θ,

which was that confidence procedures should be based on level
sets of

{
f (y; θj) : θj ∈ Ω

}
. This was to satisfy a necessary condition

to be admissible under the loss function (3.7). Here I restate that
recommendation as a property.

Definition 9 (Level Set Property, LSP). A confidence procedure C has
the Level Set Property exactly when

C(y) =
{

θj ∈ Ω such that f (y; θj) > c
}

for some c which may depend on y. A family of confidence procedures
has the LSP exactly when C(· ; α) has the LSP for all α, for which c may
depend on y and α.

A family of confidence procedures does not necessarily have the
LSP. So it is not obvious, but highly gratifying, that it is possible
to construct families of confidence procedures with the LSP. Three
different approaches are given in the next section.

4.3 Methods for constructing confidence procedures

All three of these methods produce families of confidence proce-
dures with the LSP. This is a long section, and there is a summary
in Sec. 4.3.4.



apts lecture notes on statistical inference 55

4.3.1 Markov’s inequality

Here is a result that has pedagogic value, because it can be used to
generate an uncountable number of families of confidence proce-
dures, each with the LSP.

Theorem 4.2. Let h be any PMF for Y. Then

C(y; α) :=
{

θj ∈ Ω : f (y, θj) > α · h(y)
}

(4.4)

is a family of confidence procedures, with the LSP.

Proof. Define g(y, θj) := f (y; θj)
/

h(y), which may be ∞. Then the
result follows immediately from Thm 4.1 because g(Y, θj)

∣∣
θ=θj

is

super-uniform for each θj:

Pr{ f (Y; θj)
/

h(Y) ≤̇ u; θj} = Pr{h(Y)
/

f (Y; θj) ≥̇ 1/u; θj}

≤
E{h(Y)

/
f (Y; θj); θj}

1/u
Markov’s inequality, (1.9)

≤ 1
1/u

= u.

For the final inequality,

E{h(Y)
/

f (Y; θj); θj} = ∑
y∈supp f (· ;θj)

h(y)
f (y; θj)

· f (y; θj) FTP, Thm 1.1

= ∑
y∈supp f (· ;θj)

h(y)

≤ 1.

If supp h ⊂ supp f (· ; θj), then this inequality is an equality.

Among the interesting choices for g, one possibility is g← f (· ; θi),
for θi ∈ Ω. Note that with this choice, the confidence set of (4.4) al-
ways contains θi. So we know that we can construct a level-(1− α)

confidence procedure whose confidence sets will always contain θi,
for any θi ∈ Ω.

This is another illustration of the fact that the definition of a
confidence procedure given in Def. 6 is too broad to be useful. But
now we see that insisting on the LSP is not enough to resolve the
issue. Two statisticians can both construct 95% confidence sets
for θ which satisfy the LSP, using different families of confidence
procedures. Yet the first statistician may reject the null hypothesis
that H0 : θ = θi (see Sec. 3.6), and the second statistician may fail to
reject it, for any θi ∈ Ω.

Actually, the situation is not as grim as it seems. Markov’s
inequality is very slack (refer to its proof at eq. 1.9), and so the
coverage of the family of confidence procedures defined in Thm 4.2
is likely to be much larger than (1− α), e.g. much larger than 95%.
Remembering the comment about the rapid increase in the diam-
eter of the confidence set as the coverage increases, from Sec. 4.1,
a more likely outcome is that C(y; 0.05) is large for many different
choices of h, in which case no one rejects the null hypothesis.
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All in all, it would be much better to use an exact family of
confidence procedures, if one existed. And, for perhaps the most
popular model in the whole of Statistics, this is the case.

4.3.2 The Linear Model

The Linear Model (LM) is commonly expressed as

Y D
= Xβ + ε where ε ∼ Nn(0, σ2 In) (4.5)

where Y is an n-vector of observables, X is a specified n× p matrix
of regressors, β is a p-vector of regression coefficients, and ε is an
n-vector of residuals.9 The parameter is (β, σ2) ∈ Rp ×R++. 9 Usually I would make Y and ε bold,

being vectors, and I would prefer not
to use X for a specified matrix, but this
is the standard notation.

