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Solution to Question 1

(a) Sample y1,...,yn EY Poisson(\).

LX) = H {)\y;i_/\} = exp { (Zyl) log A — n\ —log (Hyz‘) } .

This is a (1,1) exponential family with natural parameter § = log A and natural statistic

Z:'L:l Yi-

(b) Sample y1,...,y, 0 Binomial(n, p).

n

Lip) =11 { (:)pyi(l - p)m_yi}

=1

= exp { <i1 yi> log (&) + nmlog(1l — p) + log (ﬁ (j)) } .

This is a (1,1) exponential family with natural parameter § = log(p/(1 — p)) and
natural statistic > | v;.

(c) Sample y1,...,yn 0 Geometric(p).

L(p) = [ [(1 = p)p* = exp {nlog(l —p)+ <Z yi> logp} :

i=1

This is a (1,1) exponential family with natural parameter 6 = logp and natural statistic

2?21 Yi-

(d) Sample y1,...,y, 0 Gamma(a, ). « known.
1) = [T {pui e
. ['(a)™
=1
= exp —ﬁiyi—l—(a—l)ilogyi—knlog B )
=1 i=1 F<a)

This is a (1, 1) exponential family with natural parameter § = — 3 and natural statistic
Z?:1 Yi-



_exp{ 52% (o — 1)2n:10gyi+nlog (ﬁ;)}

i=1

This is a (2,2) exponential family with natural parameter § = (61,6,)" where §; = —f3

and 0, = o — 1, and natural statistic t = (t;,%,) " where

t1 = zn:yz and ty = Zn:log Y-
i=1 i=1

(f) The negative binomial probability mass function is

© Y - «
P(Y =y) :/ L' 57 ja-16-5% g
o Y D)

_ Ta+y) e
P(a)T(y +1) (B + 1)y

This is not exponential family when « is unknown because I'(«v + y), which depends on
both the parameter o and the observation g, cannot be factorised in the required

fashion.



Solution to Question 2

11D
Sample y1,...,yn ~ N(p, p?).

So
- 1 1 (y; — p)?
L(p) = 11 { vk <_§ (y /ﬂu) ) }

This is (2, 1) exponential family with natural statistic t = (t1,%5)", where

tlzzn:yZ and tgzzn:yf
i=1 =1

and the natural parameter § = (6’1,02)T is a function of the real-valued parameter, p, and is

given by

1

6, =0 = d 6,=90 = ——.
1 = 6i(p) and 0 = 6>(n) o0

Consequently, this is a (2, 1) exponential family.

Solution to Question 3

Let © denote the parameter space and let g: © — © denote a function which is 1 : 1 and
onto.

Suppose L(0) is the likelihood for 6. Then, since g is 1 : 1 and onto, there exists an L:®—5R
such that L(g(#)) is the likelihood for g(6) and, in particular, L(g(6)) = L(#) for all § € O.

If O is the MLE for 6, then by definition,

~

L(9) = 2161(1;)) L(6).

But L(0) = L(g(0)) and

sup L(6) = sup L(g(0))
SE) 0€O

= L(g(h)) = 3lelepi(g(9)) = (S;)lg@i(gw))-

A~

Therefore g(6) is the MLE of ¢(#), so the MLE is equivariant.



Solution to Question 4

Yy~ N(N>T(1 - p2))

. IID
y]:M+p(yj—1_M)+€J7 ]:2a"'7n7 EiNN(O7T)'

Then by direct calculation or from standard results in time series analysis,

E(yz):,uv i=1,...,m,

1 p p2 pn—l
(1 p 1
-
V = cov : = P
1—p? .
Yn :
pnfl 1
-
= R.
1—p?
From standard theory for an AR(1) process,
1 —p 0 ... ... 0
—p 14+p* —p 0 ... 0
1 0 —p 1+ 0
R = : S
1—p? ; 0 ; o 1+p? —p
0 0 0 —p 1
and
det(R™) = (1 — p*)~"*1.
Therefore

