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First-Order Asymptotic Theory

Structure of the Chapter

This chapter covers asymptotic normality and related results.

Topics: MLEs, log-likelihood ratio statistics and their asymptotic
distributions; M-estimators and their first-order asymptotic theory.

Initially we focus on the case of the MLE of a scalar parameter θ.

Then we study the case of the MLE of a vector θ, first without and
then with nuisance parameters.

Finally, we consider the more general setting of M-estimators.
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Motivation

Statistical inference typically requires approximations because
exact answers are usually not available.

Asymptotic theory provides useful approximations to densities or
distribution functions.

These approximations are based on results of probability theory.

The theory underlying these approximation techniques is valid as
some quantity, typically the sample size n [or more generally some
‘amount of information’], goes to infinity, but the approximations
obtained are often accurate even for small sample sizes.
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Test statistics

To test the null hypothesis H0 : θ = θ0, where θ0 is an arbitrary,
specified, point in Ωθ. If desired, we may think of θ0 as the ‘true’
value of the parameter, but this is not necessary.

Three statistics that typically differ by Op(n−1/2) are:

(1) the likelihood ratio statistic (also known as the Wilks statistic)

w(θ0) = 2{l(θ̂)− l(θ0)},

(2) the score statistic

wU(θ0) = U(θ0)>i(θ0)−1U(θ0),

(3) the Wald statistic

wp(θ0) = (θ̂ − θ0)T i(θ0)(θ̂ − θ0).
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Scalar case

For a scalar θ, (1) may be replaced by

r(θ0) = sgn(θ̂ − θ0)
√

w(θ0),

the signed root likelihood ratio statistic.

Also (2) and (3) may be replaced by

rU(θ0) = U(θ0)/
√
i(θ0)

and
rp(θ0) = (θ̂ − θ0)

√
i(θ0)

respectively.
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Asymptotic normality of MLE: scalar case

We stick with the scalar θ case for the moment, and also assume
that the sample is IID.

Our immediate goal is to give a careful explanation of why, in
broad generality,

n1/2(θ̂ − θ0)
d−→ N(0, ī(θ0)−1), (1)

where

I θ̂ and θ0 are, respectively, the MLE and the ‘true’ value of θ;

I ī(θ) is the Fisher information matrix for a single observation
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Taylor expansion: scalar case

In regular settings, θ̂ solves U(θ̂) = 0. Assuming l(θ) has a
continuous 3rd derivative, we may use Taylor’s theorem to obtain

0 = U(θ̂) = U(θ0) + (θ̂ − θ0)
∂2l

∂θ2
(θ0) +

1

2
(θ̂ − θ0)2 ∂

3l

∂θ3
(θ∗)

= n−1/2U(θ0)− j̄(θ0)n1/2(θ̂ − θ0) + n−1/2R∗, (2)

where θ∗ lies between θ̂ and θ0, j̄(θ0) = n−1j(θ) is the (sample)
mean observed information at θ0, and the remainder term R∗ is
given by

R∗ =
1

2
(θ̂ − θ0)2 ∂

3l

∂θ3
(θ∗). (3)
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Taylor expansion: scalar case (continued)

Assuming j(θ0) is non-zero, we may rearrange (2) to obtain

n1/2(θ̂ − θ0) = j̄(θ0)−1n−1/2U(θ0) + j̄(θ0)−1n−1/2R∗. (4)

We will show that

I the first term on the RHS of (4) converges in distribution to
N(0, ī(θ0)−1);

I the second term is Op(n−1/2).

Then, applying Slutsky’s theorem, we obtain (1).

Andrew Wood Statistical Asymptotics Part II: First-Order Theory



First-Order Asymptotic Theory

CLT for Score Statistic

When the observations X1, . . . ,Xn are IID, the score statistic at θ0,

U(θ0) =
n∑

i=1

∂ log f

∂θ
(Xi |θ0),

is the sum of IID random variables.