‘Nn(·)’ denotes the n-dimensional Multinormal distribution with
specified expectation vector and variance matrix (see, e.g., Mardia
et al., 1979, ch. 3). The symbol ‘ D

=’ denotes ‘equal in distribution’;
this notation is useful here because the Multinormal distribution is
closed under affine transformations. Hence Y has a Multinormal
distribution, because it is an affine transformation of ε. So the LM
must be restricted to applications for which Y can be thought of,
at least approximately, as a collection of n random quantities each
with realm R, and for each of which our uncertainty is approxi-
mately symmetric. Many observables fail to meet these necessary
conditions (e.g. applications in which Y is a collection of counts);
for these applications, we have Generalized Linear Models (GLMs).
GLMs retain many of the attractive properties of LMs.

Wood (2015, ch. 7) provides an insightful summary of the LM,
while Draper and Smith (1998) give many practical details.

Now I show that the Maximum Likelihood Estimator (MLE) of
(4.5) is

β̂(y) = (XTX)−1XTy

σ̂2(y) = n−1(y− ŷ)T(y− ŷ)

where ŷ := Xβ̂(y).

Proof. For a LM, it is more convenient to minimise −2 log f (y; β j, σ2
j )

over (β j, σ2
j ) than to maximise f (y; β j, σ2

j ).
10 Then 10 Note my insistence that (β j, σ2

j )

be considered as an element of the
parameter space, not as the ‘true’
value.−2 log f (y; β j, σ2

j ) = n log(2πσ2
j ) +

1
σ2

j
(y− Xβ j)

T(y− Xβ j)

from the PDF of the Multinormal distribution. Now use a simple
device to show that this is minimised at β j = β̂(y) for all values of
σ2

j . I will write β̂ rather than β̂(y):

(y− Xβ j)
T(y− Xβ j)

= (y− Xβ̂ + Xβ̂− Xβ j)
T(y− Xβ̂ + Xβ̂− Xβ j)

= (y− ŷ)T(y− ŷ) + 0 + (Xβ̂− Xβ j)
T(Xβ̂− Xβ j) (†)

where multiplying out shows that the cross-product term in the
middle is zero. Only the final term contains β j. Writing this term as

(β̂− β j)
T(XTX)(β̂− β j)
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shows that if X has full column rank, so that XTX is positive defi-
nite, then (†) is minimised if and only if β j = β̂. Then

−2 log f (y; β̂, σ2
j ) = n log(2πσ2

j ) +
1
σ2

j
(y− ŷ)T(y− ŷ).

Solving the first-order condition gives the MLE for σ̂2(y), and it is
easily checked that this is a global minimum.

Now suppose we want a confidence procedure for β. For simplic-
ity, I will assume that σ2 is specified, and for practical purposes I
would replace it by σ̂2(yobs) in calculations. This is known as plug-
ging in for σ2. The LM extends to the case where σ2 is not specified,
but, as long as n/(n− p) ≈ 1, it makes little difference in practice to
plug in.11 11 As an eminent applied statistician

remarked to me: it if matters to
your conclusions whether you use
a standard Normal distribution or
a Student-t distribution, then you
probability have bigger things to worry
about.

With β j representing an element of the β-parameter space Rp,
and σ2 specified, we have, from the results above,

−2 log

(
f (y; β j, σ2)

f (y; β̂(y), σ2)

)
=

1
σ2 {β̂(y)− β j}T(XTX){β̂(y)− β j}. (4.6)

Now suppose we could prove the following.

Theorem 4.3. With σ2 specified,

1
σ2 {β̂(Y)− β j}T(XTX){β̂(Y)− β j}

∣∣
β=β j

has a χ2
p distribution.

We could define the decision rule:

C(y; α) :=

{
β j ∈ Rp : −2 log

(
f (y; β j, σ2)

f (y; β̂(y), σ2)

)
< χ−2

p (1− α)

}
.

(4.7)
where χ−2

p (1− α) denotes the (1− α)-quantile of the χ2
p distribution.

Under Thm 4.3, (4.6) shows that C in (4.7) would be an exact level-
(1− α) confidence procedure for β; i.e. it provides a family of exact
confidence procedures. Also note that it satisfies the LSP from
Def. 9.

After that build-up, it will come as no surprise to find out that
Thm 4.3 is true. Substituting Y for y in the MLE of β gives

β̂(Y) D
= (XTX)−1XT(Xβ + ε)

D
= β + (XTX)−1XTε,

writing σ for
√

σ2. So the distribution of β̂(Y) is another Multi-
normal distribution

β̂(Y) ∼ Np(β, Σ) where Σ := σ2(XTX)−1.