V—l — 7_—1(1 - pQ)R—I

1 —p 0 0
N 1+ p?
==1 0
T .
: L+p* —p
0 ... 0 —p 1

Consequently, the log-likelihood is given by
1
(1,7, p) = — log(2m) — S log 7 + = log(1 — p?)

b}



ol = = 0% = o Y= ) 2 Y )i - )

When 1 = 0 this reduces to

1(7,) = =5 log(2m) — 5 log 7+~ log(1 =)+ 04(7, )1 ) + (7, £)S2(4) + Os(7, 9)S5(v)

where

91<7—7 p) = _i 92(7—7 p) - _(1 i p2)

(I

93<T7 P) =

2r T
Siy) =yt +yn,  Saly Zyz, Ss(y Zyzyz

This is a (3.2) exponential family W|th natural statistics 61, 65, 65, which depend on p and 7.

Solution to Question 5

I o . o
Sample y1,...,y, ~ Poisson(#). New parametrisation: 1 = e~?.

The log-likelihood for @ is

o-Finf)
_ (Z y> log ) — nf Z log (311

S(0) = az )=07" <Zyz) —n

j(0) = 3; =0 (Zy>

i(0) = Bylj(0)] = 072 x nf = n/0.

1
In the new parametrisation: 6 = log (E)

Define I(¢)) = 1{6(1)}. Then

_ (é y> log log (i) — nlog ( > Zlog vi!)

6



Noting that

i10 lo <l>—;ilo (l)—— !
o) T )

and

and
) = B = — ) - @ B
2 {log (i)} Y?log (E)
= V2 log (i)

Note that

S(6) and S(v) are different
7(6) and j(v)) are different
i(A) and (1)) are different

but

5(0) = ${0()}# (v)
and
i(w) = i0W){0' (@)}
Also, setting
S(0) =0 gives § = n~* iyl
S’(@/}) = 0 gives ’(/A) = e—"’_IZ?zl Yi _ e_é,

so the MLE is equivariant; see Question 3.



Solution to Question 6

Let the cell totals be ny, ny, ng and ny and write n = ny + ny + ng + ny. The pmf is given by

n

F(n1,m2,n3,m4 | 0) = ( )m(9)"172(9)%3(9)%4(9)”4_

1Mo T3 Ty
A statistic S = S(n1, no, ng,ny) is minimal sufficient if

fs(S(ny,n9,n3,n4) = s)

fs(S(mq,ma, m3,my) = s)

independent of 0 < S(ny, ng, n3, ny) = S(my, mg, ms3, my).

Let us see whether the full sample (n1,n2,n3,n4) is minimal sufficient.

Clearly we have <= because my = nq, ..., my = ny implies that the likelihood ratio is
independent of 6.

Conversely, for the likelihood ratio to be independent of # we must have
(I—=0)™ ™ (140)m7"2(2 —0)" 7" (246)™™

independent of #. But if any of m; — n; is non-zero, then the likelihood ratio is a non-constant
rational function of ¢, and so cannot be independent of 6. Therefore, the minimal sufficient
statistic is the full sample (ny, ng, n3, ny).



Solution to Question 7
Write [(v, x) for the log-likelihood in the (1, x) parametrisation. Then

2
¥ and x orthogonal & Ey {Z?Z—(;XW’ X)] = 0.

Suppose now we transform to ¢ = g(«) and x = h(3), where g and h are 1 : 1 and smooth.

As these transformations are 1 : 1 and smooth, ¢’ and A’ are finite and non-zero for all «, 3
respectively.

Define

l(a, 8) = U(g(c), h(B))
Then

T — @) ol 1(5)
and

%l(a, B) ol

S = 9@ (8) 5 (al). h(3)
= g (@)W (B)lyx (¥ x)-
Therefore, since ¢'(«) and h/(3) are finite and non-zero,

Plla.B)| _,
dadB |

D11, x)
E — > =0 F

So if 1 and x are orthogonal, so are a = g~ '(¢)) and 8 = h™*(x).