Moreover, we know from standard likelihood theory that

Eθ0 [U(θ0)] = 0 and Varθ0 [U(θ0)] = i(θ0) = nī(θ0).

Hence, by an application of the CLT, we conclude that

n−1/2U(θ0)
d−→ N(0, ī(θ0)).
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Law of large numbers for observed information

When the sample X1, . . . ,Xn is IID from f , the observed
information is given by

j(θ0) = −
n∑

i=1

∂2 log f

∂θ2
(Xi |θ0),

and so is a sum of IID random variables. Moreover, we know that,
from the definition of Fisher information,

Eθ0 [j(θ0)] = i(θ0) = nī(θ0).

Hence, by the Weak Law of Large Numbers,

n−1j(θ0)
p−→ ī(θ0).
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Remainder term

In broad generality, R∗ in (3) is Op(1), i.e. bounded in probability.

To see that this is plausible, note that when

n1/2(θ̂ − θ0)
d−→ N(0, ī(θ0)−1),

we have (θ̂ − θ0)2 = Op(n−1).

Also, ∂3l
∂θ3 is a sum of n terms.

Hence under reasonable conditions we can hope that

R∗ = Op(n−1)Op(n) = Op(1).

However, providing a general proof is quite a challenging problem.
Below, we outline an approach which works in many cases.
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Final step

Assuming that R∗ = Op(1) and putting the last three slides
together, we see that

n1/2(θ̂ − θ0) = j̄(θ0)−1n−1/2U(θ0) + j̄(θ0)−1n−1/2R∗

d−→ ī(θ0)−1N(0, ī(θ0)) + Op(n−1/2) + Op(1).n−1/2.Op(1)

d−→ N(0, ī(θ0)−1)

where Slutsky’s theorem has been used in the final step.

Similar reasoning is used in the multivariate case, the main
differences being that the multivariate versions of the CLT, WLLN
and Taylor’s theorem are used.
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Exponential example

Here we have

l(λ) = n log(λ)− λ
n∑

k=1

xk , U(λ) = nλ−1 −
n∑

k=1

Xk ,

j(λ) = i(λ) = nλ−2, j̄(λ) = ī(λ) = λ−2, and

R∗ =
1

2
(λ̂− λ0)2 2n

(λ∗)3
,

where λ∗ lies between λ̂ and λ0.

Since n1/2(λ̂− λ0)
d−→ N(0, ī(λ0)−1), it follows that λ∗

p−→ λ0,
and so we may conclude that R∗ = Op(1).
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Proving that R∗ = Op(1)

A useful general strategy for proving that R∗ = Op(1), and hence
asymptotic normality of the MLE, is as follows.

Step 1. Show that there there exists a consistent solution θ̂ of the
score equation U(θ̂) = 0.

Step 2. Use a uniform law of large numbers on a bounded
neighbourhood of θ0 to prove that R∗ = Op(1).

For results relating to Step 1, see for example van der Vaart (1998,
Chapter 5).

For Step 2, a version of the uniform law of large numbers (ULLN)
is now given. See, for example, Jennrich (1969, Annals of
Mathematical Statistics).

Note: stronger versions of the result that we state here are
available.
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Uniform law of large numbers

Let F denote a distribution function on X ⊆ Rp, and let
X1, . . . ,Xn denote an IID sample from F .

Consider a vector-valued function g(x , θ) which is continuous as a
function of θ ∈ Θ ⊆ Rd for each fixed x , and measureable as a
function of x ∈ X ⊆ Rp for each fixed θ.

Suppose that, for some bounded open set ∆ ⊂ Θ, the following
statements hold:

(i) sup
θ∈∆
||g(x , θ)|| ≤ h(x), and (ii)

∫
x∈X

h(x)dF (x) <∞.