Now apply a standard result for the Multinormal distribution to
deduce

{β̂(Y)− β j}TΣ−1{β̂(Y)− β j}|β=β j ∼ χ2
p (†)

(see Mardia et al., 1979, Thm 2.5.2). This proves Thm 4.3 above.
Let’s celebrate this result!
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Theorem 4.4. For the LM with σ2 specified, C defined in (4.7) is a family
of exact confidence procedures for β, which has the LSP.

Of course, when we plug-in for σ2 we slightly degrade this result,
but not by much if n/(n− p) ≈ 1.

This happy outcome where we can find a family of exact con-
fidence procedures with the LSP is more-or-less unique to the
regression parameters in the LM. but it is found, approximately, in
the large-n behaviour of a much wider class of models, including
GLMs, as explained next.

4.3.3 Wilks confidence procedures

There is a beautiful theory which explains how the results from
Sec. 4.3.2 generalise to a much wider class of models than the LM.
The theory is quite strict, but it almost-holds over relaxations of
some of its conditions. Stated informally, if Y := (Y1, . . . , Yn) and

f (y; θj) =
n

∏
i=1

f1(yi; θj) for some θ ∈ Ω, (4.8)

(see Sec. 2.1) and f1 is a regular model, and the parameter space Ω is
a convex subset of Rp (and invariant to n), then

−2 log
( f (Y; θj)

f (Y; θ̂(Y))

)∣∣∣∣
θ=θj

D−→ χ2
p (4.9)

where θ̂ is the Maximum Likelihood Estimator (MLE) of θ, and

‘ D−→’ denotes ‘convergence in distribution’ as n increases without
bound. Eq. (4.9) is sometimes termed Wilks’s Theorem, hence the
name of this subsection.

The definition of ‘regular model’ is quite technical, but a working
guideline is that f1(yi; θj) must be smooth and differentiable in θj

for each yi; in particular, supp Yi must not depend on θj. Cox (2006,
ch. 6) provides a summary of this result and others like it, and
more details can be found in Casella and Berger (2002, ch. 10), or,
for the full story, in van der Vaart (1998).

This result is true for the LM, because we showed that it is
exactly true for any n provided that σ2 is specified, and the ML
plug-in for σ2 converges on the true value as n/(n − p) → 1.12 12 This is a general property of the

MLE, that it is consistent when f has
the product form given in (4.8).

In general, we can use it the same way as in the LM, to derive a
decision rule:

C(y; α) :=
{

θj ∈ Ω : −2 log
( f (Y; θj)

f (Y; θ̂(Y))

)
< χ−2

p (1− α)

}
. (4.10)

As already noted, this C satisfies the LSP. Further, under the con-
ditions for which (4.9) is true, C is also a family of approximately
exact confidence procedures.

Eq. (4.10) can be written differently, perhaps more intuitively.
Define

L(θj; y) := f (y; θj)
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known as the likelihood function of θj; sometimes the y argument is
suppressed, notably when y← yobs. Let ` := log L, the log-likelihood
function. Then (4.10) can be written

C(y; α) =
{

θj ∈ Ω : `(θj; y) > `(θ̂(y); y)− κ(α)
}

(4.11)

where κ(α) := χ−2
p (1− α)/2. In this procedure we keep all θj ∈ Ω

whose log-likelihood values are within κ(α) of the maximum log-
likelihood. In the common case where Ω ⊂ R, (4.11) gives ‘Allan’s
Rule of Thumb’:13 13 After Allan Seheult, who first taught

it to me.

• For an approximate 95% confidence procedure for a scalar para-
meter, keep all values of θj ∈ Ω for which the log-likelihood is
within 2 of the maximum log-likelihood.

The value 2 is from χ−2
1 (0.95)/2 = 1.9207. . . ≈ 2.

Bootstrap calibration. The pertinent question, as always with meth-
ods based on asymptotic properties for particular types of model,
is whether the approximation is a good one. The crucial concept
here is level error. The coverage that we want is at least (1− α)

everywhere, which is termed the ‘nominal level’. But were we to
evaluate a confidence procedure such as (4.11) for a general model
(not a LM) we would find that, over all θj ∈ Ω, that the minimum
coverage was not (1− α) but something else; usually something
less than (1− α). This is the ‘actual level’. The difference is

level error := nominal level− actual level.

Level error exists because the conditions under which (4.11) pro-
vides an exact confidence procedure are not met in practice, outside
the LM. Although it is tempting to ignore level error, experience
suggests that it can be large, and that we should attempt to correct
for level error if we can.