Solution to Question 8

0 = (1, \). Switch to parametrisation (1, @) where A = A(), ¢).
Then

(¥, ¢) = (1, A1), 9))
= 51(y) "e1(¥) + 52(y) "e2(0, AW, 8)) — k(¥ AW, 0)).

ol dcy 0N Ok O\
Yy 52(3/)T - :
9¢ ONT 0T ONT D¢ T
So
or| +0c; ON Ok O
Hus 8_925] =0 N TaeT ~ aaTagT *)

since FE(sy(y)] = ¢ by definition.

Now differentiate () with respect to v, noting that ¢) and ¢ are functionally independent in
the new parametrisation, to obtain
¢T£{8lg 8)\} 8{8/% 8)\}

(%)

b |ONT 96T | — 9w |ONT 9o T |
But
Pl _ )2 Dey O] O [ Ok ONT
avaeT 2V By [axT 86 | ad |oAT 09

SO

e 2l | 10 [0 0NT] 0 [0k OAT
o gvas| =36 o 5w |~ 90 v 351

=0,

due to (**). So ¢ and ¢ are orthogonal.

We may write

flysab, @) = exp{(@/) —1)logy — %y—@blogcb—logF(?ﬁ)}

The mean of y is ¢ and ¢ — 1, or v, is the natural parameter for logy.
So from the first part of the question, 1) and ¢ are orthogonal.

10



Solution to Question 9
flA ) = a\y)exp{Xt(y;7)} AR, yeR”

LA, y) = log{a(A, y)} + At(y;7)

oy, 0L\ *1 ot
E AR Wi U s v- il

ol ol
We know that £ <8/\> =0, F <8 > =0, so, assuming A # 0, it must also be the case that
Y

921 ol
E(5A87> _E (57) 0

This implies that A and ~y are orthogonal.

ty;y) ="y — k(7)
= [\ 7) = a(\y) exp{\y — M\e(7)}

= /a()\,y)e)‘w dy = MO,

Therefore

/a(%y)eme”y dy = /a(%y)eA(”*i)y dy

_ e,\k(wr%)

from which it follows that

/f(y!%v)eey dy = (%))
which implies that the cumulant generating function of y is

0
A {k (’y—l— X) — k(’y)} )

The mean of y is

0 0 10k 0
20 =g {4 (0+3) 0] =23 (1)L =
The variance of y, V (), is

== Gl (1+2) ) - 165

11

y=7(1)



X s A
P(y; 0, \) = \/LQ—WyZemexp {—% (5 + ¢y> } -

Put ¢ = —2X\y. Then

A -2 A W
/ 5Y 2eXp{ Qy}exp{wy}—e :

/ \/;yg exp {—%} exp{ My} exp(0y) dy = exp{—Ay/=2(¢) + 0/\)}
—exp[ )\\/m+)\\/j].

Therefore k(¢) = —/=2¢ and a(\,y) = /2y “Se M @),
Moreover
By - L2
V= =2 \/—2 ¢>
111 1 VA
Var(y) = 1 L1

y; has pdf
Filyly, ) = a(dw;, y;)e i Cv=+)

so joint pdf of y1,...,y, is

| | a(Awi, yi) exp {A <vzwiyi - w+k(7)> } = {H a(Awi,yi)} exp{Aw, (vt —k(7))}

where t = > wy; /ws.
The marginal pdf of ¢ is given by

/ <H a(/\wi7yi>> exp{Awy (vt — k(7)) } dys dyn

=1

v, Y Zwiyi/w+ =t}

12



=ay(\t)exp{ wy (vt —k(v))}
where

n

a+(At) = / H a(Awi, y;) dys . .. dyn,
(yl tﬂ,)TeAt i=1

and A; = {(y1...yn)" : D wiy;/w, = t}. Finally, choose w; = 1; then w, = n. We have
yi ~ ED(u, oV (1))

and so

From above,
Y S [
¢ ng

o? 11/A\2 Vo
11 (2)}
n n 2

and

¢

= ¢—>no, A—nA

Consequently,

g=n"" Zyz- ~ IG(no,n\).
i=1

13



Solution to Question 10

y; ~ Poisson{exp(A + ¢z;)}, i=1,...,n; vy; independent.
Joint pmf (by independence) is

