APTS Notes on Statistical Inference
Jonathan Rougier

Copyright © University of Bristol 2015.






1
Expectation and probability

This is a summary of the main concepts and results in probability
for Statistics. My objective is to give precise definitions and notation
(our profession’s notation is rather ‘fluid’), and enough detail to
reconstruct the proofs of the main results. I also want to correct

a few misconceptions, which have blurred the fundamentally
different natures of probability theory and statistical inference.

1.1 Random quantities and expectations

A random quantity represents a sequence of operations which will
result in a value; real-valued functions of random quantities are
also random quantities. In other words, all random quantities
should have operational definitions. Statistics is about making
inferences about random quantities which have not been observed,
based on the values of those that have. The bridge between what
we have and what we want is provided by our beliefs. Expectations
and probabilities are a way of quantifying our beliefs.
A random quantity is typically denoted X, Y, or Z, often with
subscripts; specified functions are typically denoted as g or h.* The * The symbol ‘f is reserved for a
set of possible values X can take is its realm, denoted X C R. Any statistical model, see Chapter 2.
particular specified value of X is denoted x. Where it is necessary to
enumerate X, I write

X := {x(l),...,x(’)} CR,

and similarly for other letters (e.g. Y as the realm for Y). A random
quantity whose realm contains only a single value is a constant,
typically denoted by a lower-case letter from the top of the alphabet,
such as g, b, or c.
By its operational definition, a random quantity has a finite
realm, and is therefore bounded. But it is sometimes convenient to
treat the realm as countably infinite, or even uncountable. In these
convenient extensions it is the responsibility of the statistician to
ensure that no pathologies are introduced.> Avoiding the patholo- 21 term this the Principle of Excluding
gies of an uncountable realm is why formal probability theory is Pathologies, PEP
so complicated, but in most of this chapter I will treat all realms as
finite, as nature intended. Generalisations are given in Sec. 1.6.
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A collection of random quantities is denoted X := (Xy,..., Xu).
The joint realm is X and any particular specified value is x := (x1,..., Xy).
The joint realm is necessarily a subset of the product of the individ-
ual realms,

XCXyx---xXy CR™

Where it is necessary to enumerate X, I write
X = {x(l),. ..,x(’>} where 1) € R™.

Assertions about random quantities are statements that hold as a
consequence of their definitions; therefore they hold everywhere
on the joint realm. Thus if the definition of X; and X; implies that
X; < Xj, then xij) < xéj) forallj = 1,...,r. For our convenience,
the joint realm may be extended to, say, the product of the individ-
ual realms, which would include elements for which xgj ) > xéj ).

In this case, our beliefs would need to be augmented to ensure
that the probability attached to such elements is exactly zero (see

Sec. 1.2).

1.1.1  The axioms of Expectation

There is a long-running debate about whether expectation or prob-
ability should be the primitive concept when quantifying beliefs
about X. I strongly favour the former. My expectation of a random
quantity X, denoted E(X), is my ‘best guess’ for X, represented as a
value in R. In Statistics, unlike in probability theory, it is important
to have some idea about what formal concepts actually mean, so
that when I think about my “expectation of sea-level rise in 2100”
this conjours up a number in my mind. ‘Best guess’ seems to work
quite well.

I refer to my expectations about X and functions of X as as my
beliefs about X. My beliefs about X at time t depend on my disposi-
tion at time ¢: all the things I have learnt and thought about up to
time ¢, the things I have forgotten, my general attitude, and even
my current state of mind. Beliefs change from day to day—that’s
just the way it is, and we should not attempt to deny or conceal it.
It is not, for example, a characteristic only of ‘bad” scientists that
their beliefs are subjective and contingent. Of course some beliefs
hardly change, and, moreover, are very common. For example, the
belief that the diversity of living things is due to genetic variation
and heredity, and selection pressure. But the interesting scientific
questions lie at the next level down: why, for example, does sex-
ual reproduction convey a selection advantage? On this topic, the
beliefs of biologists are diverse, and prone to changing.

It may be intuitive, but ‘best guess’ is just a heuristic for expecta-
tion. The theory of expectation is about a special type of ‘best guess:
one that is coherent.
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Definition 1.1 (Coherent expectations). Expectations for X and Y are
pairwise coherent exactly when they satisfy the two properties:

1. Lower boundedness: E(X) > minX, and E(Y) > minY.
2. Finite additivity: E(X +Y) = E(X) + E(Y).

Expectations for X are completely coherent exactly when these two
properties hold for all pairs of random quantities that can be defined on X.

This is a common approach in modern mathematics: not to say
what a thing is or means, but how it behaves.3

There are only these two axioms, but they imply a very rich
set of additional constraints on expectations, and on probabilities
(see Sec. 1.2). Here are some immediate important implications of
complete coherence, which are straightforward to prove. First,

E(a1X1+--~+ame) :alE(X1)+---+amE(Xm), (LIN)

where a4, ...,a,; are constants.4 Second,

E(a) =a (Normalisation)
if a is a constant. Third,
X <Y = E(X) <E(Y), (Monotonicity)
with the immediate implication that
minX < E(X) < maxX. (Convexity)
Fourth, Schwartz’s inequality
E(XY)? <E(X*)E(Y?), (SIQ)

see Williams (1991, sec. 6.8) for a short and elegant proof. Fifth,
Jensen’s inequality: if ¢ : R™ — R is a convex function,> then

E{g(X)} > g(B{X}). (JEN)

There is a straightforward proof based on the Supporting Hy-
perplane Theorem, see Thm 3.5. Schwartz’s inequality (and its
generalisation the Cauchy-Schwartz inequality) and Jensen’s in-
equality are two of the most important inequalities in the whole of
mathematics.®

1.1.2  The Fundamental Theorem of Prevision

Coherence as defined in Def. 1.1 has a complicated aspect. On the
one hand, it is a very simple and appealing property for a pair

of random quantities. On the other, who knows how much extra
structure is imposed through the extention to all pairs of random
quantities? Bruno de Finetti (1974, ch. 3) provided the crucial
result.”