One method for making this correction is bootstrap calibration,
described in DiCiccio and Efron (1996). Here are the steps, based on
(4.11), although with a generic κ in place of the function κ(α):

C(y; κ) =
{

θj ∈ Ω : `(θj; y) > `(θ̂(y); y)− κ
}

. (4.12)

1. Compute a point estimate for θ, say θ̂obs := θ̂(yobs) the ML
estimate. Other estimates are also possible, see Sec. 3.4.

2. For i = 1, . . . , m:

Sample y(i) ∼ f (· ; θ̂obs), compute and record θ̂(i) := θ̂(y(i)),
and ˆ̀(i) := `(θ̂(i); y(i)).

So, at the end of this process we have θ̂obs and the sample of values{
y(i), θ̂(i), ˆ̀(i)} for i = 1, . . . , m. Computing the ML estimate has to

be a quick procedure because m needs to be large, say 1000s.
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Now if we choose a particular value for κ, an empirical estimate
of the coverage at θ = θ̂obs is

ĉvg(κ) :=
1
m

m

∑
i=1
1
{

θ̂obs ∈ C(y(i); κ)
}

=
1
m ∑ i 1

{
`(θ̂obs; y(i)) > ˆ̀(i) − κ

}
=

1
m ∑ i 1

{ ˆ̀(i) − `(θ̂obs; y(i)) < κ
}

.

Therefore to set the empirical coverage to (1− α), κ needs to be the
(1− α)-quantile of the values

{ ˆ̀(i) − `(θ̂obs; y(i))
}m

i=1.

So the final step is to find this value, call it κ∗(α), and then compute
the confidence set C(yobs; κ∗(α)) from (4.12).

This is a very complicated procedure, and it is hard to be pre-
cise about the reduction in level error that occurs (see DiCiccio
and Efron, 1996, for more details). One thing that is definitely in-
formative is the discrepancy between κ∗(α) and κ(α), which is an
indicator of how well the asymptotic conditions hold. Put simply,
if the discrepancy is small then either threshold will do. But if the
discrepancy is large, then κ(α) will not do, and one is forced to use
κ∗(α), or nothing. A large sample is required, for (1− α) = 0.95:
accurately estimating the 95th percentile is going to require about
m = 1000 samples.14 14 See Harrell and Davis (1982) for a

simple estimator for quantiles.

4.3.4 Summary

With the Linear Model (LM) described in Sec. 4.3.2, we can con-
struct a family of exact confidence procedures, with the LSP, for
the parameters β. Additionally—I did not show it but it follows
directly—we can do the same for all affine functions of the parame-
ters β, including individual components.

In general we are not so fortunate. It is not that we cannot con-
struct families of confidence procedures with the LSP: Sec. 4.3.1
shows that we can, in an uncountable number of different ways.
But their levels will be conservative, and hence they are not very
informative. A better alternative, which ought to work well in large-
n simple models like (4.8) is to use Wilks’s Theorem to construct a
family of approximately exact confidence procedures, which have
the LSP, see Sec. 4.3.3.

The Wilks approximation can be checked and—one hopes—
improved, using bootstrap calibration. Bootstrap calibration is a
necessary precaution for small n or more complicated models (e.g.
time series or spatial applications). But in these cases a Bayesian ap-
proach is likely to be a better choice, which is reflected in modern
practice.
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4.4 Marginalisation

Suppose that g : θ 7→ φ is some specified function, and we would
like a confidence procedure for φ. If C is a level-(1− α) confidence
procedure for φ then it must have φ-coverage of at least (1− α) for
all θj ∈ Ω. The most common situation is where Ω ⊂ Rp, and
g extracts a single component of θ: for example, θ = (µ, σ2) and
g(θ) = µ. So I call the following result the Confidence Procedure
Marginalisation Theorem.

Theorem 4.5 (Confidence Procedure Marginalisation, CPM). Suppose
that g : θ 7→ φ, and that C is a level-(1− α) procedure for θ. Then g ◦ C
is a level-(1− α) confidence procedure for φ.15 15 g ◦ C

:=
{

φj : φj = g(θj) for some θj ∈ C
}

.Proof. Follows immediately from the fact that θj ∈ C(y) implies that
φj ∈ (g ◦ C)(y) for all y, and hence

Pr{θj ∈ C(Y); θj} ≤ Pr{φj ∈ (g ◦ C)(Y); θj}

for all θj ∈ Ω. So if C has θ-coverage of at least (1− α), then g ◦ C
has φ-coverage of at least (1− α) as well.

