
APTS Computer Intensive Statistics 2015/16

Computer Practical 1 Outline Solutions

Simulation Basics

1. Transformation Methods

Recall the Box-Muller method which transforms pairs of uniformly-distributed random variables to
obtain a pair of independent standard normal random variates. If

U1, U2
iid∼ U[0, 1]

and

X1 =
√
−2 log(U1) · cos(2πU2)

X2 =
√
−2 log(U1) · sin(2πU2)

then X1, X2
iid∼ N (0, 1).

(a) Write a function which takes as arguments two vectors (U1,U2) and returns the two vectors
(X1,X2) obtained by applying the Box-Muller transform elementwise.

box.muller <- function(U1,U2) {

X1 <- sqrt(-2*log(U1)) * cos(2*pi*U2)

X2 <- sqrt(-2*log(U1)) * sin(2*pi*U2)

rbind(X1,X2)

}

(b) The R function runif provides access to a PRNG. The type of PRNG can be identified using the
rngkind command; by default it will be a Mersenne-Twister (http://en.wikipedia.org/wiki/
Mersenne_twister). Generate 10,000 U[0, 1] random variables using this function, convert this
to two vectors of 5,000 elements in the same way as you did with the RANDU values.

unif.mt <-runif(10000)

unif.mt.odd <-unif.mt[seq(1,10000,2)]

unif.mt.even <-unif.mt[seq(2,10000,2)]

2. The Bootstrap: This question can be answered in two ways. The more direct (and perhaps more
informative, if you have the time to do so and the inclination to implement a bootstrap algorithm
from scratch) is to use the sample function to obtain bootstrap replicates and to compute the required
confidence intervals by direct means. More pragmatically, the boot library provides a function boot

to obtain bootstrap samples and another, boot.ci which will provide various bootstrap confidence
intervals.

(a) The Nile dataset shows the rivers. Use a histogram or other visualisation to briefly explore this
data.

http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Mersenne_twister


hist(Nile,n=20,prob=T)

Histogram of Nile

Nile

D
en

si
ty

600 800 1000 1200 1400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

There’s apparently some skewness in the data. We’ll consider it as a time series later. . .

(b) What’s the mean and median length of a river in this category?

mean(Nile)

919.35
median(Nile)

893.5
Further evidence of positive skewness.

(c) Treating the data as a simple random sample, appeal to asymptotic normality to construct a
confidence interval for the mean annual flow of the Nile.

The lazy solution:
sigma.hat <-sqrt(var(Nile)/length(Nile)) Estimate variance.
c(qnorm(0.025),qnorm(0.975))*sigma.hat + mean(Nile) Compute interval.

Leading to: [886.182, 952.518]

(d) Using the boot::boot function to obtain the sample and boot::boot.ci to obtain confidence intervals
from that sample, or otherwise, obtain a bootstrap percentile interval for both the mean and
median of the Nile’s annual flow. For the median you may also wish to obtain the interval
obtained by an optimistic appeal to asymptotic normality combined with a bootstrap estimate
of the variance (boot::boot.ci will provide this).

Note the following: boot::boot does the actual bootstrap resampling; it needs a function which
takes two arguments to compute the statistic for each bootstrap sample, the first contains the
original data and the second the index of the values included in a particular bootstrap resampling.

Load the relevant library:
library(boot)

Construct an appropriate evaluation function:
f.mean <- function (x,i) { mean(x[i]) }
Obtain the bootstrap resamples:
boot.mean <-boot::boot(Nile,f.mean,9999,stype=’i’)

Obtain the bootstrap percentile confidence intervals:
boot::boot.ci(boot.mean,type=’perc’)

On this occasion leading to: (886.7, 952.7 )



Moving on to the median, we repeat the same strategy:
f.median <- function (x,i) {median(x[i])}
boot.median <-boot::boot(Nile,f.median,9999,stype=’i’)

boot::boot.ci(boot.median,type=’perc’)

On this occasion leading to: (845, 940 )

boot::boot.ci(boot.median,type=’norm’)

While the normal approximation leads to: (846.2, 947.9 )

(e) Are there any interesting qualitative differences between the various confidence intervals? How
does this relate to the data?

Interesting is a relative term and you might identify other things, but something which I find
interesting is that the BPIs are not symmetric around the mean or median and this reflects
the fact that even the mean of a small sample of non-normal random variables is not normally
distributed.

(f) Are your findings stable? If you repeat the bootstrap sampling do you recover similar behaviour?

This depends on the sample size you use, there is a reasonable degree of stability with the
sample size used here. This is a convenient point to emphasize that one should always attempt
to assess the sensitivity of computational procedures to their design parameters and other
factors which may influence their performance before depending upon their output.

(g) Are there any reasons to doubt the accuracy of these confidence intervals?