Write τ(θ) =
∫
x∈X g(x , θ)dF (x). Then τ(θ) is continuous on ∆

and

sup
θ∈∆

∣∣∣∣∣∣∣∣n−1
n∑

k=1

g(Xi , θ)− τ(θ)

∣∣∣∣∣∣∣∣ p−→ 0 as n→∞.
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Application of the ULLN to the remainder

We now return to the scalar θ case.

Assume that θ̂ is a consistent estimator of θ0 and define

g(x , θ) =
∂3 log f

∂θ3
(x |θ).

Suppose we can find a small (in particular, bounded) open
neighbourhood ∆ of θ0 such that

sup
θ∈∆
|g(x , θ)| ≤ h(x),

where Eθ0 [h(X )] <∞.
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Application of ULLN (continued)

Then, writing ḡ(θ) = n−1
∑n

k=1 g(Xk , θ), we have the identity

∂3l

∂θ3
(θ∗) = τ(θ∗) + {ḡ(θ∗)− τ(θ∗)}.

Consequently,∣∣∣∣n−1 ∂
3l

∂θ3
(θ∗)

∣∣∣∣ ≤ |τ(θ∗)|+ sup
θ∈∆
|ḡ(θ∗)− τ(θ∗)|.

If θ̂ is consistent, then the first term on the RHS converges to
τ(θ0) by the continuous mapping theorem, and the second term is
op(1) by the ULLN.

Therefore, in this case, n−1∂3l(θ∗)/∂θ3 = Op(1) and,
consequently, R∗ = Op(1) as required.
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Application of ULLN to information

In many situations, we would like to be able to conclude that

j̄(θ̂) ≡ n−1j(θ̂)
p−→ ī(θ0). (5)

This can be established provided we can show that

I θ̂ is a consistent estimator of θ0; and

I we can find a suitable bounding function which enables an
application of the ULLN.

Moreover, a stronger result typically holds: that the differences
between each of the quantities ī(θ0), ī(θ̂), j̄(θ̂), j̄(θ0) is Op(n−1/2).
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Orders

In the IID case, and often more generally, the following order
statements are valid as n→∞:

U(θ0) ≡ n1/2Ū(θ0) = Op(n1/2),

i(θ0) ≡ nī(θ0) = O(n),

θ̂ − θ0 = Op(n−1/2),

where ī(θ0) is the average information per observation and
Ū(θ0) = n−1/2U(θ0) is a normalised score function. If the
observations are IID, ī is the information for a single observation.
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The three likelihood statistics

We shall now investigate the first-order behaviour of the 3
likelihood statistics under the assumption that

n1/2(θ̂ − θ0)
d−→ N(0, ī(θ0)−1).

First let us consider Wilks’s statistic w(θ0) = 2{l(θ̂)− l(θ0)}.

Taylor expanding l(θ0) about l(θ̂) this time, we obtain

l(θ0) = l(θ̂) + (θ0 − θ̂)
∂l

∂θ
(θ̂) +

1

2!
(θ0 − θ̂)2 ∂

2l

∂θ2
(θ̂)

+
1

3!
(θ0 − θ̂)3 ∂

3l

∂θ3
(θ∗∗), (6)

where θ∗∗ lies between θ̂ and θ0.
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The three likelihood statistics (continued)

Noting that, in regular models, ∂l(θ)/∂θ = 0 at θ = θ̂, and
substituting j(θ̂) = −∂2l(θ̂)/∂θ2, we may rearrange (6) to obtain

2{l(θ̂)− l(θ0)} = (θ̂ − θ0)2j(θ̂) + R∗∗,

where

R∗∗ =
1

3
(θ̂ − θ0)3 ∂

3l

∂θ3
(θ∗∗).

Using the strategy outlined before, i.e. prove consistency and then
apply a suitable ULLN, it can be shown that in broad generality,
R∗∗ = Op(n−1/2).
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The three likelihood statistics (continued)

Similar arguments, broadly applicable, show that

n−1j(θ̂)
p−→ ī(θ0),

which implies that Wilks’s statistics w(θ0) differs from the Wald
statistic Wp(θ0) by Op(n−1/2).