)\+’¢)xi )

Py (Ui, Yn) = H {exp(\ + Yz;) }¥ exp(—e

|
i=1 Yi

Pmf of sum S =37 Yjis

(Do exp(A + Y;))” exp <_ D it eAerw) '

s!

ps(s) =

Conditional distribution of ¥ = (Y;,...,Y,) | S=sis

n | {exp(A+epz)}vi exp(—e”wi)]
pY(ylv oo 7yn) _ Hi:l [ y;!
ps(5) N & )
A
exp(\ + ;) " sl ﬁ eVTiyi
' ;L 1 eXp(A + ¥;) [1i1 ! i=1 (i evma)™

This is independent of \.
The conditional log-likelihood I.(%|s) is given by

le( (Z wxlyl) — slog (Z ewﬂ> + const.

7=1

To find the profile log likelihood Ip (1)), first define

l<1/]a )\) = long(yla s 7yn)

— Z[yl()\ + ;) — M) 4 const.
i=1

Then

a—i:s—e)‘;ewi

14



and further work shows that the MLE of A\ for fixed 1) satisfies

S _ e Y _ - Yx;
E?:1ewxi_e , Ay =logs log<Ze )

i=1

Substituting,

[(v, 5\11,) = Z y; 10 — slog (Z ewi> + const.
i=1 i=1

which agrees with the conditional log-likelihood.

Solution to Question 11

n 1
l(p,0%) = —510g(27T02) ~ 552 > (i —w)?

Ip(p) = sup I, 0%) = I(p,57,)

o2>0
where &ﬁ maximises the log-likelihood for p. Straightforward calculation shows that
62 =n"1>"" (y; — p)* and therefore

Ip(p) = —glog {Z(% — u)Q} + const.

=1

An asymptotically correct confidence interval for i based on the profile log-likelihood Ip(u)
will be of the form

{p:2[lp() — lp(W)] < c1-a},

where ¢;_q is such that P[x? < ¢;_a] = 1 — a. Since N(0,1)2 £ 2, it follows that
Cloq = foa/Z where z;_, /5 is such that P[N(0,1) < z1_,/2] = 1 — /2. Noting that
p=y=n"1>" vy and writing 62 =n"' 3" (y; — y)? for the full MLE of o2,
- 2 iy — p)?
~ g { Y (4 —9)* -y — u)Q}
>y —9)?
1n(g—p)? }

n 62

:nlog{l—i—

15



Therefore

2p (1) = (1)) < 220

= 1+ < ei-as2/?
62 =
— |yi—’u’ S \/ezf—a/z/n —1
o

= pc (y — ot/ 1 g4 oy fetan/m > .

Note that this is not the same as the standard ¢-interval for p,

o o
Yy — _tn— —a/2 y _tn— -« :
(y Jn 11-a/2, Y + Jn 1,1 /2)

However, as n — oo,

Vet Z 12 (1422 ufn— 14 002

_ fl—a/2
vn

So as n — o0, the confidence interval for ;1 converges to

This interval is asymptotically correct as n — oo but it does not fully account for the extra
uncertainty due to the estimation of o (unlike the t-interval, which does fully account for this
uncertainty).

16



Solution to Question 12

Recall from the slides (see Part Il on Edgeworth expansions) that, by definition,

H,(y) = d% / oy

or, equivalently,

d"¢(y)
dym

H.(y)o(y) = (=1)"

The identity follows from repeated integration by parts (use induction to make it fully
rigorous). In particular, consider

/ VH,(y)$(y) dy = 'ex".
Integrating the LHS by parts (integrate e', differentiate ¢(y)H,(y)), we obtain

o]~ [ )

_ 1 ootyd dr¢()
0_2/_ Y Ty

o0

t t

[e.9] —00

1 > ty r+1 errl 1 > ty
=5/ ¢’ ch(y) dy=— [ YH,1(y)oly) dy.
So
- / eV H, 1(y)p(y) dy = te3"”,

and, multiplying both sides by ¢, the identity follows.