31 discuss difficulties with meaning in
Sec. 1.3.1. For an excellent summary
of modern mathematics, see Gowers
(2002).

4 Slightly tricky. Use additivity to
prove that E(aX) = aE(X) when

a is a positive integer. Then use
E{(a/a)X} = aE{X/a} to prove

that E(gX) = qE(x) for any positive
rational. It is straightforward to

show that E(—X) = —E(X), and so
E(9X) = gE(X) holds for all rationals.
Then complete the argument from the
rationals to the reals in the usual way.

5 Technically, a convex function on the
convex hull of X.

¢ Although you would have to read,
say, Gowers et al. (2008) to substantiate
this claim.

7See also Lad (1996, ch. 2) and Whittle
(2000, ch. 15).
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Some terms. A convex combination (wy, ..., wy) has w; > 0 for
each j, and 2;11 w; = 1. The set of all convex combinations is the
(r — 1)-dimensional unit simplex, or just (r — 1)-simplex,

g—1.— {wEer:w]- >0, ijjzl}. (1.1)
Theorem 1.1 (Fundamental Theorem of Prevision, FTP). Let
X = (Xy,...,Xm) be a collection of random quantities with joint
realm

X := {x(l),...,x(r)} Cc R™.

Expectations for X are completely coherent if and only if there exists a
convex combination (wy, ..., w,) such that

Vg: X - R E{g(X)} = Zr:g(x(j)) “w;j. (1.2)
=1

Sec. 1.6.1 gives a generalisation of the FTP to allow for non-finite
realms.

Proof. The <= branch is straightforward. For = note that X must
take exactly one of the values in X, and hence

r

1= 1y. .4

j=1

where 1 is the indicator function of the first-order sentence p; see
Sec. 1.2 for more details about this notation. By Normalisation and

Linearity,
,

1=) B(ly..p)) (1.3)

=1
By Lower-boundedness, E(1_. () > 0. Hence we can write
w; + E(ly. ), and (wy,...,w,) is a convex combination. For
arbitrary function g,

Efg(X)} = E{g(X) -1}

=E {g(X) : j]IXix(/-) } from above
= E{ Y. 8(X) ﬂxixm}
=E { ng(x(j)) : ]IXix(ﬁ} good move!
=3 8(") E(ly. ) by (LIN)
= ng(x(j)) S W; from above
as required. O

Thus the FTP asserts that there is a bijection between the set of
completely coherent expectations for X and the (r — 1)-simplex
S'~1, where r := |X|. Because S'~! is uncountably infinite, being a
convex subset of R’, the set of completely coherent expectations for
X is uncountably infinite too.

From now on I will always assume that expectations are com-
pletely coherent.
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1.1.3 Moments

There are both practical and theoretical reasons for summarising
beliefs about X in terms of its ‘moments’. There are three types:

‘raw’ moments := E(X¥)
centered moments := E{(X — 1)} where y := E(X)

absolute moments := E(|X|)

fork =1,2,.... The first ‘raw’ moment is of course the expectation
of X, and is often denoted y, as above. Examples of the use of these
moments are given in Sec. 1.2.3 and Sec. 1.6.2.

The second centered moment is termed the “variance’ of X,
written ‘Var(X)’, and often denoted by ¢2. Its square root is termed
the standard deviation of X, and often denoted by ¢. Multiplying out
shows that

0? = E(X?) — E(X)?

from which we can infer that E(X?) > E(X)2. This is just (SIQ)

with Y < 1. The variance is a crucial concept because of its role in

Chebyshev’s inequality® and the Weak Law of Large Numbers, and 8 Chebyshev’s inequality is given in

the Central Limit Theorem. (1.10).
The third and fourth centred moments are used to measure

‘skewness” and ‘kurtosis’, but these concepts are not as popular as

they used to be. For most people, it is a stretch to have quantitative

beliefs about the skewness or kurtosis of X, unlike the expectation

or the standard deviation.
Jensen’s inequality (JEN) gives a rich set of inequalities for the

moments to satisfy. For if k > 1 then |x|¥ is a convex function, and

therefore

E(IX]") = B{(IX[")*"} = E(IX")*""  :0<r<s.
Taking roots gives Lyapunov’s inequality,
E(|X[)Vs > E(|X|)Y" :0<r<s. (1.4)

So we do not have a free hand when specifying absolute moments:
complete coherence imposes some restrictions. Raw moments can
be bounded by absolute moments using

k
E<|xk|>{§fég'k))l}ﬂ<x>|k k21, a9

known as the triangle inequality when k = 1.

1.2 Probability

When expectation is primitive, probability is defined in terms of
expectation.
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1.2.1 Definition, the FTP again

Let q(x) be a first order sentence; i.e. a statement about x which is
either false or true. Let 1, denote the indicator function of the first-
order sentence p; i.e. the function which is 0 when p is false and
1 when p is true. Then Q := g(X) is a random proposition; random
propositions are typically denoted P, Q, and R. The probability of Q
is defined as

Pr(Q) := E(lgp). (PR)

It is straightforward to check that if E(-) is completely coherent,

then Pr(-) obeys the three axioms of probability.9 Simple direct 9 At least, for finite disjunctions, since
I have not used the stronger axiom of

proofs can also be provided for some of the implications of the @
countable additivity; see Sec. 1.6.1.

probability axioms. For example, if q(x) and r(x) are first-order
sentences and g(x) implies r(x) for all x, then 1 < 1, and hence
Pr(Q) < Pr(R).