Equivalence up to Op(n−1/2) with the score statistic,

wU(θ0) = U(θ0)2/i(θ0),

follows from the result established earlier that

n1/2(θ̂ − θ0) = ī(θ0)−1n−1/2U(θ0) + Op(n−1/2).
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The three likelihood statistics (continued)

Finally, we show that the 3 likelihood statistics have χ2
1

distributions when θ is a scalar.

In view of the equivalence up to Op(n−1/2) of the 3 statistics, it is
sufficient just to consider the score statistic.

We have already seen that, in the IID case,

n−1/2U(θ0)
d−→ N(0, ī(θ0)).

Therefore, by the continuous mapping theorem,

{n−1/2U(θ0)}2/ī(θ0) = U(θ0)2/i(θ0)
d−→ χ2

1.
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Signed root statistic

When θ is a scalar, the signed root likelihood ratio statistic

r = sgn(θ̂ − θ)
√

w(θ)

satisfies
r = ĵ−1/2U + op(n−1/2)

so that r
d−→ N(0, 1).
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A Confidence Interval

For scalar θ, we have i(θ̂)1/2(θ̂ − θ) asymptotically N(0, 1), so an
approximate 100(1− α)% confidence interval for θ is

θ̂ ∓ i(θ̂)−1/2Φ−1(1− α/2).
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Exponential example (continued)

Let us return to the exponential example, where x1, . . . , xn is a
sample, assumed IID, from the pdf λe−λx , where λ > 0 and x > 0.

Writing x̄ = n−1
∑n

k=1 xk and solving U(λ̂) = 0, we find that
λ̂ = x̄−1. Recall that i(λ0) = nλ−2

0 .

Some elementary calculations show that

w(λ0) = 2n{λ0x̄ − 1− log(λ0x̄)}, wU(λ0) = n(λ0x̄ − 1)2

and

wP(λ0) = n{(λ0x̄)−1 − 1}2.
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Exponential example (continued)

Note that all 3 statistics are different. In fact, w(λ0) and wU(λ0)
are closer than they first appear.

If we approximate the log in w(λ0) by

log(λ0x̄) = log{1 + (λ0(̄x)− 1)} ≈ (λ0x̄ − 1)− 1

2
(λ0x̄ − 1)2,

then the resulting approximation to w(λ0) is identical to wU(λ0).
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Some practical comments

Typically, in practical work, the performance of the Wilks statistic
w(θ0) is superior to that of the other two statistics.

However, wU(θ0) has the advantage that the MLE is not required,
and wP(θ0) is often convenient to use because it depends on
quantities which are routinely available from a model fit.

A further point is that w(θ0) and wU(θ0) are both invariant with
respect to a 1 : 1 transformation of θ, whereas the Wald statistic
does not possess this invariance.

Furthermore, the choice of parametrisation of the Wald statistic
can have a big effect on the value of the statistic, especially when
approaching a boundary of the parameter space.

Andrew Wood Statistical Asymptotics Part II: First-Order Theory



First-Order Asymptotic Theory

Some practical comments (continued)

When the sample size is moderate, the normal approximation to
the distribution of the signed likelihood root r is, in practice,
typically at least as good as or better than the normal
approximation to the distribution of the MLE.
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Non-uniqueness of MLEs

A serious problem, which we have not considered, is that in general
multiple solutions of the score equation U(θ̂) = 0 may exist, even
asymptotically.

A class of models where such non-uniqueness typically occurs is
the curved exponential family, which was briefly introduced in
Chapter 1.

Non-uniqueness complicates the asymptotic theory of MLEs,
especially statements about consistency.