Recall that

where S, = 31| Vi and E(Y;) = p, Var(¥;) = o2,

Let x1(= p), kao(= 0?), k3, ... denote the cumulants of Y;. Then

cumy (S = E(S:) =0

17



cumy(S)) = Var(S)) = 1,

cumy(S) = i = p 3RS — g,
" (n2o)? o’
and
cum(S}) = —od— = n!"2p,
(n2o)d

where p; is the jth standardised cumulant of Y.

It follows from the definition of the CGF that

-1
K (t) = 2%+ In=2pgt® 4 2—4p4t4 +0(n2).

Therefore, from the relationship between MGF and CGF,
Mgy (t) = exp{K;(t)}

_1 -1
n 2 n 2
= exp {%IQ + Tpgtg + ﬂp4t4 + O(ng)}

N

_ 1 ]
ez exp {n6 pst® + n—p4t4 + O(ng)}

24
142 " s ot T o -3
=e2" |1+ 5 pst +gp4t +ﬁp3t +0(n"2) (*)

as required. Note that in the final step, we used a second-order Taylor expansion, assuming
that n is large.

Note that if we define

fs:(y) = o(y) 51 -

n_% n-! n~1 9 _3
I+ TP3H3(Z/) + —psHy(y) + —2P3H6(y) +0(n"2)
then

Mg (t) = /OO eV fs:(y) dy = RHS of (x).

—00

18



Solution to Question 13

The result will follow if we can show that, for all integers r > 1,

/ " H(@)6(a) de = —o(y)H, 1 (y).

From the defining property of Hermite polynomials,

8() H () = (1)~ o).

So from the fundamental theorem of calculus,

| t@o) as= [ o as

— (1) (1) o)

— —6(y)H,1(y), as required.

—00

Solution to Question 14

Here, K, (t) = nut + 20*t* and

fols) = ——— el (%)
2r K (1)
where ¢ solves K4 (1) = s.
Now K7 (t) = nu + not, so
S —nu

s:nu—i—na%:f: o2

Also, K¢ (t) = no?,

- Rl S —np no® (S —npu 2 S —np
Kg, (t)s —t(s) =nu ( > ) + 5 ( e ) (=2 )8
(S—np)? _(S—mp)*  1(S—np)?

2no? no? 2  no?

Substituting into (), we obtain

A 1 1(S— 2
fs,(s) = g exp{_é( n;ﬂ) }

which is exactly equal to the pdf of N(nu,nco?).

19



Solution to Question 15

My, (t) = E(e™) = (1)~
so Mg, (t) = (1 —t)™™ = exp{Kg, (t)} where Kg, (t) = —nlog(1 —1t). So

K, (1) = —, Kg,(t) =

(1—1)

Ky () =s=i-1-"_,
S

The saddlepoint approximation at S,, = s is given by
p 1

f5.(8) = —F——= exp{Ks, (1) — ts}
2Ky (1)

= \/ﬁexp{—nbg (%) — s—n}

—n
— ﬁ % e_Sn—le—s
2T nn

where T'(n) is Stirling’s application to I'(n).
But the true pdf of .S,, is Gamma with index n and scale parameter 1, i.e.

1

fly) = F(n)S”‘le‘y-

So fsn(y) is exact up to the normalising constant.

Solution to Question 16

This is covered in considerable detail in the preliminary notes and the slides (see part Ill).