Here is a heuristic for probability, in the same sense that ‘best
guess’ is a heuristic for expectation. Imagine being offered a bet on
Q, which pays £0 if Q is false, and £1 if Q is true. Then because

Pr(Q) =0-Pr(-Q) +1-Pr(Q),

I can think of Pr(Q) as my ‘fair price’ for the bet. So this is one
simple way to access beliefs about Pr(Q), I ask “What is the max-
imum I would be prepared to pay for such a bet?” This satisfies
the obvious endpoints that if I thought Q was impossible, I would
pay nothing, and if I thought Q was certain, I would pay up to £1.
So the heuristic is really about a way to envisage probabilities of
propositions that are neither impossible or certain.

Now we can have another look at the FTP from Thm 1.1. Let x(*)
be an element of X, and define

or, in a more efficient notation, q(X) := (X = x().1° Then, setting ] use dots to indicate binary predi-

X) 1 in (1.2) shows that cates in infix notation, so that X; = x;
8 ( ) q(X) (12) is the random proposition which is

K true when X; is equal to x;, and false
Pr(X = xl )) = Wk. otherwise.

Define the function
px(x) = Pr(X =x), (1.6)

known as the probability mass function (PMF) of X. By convention,
the PMF of X is defined for the whole of R™, and set to zero for
values not in X; the support of the PMF is the set

supppy = {x € R" : px(x) > 0}, (1.7)

which is a subset of X. The FTP in (1.2) can now be written as

Vg:X - R E{g(X)} = Zglcg(x) px(x), (FTP)
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Vg X R E(3(X)} = [ g(x)-py(x),

for an appropriate definition of the integral operator.
Eq. (FTIP) is a theorem when expectation is taken as primitive.
Probabilists, though, axiomatise py and then (FTP) is the definition

of expectation. My view'! is that the probabilists” approach is back- " Not mine alone! See, for example,
de Finetti (1974/75), Lad (1996),

. Whittle (2000), and Goldstein and
about X directly. Wooff (2007).

to-front for Statistics, where we concern ourselves with our beliefs

In notation, usual practice is to suppress the “X” subscript on
‘px’, on the grounds that the random quantities can be inferred
from the argument to the function. I will follow this practice except

where there might be ambiguity.

1.2.2  Marginalisation

Regardless of what is taken as primitive, the starting-point in
Statistics is often a PMF for X, or perhaps a family of PMFs for X
(see Chapter 2). In this case it is important to know how to derive
the PMF of any set of functions of X.

Let g1, ...,4n be specified functions of x, and set Y; := g;(X) for
i=1,...,n. Then it follows from (FTP) that

n
p(y) = L [Tlg0=y, P (1.8)
xeX i=1
This expression uses the identity 1 g4p = 14 - 1p. In the case where
X = (X4,Xp), setting Y < X 4 in (1.8) shows that

p(xa) = Z p(xa,xp). (MAR)
xgp€Xp
This is termed marginalising out Xp, and (MAR) is the Marginalisa-
tion Theorem.

In general, computing p(y) from p(x) or marginalising out Xp
are both computationally expensive when X or Xp are large. One
exception is when X has a Multinormal distribution and Y is a linear
function of X; see Mardia et al. (1979, ch. 3). Another exception for
marginalisation is when

where often p; is the same for all i (see Sec. 1.5). Unsurprisingly,
these are both very common choices in practice. It is important

to appreciate that the recurring use of these choices does not in-
dicate a statistical regularity in our world, but the preference of
statisticians for tractable computations.

Some notation. (MAR) is an example of a functional equality. My
convention is that this expression denotes a set of equalities, one for
each element in the product of the realms of the free arguments. In
this case, the only free argument is x4, and so this equality holds
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for every x4 € X 4. Where it is necessary to restrict the domain
of a free argument, the restriction will be given after a “.’. Some
examples have already been given, another one is immediately

below in (1.9).

1.2.3 Probabilities and expectations

A very famous and useful inequality links probabilities and expecta-
tions, Markov's inequality:

Pr(|x]| = a) < SUXD

ca>0. (1.9)

This follows immediately from a - 1x+, < |X| and Monotonicity.
Markov’s inequality is versatile, because if g is a non-negative
increasing function, then

g(|x[) = g(a) <= |x[ > a.
One application of this is the centered moment bound,

E(|X — p)

T a >0, (1.10)
a

Pr(|X —pu| > a) <mi
r(|X =yl = a) < min
where y := E(X). This bound shows how the absolute centered
moments of X control the behaviour of the tails of the PMF of X.
The special case of k < 2 is termed Chebyshev’s inequality, for which
the righthand side of (1.10) is 0% /a?, where ¢ := Var(X).

1.3 ‘Hypothetical” expectations

The material in this section is radical. I want to adjust Your view-
point before we go any further.

1.3.1  Some reflections

There is no true interpretation of anything; interpretation is a vehicle
in the service of human comprehension. The value of interpretation
is in enabling others to think fruitfully about an idea. (Andreas Buja,
quoted in Hastie et al., 2009, p. xii).

Statisticians are not ‘just’ mathematicians. In Statistics, quantities
which are abstractions from a mathematical viewpoint must be
reified,” so that they quantify aspects of the reality which we expe-
rience together. My expectation E(X) has meaning to me, and this
meaning informs my decision to constrain all of my expectations to
be completely coherent (see Sec. 1.1). I doubt very much that You
and I can agree on precisely what we each mean by ‘expectation’,
but I hope that we have enough common ground that You consider
that knowing the values of some of my expectations, and knowing
that they are completely coherent by construction, is useful when
You consider or revise some of Your expectations.