In these lectures we shall just acknowledge the existence of the
problem and not investigate it further.
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Vector parameter θ: preliminary comments

We now move on to vector θ, first without and then with nuisance
parameters.

The intuitions and techniques underlying the proofs of asymptotic
normality of the MLE and the χ2 distribution of the 3 likelihood
statistics in the case of vector θ are very similar to those used in
the case of scalar θ.

All that changes is that we work with multivariate versions of
Taylor’s expansion, the CLT and the WLLN, and we are now
dealing with vectors and matrices.

However, it is inevitable that the notation becomes more complex
in the multivariate case. We shall make use of a summation
convention from time to time in order to avoid over-long formulae.

Andrew Wood Statistical Asymptotics Part II: First-Order Theory



First-Order Asymptotic Theory

Vector θ, no nuisance parameters

Denote by lr the rth component of U(θ), by lrs the (r , s)th
component of ∇θ∇T

θ l . Let [lrs ]−1 = [l rs ].

The maximum likelihood estimate for given observations y is, for
regular problems, defined as the solution, assumed unique, of the
likelihood equation

U(θ̂) = 0.

where now U(θ) is a d-dimensional vector.

Andrew Wood Statistical Asymptotics Part II: First-Order Theory



First-Order Asymptotic Theory

Test statistics

To test the null hypothesis H0 : θ = θ0, where θ0 is an arbitrary,
specified, point in Ωθ. If desired, we may think of θ0 as the ‘true’
value of the parameter, but this is not necessary.

Three statistics that typically differ by Op(n−1/2) are:

(1) the likelihood ratio statistic (also known as the Wilks statistic)

w(θ0) = 2{l(θ̂)− l(θ0)},

(2) the score statistic

wU(θ0) = U(θ0)>i(θ0)−1U(θ0),

(3) the Wald statistic

wp(θ0) = (θ̂ − θ0)T i(θ0)(θ̂ − θ0).
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Distributions

In a first-order asymptotic theory, the likelihood statistics (1)–(3)
have, asymptotically, the chi-squared distribution with
dθ = dim(Ωθ) degrees of freedom.

Confidence regions at level 1− α are formed approximately as, for
example,

{θ : w(θ) ≤ χ2
dθ,α
},

where χ2
dθ,α

is the upper α point of the relevant chi-squared
distribution.
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In considerable generality U is asymptotically multivariate normal
with zero mean and variance i(θ).

In the IID case, i.e. when Y = (Y1, . . . ,Yn)> and Y1, . . . ,Yn are
IID random vectors, then U(θ) is a sum of n IID vectors, each of
which has mean 0 and covariance matrix ī(θ).

Therefore we may apply the multivariate CLT to obtain

{nī(θ)}−1/2U(θ)
d−→ Nd

(
0, Id

)
,

Id is identity matrix, ‘1/2′ indicates matrix square root.

Note: If Σ is symmetric and positive definite with spectral
decomposition Σ = QΛQ>, where Λ = diag(λ1, . . . , λd), then we

define Σ1/2 = QΛ1/2Q> where Λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
d ), and

Σ−1/2 = QΛ−1/2Q> where Λ−1/2 = (Λ1/2)−1.
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An aside: summation convention

Whenever an index occurs both as a subscript and as a superscript
in an expression, summation over possible values of that index is to
be assumed.
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Distribution of θ̂

Expand the score lr (θ) in a Taylor series around θ, writing

lr (θ) = Ur (θ) =
√
nl̄r (θ) =

√
nŪr (θ),

lrs(θ) = nl̄rs(θ) = −jrs(θ) = −nj̄rs(θ),

δ̄r =
√
n(θ̂r − θr ), lrst(θ) = nl̄rst(θ),

i(θ) = nī(θ), etc.
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Then, lr (θ̂) = 0, so

√
nl̄r (θ) + nl̄rs(θ)δ̄s/

√
n

+ 1
2nl̄rst(θ)δ̄s δ̄t/n + · · · = 0.
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To a first-order approximation, ignoring the third term, we have

δ̄r = −l̄ rs(θ)l̄s(θ) + Op(n−1/2)

= j̄ rs(θ)l̄s(θ) + Op(n−1/2).