20



Solution to Question 17

Consider the integral

b
I:/ e M@ dg,

where g(x) has a unique stationary minimum at z = 2 € (a,b). Put z = A\2(z — 2). Then

b A2 (b—#) )
a A

3 (a—2)
Now
N _1 " 1 "o oA 22 1 (3) (4 23 1 (4) /4 24 _5
oli+A742) = @) + 0+ 2005 + 30%@) 3 + 10005 + 00 D),
Consequently, writing § = g(2), §¥) = ¢V (%) etc,
A%(bﬂz) 1 _1
A A
[=)\3 / exp { —AJ — %§(2)z2 — —Qg(?’)z3 L O()F%) dz
A2 (a—%) 6 24

By symmetry,

> 1 2
/ e 2% 3 dz =0
—00

and also
& 1 2 :
/ e 2% 2% dz = O(1)
for any fixed integer 7 > 1. Consequently

2T N1+ O],

= Y E)

using the Gaussian integral

—oc0 9

21



Solution to Question 18

IID
Yty Yn ~ exp(l/p)

= U(p) = —nlogp— Y yi/p
=1
=" Ly,
poopr e

V() =0= =) u/n
i=1

So
l(p) = —nlog pn —nji/p
(1) = —nlogfi —n
= () — (i) =nlogfu/p —nji/p+n
n  2n
Jp) = =1"(p) = == + —= /.
(k) (1) e
So
ns
==,
17 ()] 7
and
(1) o |3 el o (H) 1 onifu
p) i
1 /n\" A
= o) = s (B) e
I'(n) \u
Note that
Z y; ~ Gamma(n, 1/u)
i=1
and so

1 n
— Z y; ~ Gamma(n,n/u).
n
i=1
Therefore the p* formula is exact in this case.

22



Solution to Question 19

11D 11D
1, .., Ty ~ exp(A) Yly -y Yn ~ exp()

(1, \) = nlog A — A}:L+nbgMp A¢§:%

ol 2 .
aw 1/} )‘Zyu 5 n Zmz wzyza

o Z?:l Li

ol ol
- ) ¢ - n .
ZZ‘:1 Yi

Z —0and — =0= \=
3¢ O\ Z?:l €T;

Therefore we may write

(1, A) = 2nlog A + nlogt) — nAA™" — npAp A7

_8_2[_£ _8_21_2_n _8_2l_ A—15\—1
R EG) LD A W
Therefore
~ % % Al . n
j - n gn and |.]|2 N
[ﬁ KE] A

So
P, N) o 517 exp{l(, A) — (s, \)}

n 2n n
:nAef (é) (i) exp{—nj\ <1+£)}
YA\ {0 A (0
Let us evaluate
(1)} ot
— 1+ = dAdi.
1+

LG e
L[ ol

Put u = A/, so utdu = —A~1d\
102 me
vy Z N EINA N
W n2n (e
)T

:>[—

/G
< A\ —2n
L ()

['(2n) L(n)* _ I'(n)”

(n
T i

23



using the normalising constant for the F' distribution given in the question.

Therefore the p* approximation to the pdf of (1), ;\) is

*AA_H%I)\%;/)" A "
P, A) = Wﬁ <§> <E> exp {_ni (1 + E)}

and repeating the first step in the calculation of I above,

which is exact, with the correct normalising constant.

Solution to Question 20

Uiy~ N(p,0?)

l0%) =~ log(2m0%) — 212 3 (=
=1

5= Zn1<yi—u>

g—i =0=/p=n" Z:;y

= lp(0%) = =7 log(2m0”) — # g(yz — )

Ot 0%) = st Y =y

24



But

B> (i m?] — (- 1)o?
i=1
olp, o]  n (n—1)02__ 1
= £ {802 (o )1 202 * 204 202 70

so the profile score is biased in this case.

The modified profile likelihood is given by
Lp() = Lp()) M ().

First of all note that

n n

S wi— )’ = (v — i)’ +n(i—p)

=1 =1
- né_2 + n(la - M)za

and (/i,6?) is minimal sufficient for the data v, ..., ¥,. Therefore we may write

U, 0%) = —g log(2m0?) — % Z(y —p)’

Ly = =
R 0uop  Op
0l n

Jun = a2 o
Recall from the slides that M (1)) = [Lyx (v, Xy 0, )71 X [ () s 0, X2
Here, ¢ = 02 and x = p, so
M(0®) = o /n/(0n)? = (0*/n)?.