Although we could wish for a tighter definition of ‘expectation’,
ideally even complete agreement between You and me regarding

> Verb: to make something that is
abstract more concrete or real. As used
in the title of Goldstein and Rougier
(2009).
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its meaning, nothing I have experienced in my interactions with
other people leads me to think that this is possible. We humans
constantly misunderstand each other. So my beliefs are mine alone,
not just in the value I might attach to an expectation, but even in
what I mean by ‘expectation’. I don’t think there is any point in
constructing an elaborate theory about this, such as “my expecta-
tion of X is the value of a I would choose were I facing a penalty of
(X —a)2.” This is a deus ex machina, designed to crush ambiguity, but
at the expense of our humanity.

I think it is better to acknowledge from the outset basic limits
to our mutual understanding. The viewpoint I want to advocate
in these notes is that these limits do not imply that ‘anything goes’
when it comes to quantifying beliefs. You might find my beliefs
useful, and You might find them more useful if they are completely
coherent. You should distrust anyone who claims to have quantified
‘the” expectation for X. If You are asked for ‘the” expectation, You
can reply, “I am happy to give you my expectation, and I hope you
find it useful in quantifying yours.”

This section considers the next stage of this process, what I
term ‘hypothetical expectations’, although typically these would be
termed ‘conditional expectations’ (see Sec. 1.3.3). Mathematicians
are not obliged to attach any meaning to ‘the conditional expecta-
tion of X given that Q is true’. In elementary textbooks it is defined
(perhaps implicitly) as a quotient of expectations:

E(X|Q):= EXq) provided that Pr(Q) > 0.
Pr(Q)

Based on this definition, we can prove lots of Cool Stuff about hypo-
thetical expectations, including relationships between hypothetical
expectations with different Q’s. But statisticians have to go much
further. For a statistician, E(X | Q) has to have enough meaning that
it could be assigned a value. For the Cool Stuff to be useful, this
meaning has to be such as to make the above relation true. This is
the challenge I address in Sec. 1.3.2. As far as I know, no one else
has reified hypothetical expectation in the way that I do. I do not
think that Sec. 1.3.2 is the last word on the meaning of hypothetical
expectation. But I hope that You understand the need for what I
have tried to do.

1.3.2  Definition of hypothetical expectation

Let Q be a random proposition, which may or may not be true.
People are adept at thinking hypothetically, “supposing Q to be
true”. I can have a ‘best guess’ about X supposing Q to be true:
this is my hypothetical expectation denoted as E(X | Q), and usually
expressed as “my expectation of X given Q”. The challenge is to
give this notion enough substance that we can propose sensible
properties that hypothetical expectations should possess. Here is an
informal definition.

11
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Some notation. A partition is a collection of mutually exclusive and
exhaustive random propositions. If

Q:={QW,..., Q"N

is a partition, then Pr(Q) AQU)) = 0 for i # j, and Pr(QM v ---v Q) =1.

Definition 1.2 (Hypothetical expectation, informal). Let Q be a
partition. I imagine myself in the closest world in which the value of Q is
known. The hypothetical expectation E(X | QU)) is my belief about X when
Q(j) is true in this world.

You can see that this is a very subtle concept—but what did You
expect? The truth of QU) holds in an infinite number of imaginary
worlds, and something has to be done to reduce the ambiguity. So
this informal device of the ‘closest world” is an attempt to mimic
what we do in practice. When reasoning hypothetically, we do not
consider strange new worlds in which Q(f ) is true, but worlds that
are similar to our own. Technically, the partition Q which defines
the “closest world” ought to be recorded along with the element QU/)
in the notation for hypothetical expectation, but I have suppressed
it to avoid clutter.

Following (PR), I define a hypothetical probability for a random
proposition as

Pr(P| Q) = E(1p| Q). (CPR)

It is conventional to call this a conditional probability, which I will do,
although I could also call it a “hypothetical probability”.

What can we say about a hypothetical expectation? And does it
need to have any connection at all to ‘actual” expectation? I provide
a condition for each of these questions, and show how they are
equivalent to a condition which directly expresses a hypothetical
expectation in terms of actual expectations.

Let X be any random quantity and Q be any partition. The first
condition is that

5 E(X| QW) Pr(QW) >0

‘ 1.11
arbitrary Pr(QY)) =0 ()

E(X1g0 |QU) =

where §;; is the Kronecker delta function.’> That is, if I am suppos-
ing QU ) to be true, then I must believe that Q(i) is false for i # j.
It is hard to disagree with this, so I call this the sanity condition
for hypothetical expectations. Note that I make no claims at all
for hypothetical expectations in what I believe to be impossible
situations.

The second condition links hypothetical expectations and ac-
tual expectations. Bruno de Finetti (1972, sec. 9.5) termed it the
conglomerative property:

k

E(X) = ) E(X| QW) Pr(QW)). (1.12)

=1

3 L.e. the function which is 1 when
i = j and zero otherwise, which can
also be written as 1;-;.
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This is a strong condition, but it has an intuitive shape. It states that
I do not have a free hand when specifying all of my hypothetical
expectations, because, when taken together, they must be consistent
with my actual expectation. In fact, the conglomerative property
represents a two-stage approach for specifying my beliefs about X.
First, I think about X hypothetically, over each element of a parti-
tion, and then I combine these values according to the probability
I attach to each element in the partition. Lindley (1985, sec. 3.8)
termed this approach to specifying beliefs about X ‘extending the
conversion’.

What is interesting is that these two conditions are sufficient to
define hypothetical expectation, according to the following result.