Now j rs/i rs
p−→ 1, so

δ̄r = ī rs(θ)l̄s(θ) + Op(n−1/2),

a linear function of asymptotically normal variables of zero mean.
It follows that [δ̄r ] is asymptotically normal with zero mean and
covariance matrix [ī rs ]. We have

{nī(θ)}1/2(θ̂ − θ)
d−→ Nd

(
0, Id

)
.

Andrew Wood Statistical Asymptotics Part II: First-Order Theory



First-Order Asymptotic Theory

Other quantities

By direct expansion of log-likelihood in θ around θ̂ we obtain,
writing ĵrs = jrs(θ̂),

w(θ) = ĵrs(θ̂ − θ)r (θ̂ − θ)s + op(1)

or equivalently
w(θ) = i rs lr ls + op(1),

so w(θ)
d−→ χ2

d .

The asymptotic χ2 distribution of the Wald and score statistics
follows similarly.
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Profile likelihood

Consider the multiparameter problem in which
θ = (θ1, . . . , θd) ∈ Ωθ, an open subset of Rd .

Interest lies in inference for a subparameter or parameter function
ψ = ψ(θ).

The profile likelihood Lp(ψ) for ψ is

Lp(ψ) = sup
θ:ψ(θ)=ψ

L(θ),

the supremum of L(θ) over all θ that are consistent with the given
value of ψ.

The profile log-likelihood is lp = log Lp.
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The usual case

Usually ψ is a component of a given partition θ = (ψ, χ) of θ into
sub-vectors ψ and χ of dimension dψ = d − dχ and dχ respectively.

Then
Lp(ψ) = L(ψ, χ̂ψ),

where χ̂ψ denotes the maximum likelihood estimate of χ for a
given value of ψ.
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Properties of profile likelihood

The maximum profile likelihood estimate of ψ equals ψ̂.

The profile log-likelihood ratio statistic 2{lp(ψ̂)− lp(ψ0)} equals
the log-likelihood ratio statistic for H0 : ψ = ψ0,

2{lp(ψ̂)− lp(ψ0)} ≡ 2{l(ψ̂, χ̂)− l(ψ0, χ̂0)} ≡ w(ψ0),

where l is the log-likelihood and χ̂0 ≡ χ̂ψ0 .

The asymptotic null distribution of the profile log-likelihood ratio
statistic is χ2

dψ
.

This result follows from multivariate Taylor expansion, the
continuous mapping theorem and the ‘nested quadratic forms’
result given in Chapter 1.
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Multiparameter problems: further statistics

To test H0 : ψ = ψ0, in the presence of nuisance parameter χ.

Partition the maximum likelihood estimate, the score vector, the
information matrix and its inverse:

U(θ) =

(
Uψ(ψ, χ)
Uχ(ψ, χ)

)
,

i(θ) =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]
,

i(θ)−1 =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]
.
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Wald statistic

We have ψ̂ asymptotically normally distributed with mean ψ0 and
covariance matrix iψψ(ψ0, χ0), which can be replaced by
iψψ(ψ0, χ̂0).

So a version of the Wald test statistic for the nuisance parameter
case is:

wp(ψ0) = (ψ̂ − ψ0)T [iψψ(ψ0, χ̂0)]−1(ψ̂ − ψ0).
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Score statistic

A version of the score statistic for testing H0 : ψ = ψ0 is:

wu(ψ0) = Uψ(ψ0, χ̂0)T iψψ(ψ0, χ̂0)Uψ(ψ0, χ̂0).