Absolutely. The computational method is irrelevant, the data is a time series and plotting it
shows a clear departure from independence so any method predicated on it is untrustworthy,
ts.plot(Nile):

Time

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

3. Convergence of Sample Approximations

(a) The stats::ecdf and stats::plot.ecdf functions compute and plot empirical distribution functions
from a provided sample.

i. Show plots of the empirical distribution function of samples of a variety of sizes ranging
from 10 to 10,000 from a U[0, 1] distribution. Add to your plots the distribution function of
the U[0, 1] distribution.

The following code produces the type of plots required, which illustrate the Glivenko-Cantelli
Theorem.

ru <- runif (10000)

F10 <- ecdf(ru [1:10])

F50 <- ecdf(ru [1:50])

F500 <- ecdf(ru [1:500])



F3000 <- ecdf(ru [1:3000])

F10000 <- ecdf(ru)

seq <- seq(0,1,1/1000)

plot.ecdf(F10 ,main=’Sample Size n=10’)

lines(seq ,punif(seq),col=’red’)

plot.ecdf(F50 ,main=’Sample Size n=50’)

lines(seq ,punif(seq),col=’red’)

plot.ecdf(F500 ,main=’Sample Size n=500’)

lines(seq ,punif(seq),col=’red’)

plot.ecdf(F3000 ,main=’Sample Size n=3 000’)

lines(seq ,punif(seq),col=’red’)

plot.ecdf(F10000 ,main=’Sample Size n=10 000’)

lines(seq ,punif(seq),col=’red’)

ii. Repeat part i. with a standard normal distribution.

Slight modifications of the above code suffice. . .

iii. Repeat part i. with a Cauchy distribution.

Slight modifications of the above code suffice. . .

(b) For each of the three distributions considered in the previous part, determine supx |F̂n(x) −
F (x)| for each n considered (consider only the sup over the sampled values of x) and plot these
quantities against n. Do you notice anything interesting?

Having implemented the 3 slight variants of the code for part (a) i. this is reasonably straight-
forward:

eu <- c(10, max(abs(F10(ru [1:10]) - punif(ru [1:10]))))

eu <- rbind(eu, c(50, max(abs(F50(ru [1:50]) - punif(ru [1:50])))))

eu <- rbind(eu, c(500, max(abs(F500(ru [1:500]) - punif(ru [1:500])))))

eu <- rbind(eu, c(3000, max(abs(F3000(ru [1:3000]) - punif(ru [1:3000])))))

eu <- rbind(eu, c(10000 , max(abs(F10000(ru [1:10000]) - punif(ru [1:10000])))))

en <- c(10, max(abs(Fn10(rn [1:10]) - pnorm(rn [1:10]))))

en <- rbind(en, c(50, max(abs(Fn50(rn [1:50]) - pnorm(rn [1:50])))))

en <- rbind(en, c(500, max(abs(Fn500(rn [1:500]) - pnorm(rn [1:500])))))

en <- rbind(en, c(3000, max(abs(Fn3000(rn [1:3000]) - pnorm(rn [1:3000])))))

en <- rbind(en, c(10000 , max(abs(Fn10000(rn [1:10000]) - pnorm(rn [1:10000])))))

ec <- c(10, max(abs(Fc10(rc [1:10]) - pcauchy(rc [1:10]))))

ec <- rbind(ec, c(50, max(abs(Fc50(rc [1:50]) - pcauchy(rc [1:50])))))

ec <- rbind(ec, c(500, max(abs(Fc500(rc [1:500]) - pcauchy(rc [1:500])))))

ec <- rbind(ec, c(3000, max(abs(Fc3000(rc [1:3000]) - pcauchy(rc [1:3000])))))

ec <- rbind(ec, c(10000 , max(abs(Fc10000(rc [1:10000]) - pcauchy(rc [1:10000])))))

plot(eu ,type=’l’,col=’red’,main=’Convergence of Empirical Distribution Functions ’

,xlab=’Sample Size’, ylab=’Worst Case Absolute Error’)

lines(en,col=’blue’)

lines(ec,col=’green’)

legend(’topright ’,c(’Uniform ’,’Normal ’,’Cauchy ’), lty=1, col=c(’red’,’blue’,’

green’)



And leads to the following graph:

0 2000 4000 6000 8000 10000

0.
05

0.
10

0.
15

Convergence of Empirical Distribution Functions

Sample Size

W
or

st
 C

as
e 

A
bs

ol
ut

e 
E

rr
or

Uniform
Normal
Cauchy

The striking feature of which is that performance is just as good for the Cauchy distribution
as for the uniform or the normal; indeed, as the distribution function maps all of these things
onto [0, 1] this is well behaved even for distributions which often misbehave. Whether the
resulting distributional approximation is good enough for particular tasks, of course, depends
on what those tasks are.

? Indicates questions which can easily be done later if you’re short of time.