Theorem 1.2 (Hypothetical Expectations Theorem, HET). Hypo-
thetical expectations satisfy the sanity condition and the conglomerative
property if and only if they satisfy the relation

E(X1g) = E(X| Q) Pr(Q) (1.13)
for every random quantity X and every random proposition Q.

As a consequence of this result, (1.13) will be taken as the defin-
ing property of a hypothetical expectation.

Proof. Let X be a random quantity and Q be a random proposition.
Where necessary, embed Q in some partition Q.

<. Note that Pr(Q) = 0 implies that E(X1) = 0, by (SIQ). Then it
is straightforward to check that (1.13) implies the sanity condition,
substituting X « X1, and Q « QU). For the conglomerative

property,
E(X) =E (X ) 11Q<,)) as Q is a partition
= Z].E(X]lQm) by linearity
=) EX|QM)Pr(@) by (113)
as required.
=.
E(X1gn) = Y B(XLg0 | Q) Pr(QW)  (conglomerative property)
= Z]‘ ;i E(X | QY Pr(QW) by the sanity condition, (1.11)
= E(X| Q) Pr(QY)
as required. O

Eq. (1.13) is a good starting-point for several other useful results.
Putting X < 1p in (1.13) shows that the conditional probability
always satisfies

Pr(P,Q) = Pr(P[ Q) Pr(Q), (1.14)

using the common notation that Pr(P,Q) := Pr(P A Q). This
is a result of great practical importance. It provides a two-stage

13
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approach for specifying the probability of any conjunction: first
think about Pr(Q), and then about the conditional probability
Pr(P | Q), i.e. “the probability that P is true supposing that Q is
true”. Note from (1.14) that Pr(P | Q) has the unique value

Pr(P,Q)
Pr(P|Q) = —== (1.15)
when Pr(Q) > 0, but is arbitrary when Pr(Q) = 0.
Another useful result is that if E(-) is completely coherent, then
E(- | Q) is completely coherent whenever Pr(Q) > 0; this follows
from the conditional FTP,

Vg:X =R E{g(X)|Q} =) g(x)-pox) :Pr(Q) >0

xeX
(1.16a)

where
- ]lq(x) P(x)
- Pr(Q)
This result is straightforward to prove, starting from the FTP for
E{g(X)1g} and then using (1.13). I refer to (1.16b) as the Muddy
Table Theorem, following van Fraassen (1989, ch. 7).

Eq. (1.16) and the FTP show that complete coherence implies
that hypothetical expectations have a recursive property: every re-

po(x) == Pr(X =x[Q) (1.16b)

sult about expectations E(+) also holds for expectations E(- | Q) if
Pr(Q) > 0; and every result about E(- | Q) also holds for E(- | Q, R) if
Pr(Q,R) > 0; and so on. In other words, we can drop a ‘|Q’ into the
back of all expectations, or a /, R” into the back of all hypothetical
expectations, and whatever result we are interested in still holds,
provided that Pr(Q) > 0 or Pr(Q, R) > 0; and so on.

1.3.3 'Conditional” expectations

I have been careful to write ‘hypothetical” and not ‘conditional’
expectation for E(X | Q). This is because probability theory makes
a clear distinction between the two, which is honoured in notation,
but often overlooked. The hypothetical expectation E(X | Q) is a
value, just like E(X) is a value. But the conditional expectation is a
random quantity, not a value.

Consider two random quantities, X and Y, where the following
construction generalises immediately to the case where Y is a vector
of random quantities. Now

2:= [J(Y=y)

yeY
is a partition, so we will go ahead and define the function
ux(y) = E(X|Y=y) yel. (1.17)

This definition is not unique, because E(X | Y = y) is arbitrary if
Pr(Y = y) = 0. In general, there are an uncountable number of yx
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functions; denote these as ;L’X, y’)’(, .... For each one of these, define
the corresponding conditional expectation of X givenY,

E'(X|Y) = px(Y)
E"(X]Y) := px(Y) (1.18)

Each of these is a random quantity, being a specified function of Y,
termed a version of the conditional expectation. But although these
are different random quantities, it is straightforward to show using
the FTIP that they are mean-squared equivalent, i.e.

E[{E(X]Y) - E"(x|0)}*] =0,

more conveniently written as E'(X | Y) = E”(X | Y). Therefore it
is common to refer to ‘the’ conditional expectation E(X | Y). But,
just to make the point one more time, E(X | Y) is a function of the
random quantity Y, it is not a value.

In my notation I do not need to use two different symbols E and
E for hypothetical expectation and conditional expectation, because
the symbol to the right of the bar is clearly either a random propo-
sition, like Q, or a random quantity, like Y. Most authors do not
make a notational distinction. But I am insisting, because the differ-
ence is so fundamental, and also because it clarifies some important
equalities involving hypothetical and conditional expectations.

The first one is the conglomerative property (1.12), which in this
context is termed the Tower Property of conditional expectation:

E(X) = E{E(X|Y)}, (1.19)

also termed the Law of Iterated Expectation, see (LIE) below in
Sec. 1.4. This equality holds for every version of E(X | Y). It can be
developed recursively, just like a hypothetical expectation. So we
could have, for example,

E(X|Z) =S E{E(X|Y,Z)|Z}.

E behaves like an expectation, i.e. it respects the axioms of lower-
boundedness and additivity, but, again, only in mean square.

The Tower Property has an elegant and useful extension, for
computing variances (see Sec. 1.1.3), the variance identity:

Var(X) = E{Var(X|Y)} + Var{E(X | Y)}, (1.20)
where Var denotes the conditional variance,

Var(X|Y) := E[{X —E(X|Y)}?|Y]
=E(X?|Y)-E(X]|Y)%
So, like the conditional expecation, the conditional variance is a

random quantity. Eq. (1.20) is straightforward to derive, using (1.19)
and the definition of Var immediately above.