This test has the advantage that MLE has to be obtained only
under H0, and is derived from the asymptotic normality of U.
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Asymptotic distributions

Both wp(ψ0) and wu(ψ0) have asymptotically a chi-squared
distribution with dψ degrees of freedom.
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Effects of parameter orthogonality

Assume that it is possible to make the parameter of interest ψ and
the nuisance parameter, now denoted by λ, orthogonal.

Any transformation from, say, (ψ, χ) to (ψ, λ) necessary to achieve
this leaves the profile log-likelihood unchanged.
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The matrices i(ψ, λ) and i(ψ, λ)−1 are block diagonal. Therefore,
ψ̂ and λ̂ are asymptotically independent.

Also, λ̂ψ, the MLE of λ for specified ψ, varies only slowly in ψ in

the neighbourhood of ψ̂, and there is a corresponding slow
variation of ψ̂λ with λ: if ψ − ψ̂ = Op(n−1/2), then
λ̂ψ − λ̂ = Op(n−1).

For a nonorthogonal nuisance parameter χ, we would have
χ̂ψ − χ̂ = Op(n−1/2).
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Sketch Proof, Scalar Case

If ψ − ψ̂ = Op(n−1/2), χ− χ̂ = Op(n−1/2), we have

l(ψ, χ) = l(ψ̂, χ̂)− 1
2

{
ĵψψ(ψ − ψ̂)2

+2ĵψχ(ψ − ψ̂)(χ− χ̂) + ĵχχ(χ− χ̂)2
}

+ Op(n−1/2).
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It then follows that

χ̂ψ − χ̂ =
−ĵψχ
ĵχχ

(ψ − ψ̂) + Op(n−1)

=
−iψχ
iχχ

(ψ − ψ̂) + Op(n−1).

Then, because ψ − ψ̂ = Op(n−1/2), χ̂ψ − χ̂ = Op(n−1/2) unless
iψχ = 0, the orthogonal case, when the difference is Op(n−1).
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Further remarks

So far as asymptotic theory is concerned, we can have χ̂ψ = χ̂
independently of ψ only if χ and ψ are orthogonal. In this special
case we can write lp(ψ) = l(ψ, χ̂).

In the general orthogonal case, lp(ψ) = l(ψ, χ̂) + op(1), so that a
first-order theory could use l∗p(ψ) = l(ψ, χ̂) instead of
lp(ψ) = l(ψ, χ̂ψ).
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Distribution theory

The log-likelihood ratio statistic w(ψ0) can be written as

w(ψ0) = 2
{
l(ψ̂, χ̂)− l(ψ0, χ)

}
− 2
{
l(ψ0, χ̂0)− l(ψ0, χ)

}
,

as the difference of two statistics for testing hypotheses without
nuisance parameters.
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Taylor expansion about (ψ0, χ), where χ is the true value of the
nuisance parameter, gives, to first-order (i.e. ignoring terms of
order op(1)),

w(ψ0) =

[
ψ̂ − ψ0

χ̂− χ

]T
i(ψ0, χ)

[
ψ̂ − ψ0

χ̂− χ

]
−(χ̂0 − χ)T iχχ(ψ0, χ)(χ̂0 − χ).
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The linearised form of the MLE equations is[
iψψ iψχ
iχψ iχχ

] [
ψ̂ − ψ0

χ̂− χ

]
=

[
Uψ
Uχ

]
,

so [
ψ̂ − ψ0

χ̂− χ

]
=

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
.
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Also χ̂0 − χ = i−1
χχUχ, to first-order. Then, to first-order,

w(ψ0) = [UT
ψ UT

χ ]

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
− UT

χ i−1
χχUχ.

Then,
w(ψ0) ∼ QU − QUχ = QUψ .Uχ ,

a difference of two nested quadratic forms, and is thus
asymptotically χ2

dψ
, by the result given in Chapter 1.
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The Wald statistic wp(ψ0) is based directly on a quadratic form of
ψ̂ − ψ0, and so can be seen immediately to be asymptotically χ2

dψ
,

from properties of the multivariate normal distribution.