Pl D {_M}: n

Also, i,z = ji, so
Lp(6®) = Lp(a®)M(c?)

1 n/2 52 2 1
_ ( ) e " /(20 )(0'2/71)5

2mo?

n/2 (n—1)/2
— i i e_n6—2/(202)
21 o?

Ip(0?) = log Lp(0?)

-1 52
= — (n 5 ) log 0% — % + constant.

25



So

dlp (n—1) no?
@(02) T2 204
But
Bne? = B | (0 - m?] ~ (n - 1)e?
=1
so

o2 202 204

5 [aip <02>] U VO U Vs

Consequently, we may conclude that the modified profile score is unbiased.

Solution to Question 21

y; has pdf it e vilki, ;= \e¥®i
= log-likelihood (%), \) is

[(Y,\) = —nlog A — 1) Z z;— A1 Z YoV
i=1 i=1

ol n 1] &
- _ _ . AV
- AT ;yle

=—> MLE of X for fixed # is

S e
i=1

1 n . n
= [,(¢)) = —nlog <52yie ¥ ) _1/;21@—71

and

n " n
1) — —$ i TN
=) (zyw) ‘

26



Modified profile likelihood is

Lyp(¥) = Lp()M ()

where
M) = [ (8, Aus &, DI = b, A 8, )2

where zﬂ and ) are the full MLEs.

As g@, ) are not sufficient for the data Y1, --.,Yn We need to consider an ancillary statistic:
a=(a,...,a,) where a;=logy; —log\— ;.

Consider transforming from y,...,y, to ay,...,a, s, 1@ A [Later we shall see that it makes
no difference which subset of n — 2 a;'s we choose.] Then

yi:eaj;\e%", i=1,....n—2

and

~

Yn—-1 = ynfl(ah vy Qp—2, 127 >\)

and

~

Yn = Yn(as, ... ,an_g,@/),;\).

From the score equations we have

ol n o 182 ) . .
o= BUET D etidet e 4 Ay, eV ARy, eV
i=1
and
ol n n—2 A R A )
op V= D m AT e A e i 4+ A e ayno1eT P A eV
i=1 i=1

Thus we have simultaneous equations in ¥,_1 and y,. It is easily checked that the solution is
of the form

Yn—1 = 5\gn—l(ah sy Qp—2, lﬁ)

~

Yn = j\gn(a’h ceey Ap—2, ¢)7
where g,,_1 and g,, do not depend on \. Thus

ayn—l
)\

N (‘)yn -
= Y,—1/A and — = U/ A\
Yn-1/ o\ Yn/
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Consequently,

P ol n 1<
La it d) = 2 [ =24 53 gevm
)\;)\(1/)’ a¢7 ) o\ ( A + )\2 y;e >

=1

az,m 11« .
Azzay; b O Pl

=1

© o~ s n
Lis(, Ap; 0, N) = ——.
i (U3 A, A) W
Also,
—ba = __+_Zyl
N 2n n n
= —ZAA(Yﬁ,)\w;?ﬁ,)\):S\j—;\—ZZS\—?-
P P P
So

Note that in this example, M (¢)) does not depend on .

Solution to Question 22

Let
2 n 2 1 2
lp,0%) = =5 log(2mo”) — o~ > (v — )

denote the log-likelihood. From standard calculations, the maximised log-likelihood under H,
is given by
N n . n
l(ILLO7O-8) = _5 10g(27T0'(2)) - 57

where

n

gy =n"" Z(yi — )%

i=1
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and the maximised log-likelihood under the alternative is given by

A A n . n
l(:ua 02) = _5 log(27r02) - 57

where
fp=n"" Z y; and 6*=n""1Y (y;— )
i=1 i=1

So twice the log of the ratio of maximised likelihoods is given by

w = 2[(f1, %) — o, 52)]

)
=nlog (%) .
o

But
60 =n""> (i —po)* =0 (yi— i+ o — po)
=1 =1
=n"' Z(yz — )+ (1 = po)
=1
=&+ (i1 — o)
So