15
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The Tower Property and the variance identity are useful because
in some applications it is possible to derive a closed-form expres-
sion for yx(y) and for 0% (y), the hypothetical variance conditional
on Y = y. Then we have simple recipes for computing the expec-
tation and variance of X. Note that although yx and ¢% are not
unique there is usually a ‘vanilla’ form. For example, the Multi-
normal distribution has an uncountable realm (see Sec. 1.6.3), and
hence Pr(Y = y) = 0 for all y € Y. Nevertheless, it is possible to
state useful expressions for yx and 0%.

The general theory of conditional expectation was originally
proposed by the great Soviet mathematician Andrey Kolmogorov,
notably in his book The Foundations of Probability, published in 1933.
Measure Theory is indispensible: see Billingsley (1979) or Williams
(1991) for the details. Another view of conditional expectation is
that it represents a projection; see Whittle (2000) for details.

1.4 Implications of the HET

Now we are back on-track! Regardless of where we start, (1.13) is
the defining relationship for hypothetical expectations and con-
ditional probabilities, from which the following results follow
immediately.

The conglomerative property given in (1.12) is also known as the
Law of Iterated Expectation (LIE), and its special case for probabilities
is known as the Law of Total Probability (LTP)

E(X)= ) E(X|Q)Pr(Q), Pr(P)= ) Pr(P|Q)Pr(Q)
Q€9 QecQ

whenever Q is a partition. See below (LIE, LTP) for common expres-
sions for these in terms of PMFs.

Here is a very useful result which I call Taking out What is Known
(TWK), after Williams (1991, sec. 9.7):

E{g(Y) - h(X,Y)|Y =y}
=8(y)-E{h(X,y) Y=y}  :yesuppY;,  (TWK)

recollect the definition of ‘supp’, the support of a PMF, given in
(1.7). Conceptually, this is just an extension of the sanity condition,
(1.11), since it would be weird if Y was not equal to y in the hypo-
thetical world where Y = y was true. Eq. (TWK) can be proved
using the FTP for E{g(Y) - h(X,Y) - 1y~ } and (1.13). It also holds in
mean square for conditional expecations.™ ' For example, E(XY | Y) = YE(X | Y).

Here are three other very important results relating probability
and conditional probability, for random propositions P, Q, and R:

1. Factorisation Theorem, which just extends (1.14).
Pr(P,Q,R) =Pr(P|Q,R)Pr(Q|R)Pr(R).
2. Sequential Conditioning

Pr(P,Q|R) = Pr(P|Q,R)Pr(Q|R)  : Pr(R) > 0.
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3. Bayes’s Theorem™>
Pr(Q | P) Pr(P)

Pr(P| Q) = 5r0) . Pr(Q) > 0.
Bayes’s theorem also has an odds form?®

Pr(R[Q) = Pr(Q|R) Pr(R)

This is convenient because it cancels Pr(Q). One common special
case is R < =P, where —P denotes ‘not P’.

Each of these results can be expressed in terms of PMFs, which is
how statisticians usually encounter them in practice. For simplicity,
I write ‘supp X’ to denote ‘supp py” where py is the marginal PMF
of X, see (MAR).

o. Law of Iterated Expectation, Law of Total Probability

E(X) = Zy E(X|Y=y) ply) (LIE)
ye

p(x) = Zyp(ny) p(y), (LTP)
ye

because Uycy (Y = y) is a partition.
1. Factorisation Theorem

p(xy) =p(x|y)p(y)

(FAQ)
p(xy,z) =p(x|y,z)ply|2)p(2),
and so on.
2. Sequential Conditioning
p(xy|z) =p(x|y,z)plylz) :zcsuppZ (SEQ)
3. Bayes’s Theorem
Py |x) p(x)
x == Yy €EsuppY. (BAY)
p(x|y) =~ y € supp
And in odds form
P¥ly) _ pWIY) PO (e suop(X,Y).  (BOD)

p(x'[y) plylx) px)

1.5 Conditional independence

Conditional independence is the cornerstone of statistical mod-
elling: it is the most important thing after expectation itself. Condi-
tional independence is a property of beliefs.

Definition 1.3 (Conditional independence).
Let X, Y, and Z be three collections of random quantities. My beliefs
about X are conditionally independent of Y given Z exactly when

> I insist on “Bayes’s”, on the authority
of Fowler’s Modern English Usage,
2rd edn, p. 466. Americans do this
differently.

6‘0Odds’ denotes a ratio of probabili-
ties.

Vg: X - R E{¢(X)|Y=y,Z=z} =E{g(X)|Z=z} : (y,z) € supp(Y, Z).

This is written X 11 Y | Z.
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That is to say, whenever I imagine the closest world in which
the values of both Y and Z are known, I find that my hypothetical
beliefs about X do not depend on the value taken by Y, and are the
same as if Y was not known.

The definition in Def. 1.3 gives meaning to the notion of condi-
tional independence as a property of beliefs, but it is unwieldy to
use in practice. Happily we have the following result.

Theorem 1.3 (Equivalents to conditional independence).
The following statements are equivalent:

() X1LY|Z

(ii) p(x|y,z) =p(x|z)  :(y,z) €supp(Y,Z)

(i) p(x,y[z) =p(x[z)-p(ylz) :zesuppZ

(v) E{g(X) - h(Y)|Z = z} = E{g(X) | Z = z} -E{h(Y) | Z = z}
Proof.
(i) implies (ii) after setting g(x') + Ly -,.
(ii) implies (iii). Eq. (SEQ) asserts that

p(xy|z) =p(x|y,z)-ply|lz) :zecsuppZ S

Consider the two cases. First, y € supp(Y |Z = z), so that

(y,z) € supp(Y,Z). In this case (ii) and () imply (iii). Second,

y ¢ supp(Y | Z = z). In this case () has the form 0 = p(x |y, z) - 0,
and we may take p(x |y, z) < p(x] z), as required.