This result shows that we can derive level-(1− α) confidence
procedures for functions of θ directly from level-(1− α) confidence
procedures for θ. But it also shows that the coverage of such de-
rived procedures will typically be more than (1− α), even if the
original confidence procedure is exact.

There is an interesting consequence of this result based on the
confidence procedures defined in Sec. 4.3.2 and Sec. 4.3.3. Taking
the latter more general case, consider the family of approximately
exact confidence procedures defined in (4.12). Let g−1 ⊂ Ω be the
inverse image of g. Then

φj ∈ (g ◦ C)(y; α)

⇐⇒ ∃θj : φj = g(θj) ∧ θj ∈ C(y; α)

⇐⇒ max
θj∈g−1(φj)

`(θj; y) > `(θ̂(y); y)− κ(α)

The expression on the left of the final inequality is the profile log-
likelihood,

`g(φj; y) := max
θj∈g−1(φj)

`(θj; y). (4.13)

It provides a simple rule for computing a log-likelihood for any
function of θj. Because g ◦ C is conservative, we would expect
to be able to reduce the threshold below κ(α) if g is not bijective.
However, this is not an area where the asymptotic theory is very
reliable (i.e. it takes a long time to ‘kick in’). A better option here is
to use bootstrap calibration to derive a κ∗(α) for g, as described in
Sec. 4.3.3.

4.5 P-values

There is a general theory for P-values, also known as significance
levels, which is outlined in Sec. 4.5.2. But first I want to focus on
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P-values as used in Null Hypothesis Signficance Tests, which is a
very common situation.

As discussed in Sec. 4.3, we have methods for constructing
families of good confidence procedures, and the knowledge that
there are also families of confidence procedures which are poor
(including completely uninformative). In this section I will take it
for granted that a family of good confidence procedures has been
used.

4.5.1 P-values and confidence sets

Null Hypothesis Signficance Tests (NHST) were discussed in
Sec. 3.5. In a NHST the parameter space is partitioned as

Ω = {H0, H1},

where typically H0 is a very small set, maybe even a singleton. We
‘reject’ H0 at a significance level of α exactly when a level-(1− α)

confidence set C(yobs; α) does not intersect H0; otherwise we ‘fail to
reject’ H0 at a significance level of α.

In practice, then, a hypothesis test with a significance level of
5% (or any other specified value) returns one bit of information,
‘reject’, or ’fail to reject’. We do not know whether the decision was
borderline or nearly conclusive; i.e. whether, for rejection, H0 and
C(yobs; 0.05) were close, or well-separated. We can increase the
amount of information if C is a family of confidence procedures, in
the following way.

Definition 10 (P-value, confidence set). Let C(· ; α) be a family of
confidence procedures. The P-value of H0 is the smallest value α for which
C(yobs; α) does not intersect H0.

The picture for determining the P-value is to dial up the value
of α from 0 and shrink the set C(yobs; α), until it is just clear of
H0. Of course we do not have to do this in practice. From the
Representation Theorem (Thm 4.1) we know that C(yobs; α) is
synonymous with a function g : Y×Ω→ R, and C(yobs; α) does not
intersect with H0 if and only if

∀θj ∈ H0 : g(yobs, θj) ≤ α.

Thus the p-value is computed as

p(yobs; H0) := max
θj∈H0

g(yobs, θj), (4.14)

for a specified family of confidence procedures (represented by the
choice of g). Here is an interesting and suggestive result.16 This will 16 Recollect the definition of ‘super-

uniform’ from Def. 8.be the basis for the generalisation in Sec. 4.5.2.

Theorem 4.6. Under Def. 10 and (4.14), p(Y; H0)
∣∣
θ=θj

is super-uniform

for every θj ∈ H0.
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Proof. p(y; H0) ≤ u implies that g(y, θj) ≤ u for all θj ∈ H0. Hence

Pr{p(Y; H0) ≤ u; θj} ≤ Pr{g(Y, θj) ≤ u; θj} ≤ u : θj ∈ H0

where the final inequality follows because g(Y, θj)
∣∣
θ=θj

is super-

uniform for all θj ∈ Ω, from Thm 4.1.