~92 nN 2
w:nlog(w> :nlog<1—|— t ),

02 n—1
where 12 = (ji — j0)?/{6%/(n — 1)} is the t-statistic. For n large,
t2 t? 1t
log ( 1 = -= O(n™).
Og( +n—1) n=1 2ot O
Also, from standard results for the t-distribution with n — 1 degrees of freedom, which you can
try to derive or look up,

n—1 2

E[T? = =1+-= -
T =220 =1+ =+ 00
and
3(n —1)? _
E[TY = =3+0(n").
=G =sm= ~3+00")
Putting these results together,
Elntog (14 -] =142 4o d-nt - e+ om)ia -
n—1 n 2 n
—1+§+Cmf%—51+Om4)—1+§~+0m4)
B n 2n N 2n '
So b = 2 in this case.

The Bartlett correction generally improves the x? approximation.
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Solution to Question 23

The details are similar to those given for the logistic regression example in Part Il of the slides.
In particular, writing 3, = v, the approximation to the marginal posterior of 7y is given by

is the likelihood for the model;
ﬁ} is the MLE of 8 under Hy: B, =7, B1,..., Bp—1 unrestricted;

~

B is the MLE under the general alternative (3, .., (3, all unrestricted;

) 9%l - T 8Ta;
J(B) = _W = Zzlxzxz €

is the observed information matrix for the full model;

Jp1(B) = {_m}i,jzl

is the observed information under the model H, obtained by remaining the pth row and pth
column of j(/3); and | - | denotes determinant.
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Solution to Question 24

) = —nlog(2mo?) — — C— ;)? C— ;)?
l(:ula y Hny O ) n Og( o ) 202 ;{(mz ,UZ) + (yz ,UZ) }
ol 1
o Sal@i = pi) + (yi — pi)]
ol N €T; —|—yz~
So
s fins %) = —nlog(2n0®) = 5 3 (s — )
1y Mny 40_2 £ % 7
and
ol s n 1 < 9
@(Mla i, 0°) = —— 1ol 2 (i —y:)” =0
1 n
2 L ‘ 2
=0 = 2 (zi — i)

By the weak law of large numbers,
525 62/2 4 o,

2

so 62 is not a consistent estimator of o2.

Use
M) = L (0, X O i (0, X3 6, )12,

where ¥ = (u1,..., )" and ¢ = o2

Now

(w5 = pua)* + (ys = pa)* = (i = f + fi = pa)* + (i = fa + fi = pi)?
= (2 — f)* + (yi — 1) + 2(f; — ).
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So

(1, . .., fin, 0%) = —nlog(2mo?) Z{ + (yi — 1)}

1
= —nlog(2mo?) — 252 Z{(Jﬁ — f15)* + (y2 — fu2)
i=1
log(270?) né?  n — (i )2
= —nlog(2wc*) — — — — i~ M
& o2 o2 — Hi— K
Now
0%l 2 9%l
Ay — =0 (i#k)
3/%8/% o? a,U/z aﬂk
P 0?1 _{2n/02 pP=q
Hrta Oyt 0 p#q
o)
R R o n O' 2n
”MN( y Ho2; U M g%
n\"1/2
and |]|2 = (2 ) ?
Therefore

M) = (gn)"/ Gy = 0

where ¢ is a constant.

Consequently, the log modified profile likelihood is given by
Ip(0?) =log Lp(0?) + log M(c?)

no?  n L n
= —nlogo? — 2 (fi; — )% + 5 log 0% + constant
=1
~2
no
= —— loga — — + constant,
2 o?
and
(9lp< 2) _ n  no?
0o? 202 ot
Olp . . . .
aTZ( 2) =0 = 42 = 257
= 07 is unbiased and consistent
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Distribution of S is

1
20°x? ~ Gamma (g, E) .

So the marginal log-likelihood 5/(c?) for o based on S is

2y _ 1 2 S
lM(O' ) = —EIOgO' —@
But
S 52
ne* = i Im(0?) = —=logo? — %

So [l; agrees with the modified profile log-likelihood up to an additive constant.
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