(iii) implies (i):
E{g(X)[Y=y,Z =7z}
z)  from the CFTP, (1.16)

x|y,
= Ls)- B and (5,2) € supp(1,2)
= ng(x) p(x|z) from (iii)
=E{¢(X)|Z =z} CFTP again.

(iii) implies (iv) using the CFTP. (iv) implies (iii) after setting
g(¥) < 1y—p and h(y') « 1/~ ]

The definition of conditional independence can be simplified to
that of independence, simply by dropping Z. So my beliefs about X
and Y are independent exactly when

Vg: X - R E{g(X)|Y=y}=E{g(X)} ty €suppY, (1.21)

and this is written X 11 Y. There are straightforward modifications
to the equivalent conditions given in Thm 1.3.

Causal chains provide an intuitive illustration of conditional
independence. My beliefs about the power generated at a hy-
droelectric plant, X, are strongly influenced by the depth of the

:z € supp Z.
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reservoir, Z. So much so that, given Z, knowledge of the previous
rainfall on the reservoir catchment, Y, has no further impact on my
beliefs about X. Hence, for me, X LL Y | Z. This illustration also
shows that X Ll Y|Z =4 X LL Y. For if I did not know the depth
of the water, then the previous rainfall would be highly informative
about power generated.

We can also clarify that X 11 Y =~ X 1l Y |Z. Suppose that
X and Y are the points from two rolls of a die believed by me to
be fair. In this case, I might reasonably believe that X Ll Y,ifI
had shaken the die extensively inside a cup before each roll. But
if Z is the sum of the points in the two rolls, then I can predict X
exactly knowing Y and Z, but only approximately using Z alone.
So Y brings information about X that augments the information in
Z, and I do not believe that X Ll Y| Z.

These two illustrations show that conditional independence is
its own thing, not simply a necessary or sufficient condition for
independence. My belief that X 1L Y | Z is something I accept or
reject after reflecting on how my beliefs about X in the presence
of Z change on the further presence of Y. The asymmetry of X
and Y is an illusion—a fascinating and deep result, which follows
immediately from the symmetry of p(x,y | z) in (iii) of Thm 1.3. The
relationship between conditional independence (symmetric) and
causality (asymmetric) is very subtle; see Pearl (2000) and Dawid
(2002, 2010) for discussions.

Finally, here are some additional useful concepts based on con-
ditional independence. A collection X is mutually conditionally
independent given Z exactly when

VA,B X4 1l Xpl|Z (1.22)

where X 4 and Xp are non-intersecting subsets of X. I write this as
EX | Z. It is straightforward to show that

m

FX|Z < p(x]|z) :Hpi(xi|z), (MCTI)

i=1

using Thm 1.3. Likewise, X is mutually independent exactly when
X 4 1L Xp for all non-intersecting X 4 and Xp, written as F X, and
for which

FX < p(x) =] ]p;(xi). (M)
i=1

A stronger condition for mutual [conditional] independence is

where p; is the same for all i. In this case, X is [conditionally] inde-
pendent and identically distributed (IID) [given Z]. The [conditionally]
IID model is the unflagging workhorse of modern applied statistics.

1.6 Non-finite realms

For our convenience, it will often be useful to treat the realm of a
random quantity X as non-finite, or even uncountable. These are
abstractions, because the realm of an operationally-defined quantity

19
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is always finite. But remember the PEP in footnote 2: we have to
make sure that we do not introduce any pathologies.

Some terms. A finite set has a finite number of elements; otherwise
it is non-finite. The size of a set is termed its cardinality, and denoted
|A|. A finite set in a Euclidean space has a finite diameter, i.e. is
bounded; a non-finite set may or may not have finite diameter. A
countable set has the same cardinality as IN, the set of positive inte-
gers; i.e. it can be represented as A := {a; : i € N}. An uncountable
set has a larger cardinality than IN; typically, its cardinality would
be that of the continuum, which is the cardinality of the reals in the
interval [0, 1]. Vilenkin (1995) provides a good introduction to the
complexities of ‘infinity’.

1.6.1  Countable realms

Suppose that the realm of X is non-finite but countable. Since the
FTP is the basic result for complete coherence, we look to its proof
to check for pathologies. And there we see that the ‘only if” proof
breaks down at (1.3), because the righthand side is no longer the
sum over finite set. The axiom of additivity makes no claims for the
expectation of the sum of an infinite set of random quantities. In
order to retrieve the proof and eliminate the pathology, a stronger
property is required, namely that of countable additivity:

E(Xi+Xo+--+) =E(X;)+E(X2) +--- (Countable additivity)

Now the ‘only if” part of the proof goes through as before.

I interpret countable additivity as protection against pathologies
that might otherwise arise if the FTP did not hold for random
quantities with countable realms. Other statisticians, though, make
a much bigger deal about the difference between different types
of additivity, on foundational/philosophical grounds. The most
vociferous has been Bruno de Finetti, e.g., de Finetti (1972, ch. 5)
and de Finetti (1974, ch. 3); see also Kadane (2011, sec. 3.5).