Note that to first-order we have

wp(ψ0) = [iψψUψ + iψχUχ]T (iψψ)−1[iψψUψ + iψχUχ].
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We can express the statistic wU(ψ0) in terms of the score vector
U. To first-order we have

wU(ψ0) = (Uψ − iψχi
−1
χχUχ)T iψψ(Uψ − iψχi

−1
χχUχ).

This follows since, to first-order,

Uψ(ψ0, χ̂0) = Uψ +
∂Uψ
∂χ

(χ̂0 − χ)

= Uψ − iψχi
−1
χχUχ.
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The equivalence of the three statistics, and therefore the
asymptotic distribution of wU(ψ0), follows on showing that the
three first order quantities are identical.
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M-estimators

The asymptotic theory of M-estimators is relevant in several
contexts.

1. Misspecified models. What happens when the ‘wrong’ likelihood
is maximised?

2. Estimating functions. Sometimes (e.g. when the full likelihood
function is very complex) we may wish to set up an alternative
system of equations for estimating θ.

3. Robust estimators. If outliers are a major concern we may wish
to use an estimator of θ that is insensitive to outliers, i.e. a robust
estimator.
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M-estimators (continued)

Consider a sample of IID observations X1, . . . ,Xn from F0.

We wish to estimate a d-dimensional vector parameter θ0 = θ(F0).

Suppose that we can determine a d-dimensional vector valued
function G (x , θ) such that

EF0 [G (X , θ0)] =

∫
G (x , θ0)dF (x) = 0 (7)

Our estimating function is then given by

G (θ) =
n∑

i=1

Gi (θ) ≡
n∑

i=1

G (Xi , θ).
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M-estimators (continued)

The estimator θ̂n ≡ θ̂n(X1, . . . ,Xn) is then determined by solving

G (θ̂n) =
n∑

i=1

Gi (θ̂n) = 0. (8)

Theorem. Under mild conditions the following results hold.

(i) There exists a sequence {θ̂n} of solutions of (8) such that

θ̂n
p−→ θ0 as n→∞, where θ0 solves (7).

(ii) As n→∞, n1/2(θ̂n − θ0)
d−→ Nd(0,H(θ0)V (θ0)H(θ0)>)

where

V (θ0) = CovF0 [G (X , θ0)] and H(θ0) = {EF0 [∇>θ G (X , θ0)]}−1.
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Comments

1. When θ̂n is an MLE in a regular model, V (θ0) = ī(θ0) and
H(θ0) = ī(θ0)−1, so we recover the standard result

n1/2(θ̂n − θ0)
d−→ Nd(0, ī(θ0)−1).

2. The estimator H(θ0)V (θ0)H(θ0)> is known as the sandwich
variance estimator.

3. In broad generality, we can estimate V (θ0) and H(θ0)
consistently by

Ĥ = [n−1
n∑

i=1

∇>θ Gi (θ̂n)]−1 and V̂ = n−1
n∑

i=1

Gi (θ̂n)Gi (θ̂n)>.

(9)
4. Approximate confidence intervals for individual parameters and
confidence regions for subsets of parameters can be obtained using
the normal approximation plus the estimators in (9).
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Applications

We do not have time for a detailed discussion of applications, but
we mention 3 areas in which this theory is important.

1. Composite likelihood approaches. Here, the full likelihood is
intractable, but suitable estimating functions can be constructed
by combining components of the likelihood, typically
low-dimensional marginal or conditional distributions.

2. Partial likelihood. This approach was developed by David Cox
and is widely used in survival analysis. The idea is to set up
estimating functions which just use information at the failure
times, so that one can avoid modelling the times between failures.

3. Robust estimation. M-estimators play an important role in
robust approaches to estimation. Examples are Huber’s
M-estimators, and Maronna’s family of robust estimators of
location and scatter.
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