If interest concerns H0, then p(yobs; H0) definitely returns more
information than a hypothesis test at any fixed significance level,
because p(yobs; H0) ≤ α implies ‘reject H0’ at significance level α,
and p(yobs; H0) > α implies ‘fail to reject H0’ at signficance level α.
But a p-value of, say, 0.045 would indicate a borderline ‘reject H0’ at
α = 0.05, and a p-value of 0.001 would indicate nearly conclusive
‘reject H0’ at α = 0.05. So the following conclusion is rock-solid:

• When performing a NHST, a p-value is more informative than a
simple ‘reject H0’ or ‘fail to reject H0’ at a specified significance
level (such as 0.05).

4.5.2 The general theory of P-values

Thm 4.6 suggests a more general definition of a p-value, which does
not just apply to hypothesis tests for parametric models, but which
holds much more generally, for any PMF or model for Y.

Definition 11 (Significance procedure). Let Y ∼ f for specified PMF
f . Then p : Y→ R is a significance procedure for f exactly when p(Y)
is super-uniform under f ; if p(Y) is uniform under Y ∼ f , then p is an
exact significance procedure for f . The value p(yobs) is a significance
level or p-value for f exactly when p is a significance procedure for f .

This definition can be extended to a set of PMFs for Y by requir-
ing that p is a significance procedure for every element in the set;
this is consistent with the definition of p(y; H0) in Sec. 4.5.1. The
usual extension would be to take the maximum of the p-values over
the set.17 17 Although Berger and Boos (1994)

have an interesting suggestion for
parametric models.

For any specified f , there are a lot of confidence procedures: an
uncountable number, actually, because every test statistic t : Y → R

induces a significance procedure. For a specified t define

p(y; t) := Pr{t(Y) ≥ t(y); f }.

Then it follows from the Probability Integral Transform that p(Y; t)
is super-uniform under Y ∼ f ; see Casella and Berger (2002,
section 8.3.4). Many of these significance procedures are useless,
just like many confidence procedures are useless.

Sec. 4.5.1 made the case for reporting an NHST in terms of a p-
value. But what can be said about the more general use of p-values
to ‘score’ the model f ? This is a question with a simple answer that
many people wish was different:

• A p-value is not a useful guide to whether f is a good model
for Y.
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There is a huge literature on this topic: start at Greenland and Poole
(2013) and work backwards, not neglecting Goodman (1999). There
is also, unfortunately, a growing literature showing that people
‘cheat’ when p-values are used for NHSTs; see, e.g., Masicampo and
Lalande (2012).

To put the issues in a nutshell, the f that we propose as a model
for Y is an artifact: nature herself does not generate yobs according
to f or, really, according to any process which we can represent
as a PMF or a family of PMFs. So the answer to the question “Is f
the right model for Y?” is always “No”, and, with a large enough
sample, we would expect the p-value for H0 : Y ∼ f to be very
small. On the other hand, if we have a very small sample or a bad
choice of t then we would expect the p-value to have a similar
distribution under f and many other models a bit like f ; i.e. to
be uninformative about f . So what can we conclude about the
‘goodness’ of f as a model for Y, from a p-value? It depends on
the sample size and the choice of test statistic, but in a way that is
opaque to us. In particular, the idea that a single cut-off value such
as p(yobs) ≤ 0.05 would serve in a wide variety of applications is
hopelessly naïve.18 18 See Cowles and Davis (1982) for the

origins of the threshold 0.05.Unfortunately, the same issues apply to NHSTs, which is not
surprising given the duality between confidence procedures and
significance procedures shown in Thm 4.1. With a large sample
and a good choice of confidence procedure we would expect to
reject any H0. But the challenge for science is never to find an
effect (i.e. to reject H0). The challenge is to attribute that effect to a
specific cause in order to provide an explanation, or a defensible
prediction. Statistics has a lot to say about this topic, but that would
appear in a chapter on Experimental Design, not one on confidence
procedures.19 19 See, e.g., Cox (1958), for an excellent

introduction to Experimental Design.To finish, here is a quote from Psychology:

No aspect of classical statistics has been so popular with psycholo-
gists and other scientists as hypothesis testing, though some classical
statisticians agree with us that the topic has been overemphasized.
A statistician of great experience told us, “I don’t know much about
tests, because I have never had occasion to use one.” Our devotion of
most of the rest of this paper to tests would be disproportionate, if
we were not writing for an audience accustomed to think of statistics
largely as testing. (Edwards et al., 1963, p. 213)

Note the date: it seems as though very little has changed in fifty
years, in Psychology. Otherwise, there would be no need for papers
such as Morey et al. (2015). I have never had occasion to use a
hypothesis test either—at least, not since becoming a ‘proper’
statistician!
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