1.6.2  Unbounded realms

If we start with expectation as primitive, then infinite expectations
can never arise if we do not want them, even for random quantities
whose realm is unbounded. However, modern practice, which
starts with a PDF'7 rather than with a set of expectations, makes

it all too easy create random quantities with infinite expectations
without realising it. This is because modern practice starts with a
convenient choice for the PDF of X, whose tractability often arises
partly from the fact that its support is unbounded: the Normal
distribution, the Gamma, the Poisson, and so on. If expectation is

defined as an infinite sum or an integral, then it may may ‘converge’

to oo or it may have no well-defined limit.
The three choices given above are actually fairly safe, because
they have finite moments, see Sec. 1.1.3. Finite moments implies

7 1 will write ‘PDF’ for ‘PMF/PDF’ in
this subsection.



APTS NOTES ON STATISTICAL INFERENCE 21

that all functions of X that are bounded in absolute value by a
polynomial will have finite expectations.™®

But consider the Student-t distribution with one degree of free-
dom, known as a Cauchy distribution, which has support R. Even
moments are infinite, and odd moments are undefined. Thus if X is
Cauchy, then the expectations of some polynomials of X are infinite,
and of others are undefined. The Cauchy is a very poor choice
for representing beliefs about an operationally-defined random
quantity. Similar problems exist for all Student-t distributions.

Here is where statisticians have to pay attention to the PEP (foot-
note 2). If a random quantity is treated as having an unbounded
realm, then it is the statistician’s responsibility to make sure that
all of the moments remain finite. One elegant way to do this is to
construct more complicated PDFs from mixtures of ‘safe’ distribu-
tions, because these mixtures will have finite moments, according to
the LIE. It may not be an explicit consideration, but the practice of
hierarchical modelling is largely about creating mixtures of this type;
see Lunn et al. (2013, ch. 10) or Gelman et al. (2014, ch. 5).

1.6.3 Uncountable realms

We lapse briefly into a more abstract notation. Let {a) : A € A} be
any parameterised collection of non-negative values in [0, co], where
A may be uncountable. We need to define what it means to sum
over these values, in such as way that if the set is countable, then
we retain the usual definition. To this end, define }_,c 4, as the
supremum of )<y a,, for all finite sets L C A. Now consider the
case where ) ) 4y = 1, as it would be were the a,’s probabilities
on the realm A. In this case it is straightforward to show that only
a countable number of the a,’s can be non-zero. This argument is
taken directly from Schechter (1997, sec. 10.40).

So, returning to more concrete notions, no matter what the
realm of X, finite, countable, or uncountable, at most a countable
number of the elements of X will have non-zero probabilities. If
X is uncountable, we can always ‘thin’ it to countable set, without
changing our beliefs. Of course a countable set is still very large.
The set of rationals in [0, 1] is countable, but comprises an incon-
ceivably minute proportion of the set of reals in [0, 1], which has the
cardinality of the continuum.

But this does present a new difficulty, if we proceed without
first thinning X to a countable set. If the realm of X is uncountable
and the distribution function F(x) := Pr(X < x) is continuous,
then the probability of X taking any specified value x is zero. To
be clear, in a tiny ball around x there may be a countable number
of elements with non-zero probability, but a single point selected
arbitrarily from the continuum will always fall between the points
of a countable subset of the continuum. So we cannot continue to
define ‘p(x)” as ‘Pr(X = x)’, because this would be vacuous.

X is a continuous random quantity (it maybe a vector) exactly

8 However, this result cannot be
extended to real analytic functions,
except in the case when the realm of X
is bounded.
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when its distribution function F is continuous. It is an absolutely

continuous random quantity exactly when F is differentiable.™ 19 There are also hybrid random
quantities where the distribution is

. . mostly continuous, but has vertical
almost always choose absolutely continuous random quantities. jumps, at what are termed ‘atoms’.

Statisticians wanting to tap the continuum for their convenience

For an absolutely continuous X, ‘p’ is defined to be the probability
density function (PDF), satisfying

Pr(x < X < x+dx) = p(x) dx. (1.23)

It is undoubtedly confusing to use the same symbol ‘p’ for prob-
ability in the case where X has a finite or countable realm, and
probability density where X has an uncountably infinite realm, but
this convention does make sense in the more general treatment
of probability using Measure Theory, in which sums over X are
treated formally as Lebesgue integrals (Billingsley, 1979; Williams,
1991).
Measure Theory is only required to handle uncountable realms,
for which pathologies can and do arise.*® But uncountable realms * See, for example, the Borel paradox,
are ‘unnatural’, a view reiterated many times since Cantor’s early discussed in Poole and Raftery (2000).
work on non-finite sets. This is not just statistical parochialism.
David Hilbert, one of the great mathematicians and an admirer of
Cantor’s work, stated

If we pay close attention, we find that the literature of mathematics is
replete with absurdities and inanities, which can usually be blamed
on the infinite.

And later in the same essay,

[T]he infinite is not to be found anywhere in reality, no matter what
experiences and observations or what kind of science we may adduce.
Could it be, then, that thinking about objects is so unlike the events
involving objects and that it proceeds so differently, so apart from
reality? (Hilbert, 1926, p. 370 and p. 376 in the English translation)

For similar sentiments from eminent statisticians, see, e.g., Hacking
(1965, ch. 5), Basu (1975), Berger and Wolpert (1984, sec. 3.4), or
Cox (2006, sec. 1.6). All of these statisticians acknowledge the
convenience of uncountable realms, but there is no necessity for
uncountable realms. Thus Statistics would have entirely missed its
mark if it could only be developed using Measure Theory. It has
been a deliberate decision on my part not to use Measure Theory in
these notes. Let me finish with a telling quote taken from Kadane
(2011, start of ch. 4):

Does anyone believe that the difference between the Lebesgue

and Riemann integrals can have physical significance, and that
whether say, an airplane would or would not fly could depend on
this difference? If such were claimed, I should not care to fly on that
plane. (Richard Wesley Hamming)
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