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Higher-order Theory

Structure of Chapter

Coverage of this chapter: some techniques which go beyond the
first-order theory.

Topics: Edgeworth expansions, saddlepoint approximations,
Laplace approximations, Bartlett correction, Bayesian asymptotics,
the p∗ formula, modified profile likelihood.

Motivation: to improve on first-order asymptotic results by
deriving approximations whose asymptotic accuracy is higher by
one or two orders.
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Asymptotic expansion

An asymptotic expansion for a function gn(x) at some fixed x is
expressed as

gn(x) = γ0(x)b0,n + γ1(x)b1,n + . . .+ γk(x)bk,n + o(bk,n),

as n→∞, where {br ,n}kr=0 is a sequence such as
{1, n−1/2, n−1, . . . n−k/2} or {1, n−1, n−2, . . . , n−k}.

For it to be a proper asymptotic expansion, the sequence must
have the property that br+1,n = o(br ,n) as n→∞, for each
r = 0, 1, . . . , k − 1.
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Often the function of interest gn(x) will be the exact density or
distribution function of a statistic based on a sample of size n, and
γ0(x) will be some simple first-order approximation, such as the
normal density or distribution function.

One important feature of asymptotic expansions is that they are
not in general convergent series for gn(x) for any fixed x : taking
successively more terms, letting k →∞ for fixed n, will not
necessarily improve the approximation to gn(x).
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Stochastic asymptotic expansion

For a sequence of random variables {Yn}, a stochastic asymptotic
expansion is expressed as

Yn = X0b0,n + X1b1,n + . . .+ Xkbk,n + op(bk,n),

where {bk,n} is a given set of sequences and {X0,X1, . . .} have
distributions which only depend weakly on n.
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Stochastic asymptotic expansions are not as well defined as
asymptotic expansions, as there is usually considerable arbitrariness
in the choice of the coefficient random variables {X0,X1, . . .}.

A simple application of stochastic asymptotic expansion is the
proof of asymptotic normality of the maximum likelihood estimator.
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Asymptotic expansion of log-likelihood

An important example we have already seen is the asymptotic
expansion of the score statistic U(θ) = ∂l(θ)/∂θ:

0 = l (1)(θ̂) = n−1/2l (1)(θ0) + n−1/2(θ̂ − θ̂0)l (2)(θ0)

+ n−1/2 1

2!
(θ̂ − θ0)2l (3)(θ0)

+ n−1/2 1

3!
(θ̂ − θ0)3l (4)(θ0) + . . .

= Z1 + δZ2 + n−1/2 1

2!
δ2Z3 + n−1 1

3!
δ3Z4 + . . .

= A0 + n−1/2A1 + n−1A2 + . . .

where l (i) = ∂ i l(θ)/∂θi , δ = n1/2(θ̂ − θ0), Z1 = n−1/2l (1)(θ0),
Zi = n−1l (i)(θ0), i ≥ 2, A0 = Z1 + δZ2, A1 = δ2Z3/2 and
A2 = δ3Z4/6.

In a regular IID framework, δ, the Zi and the Ai are all Op(1).

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory



Higher-order Theory

Tools of asymptotic analysis

I Edgeworth expansions.

I Saddlepoint approximations.

I Laplace’s method.

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory



Higher-order Theory

Edgeworth expansion

Let Y1,Y2, . . . ,Yn be IID univariate with cumulant generating
function KY (t) and cumulants κr .

Let Sn =
∑n

1 Yi , S
∗
n = n−1/2(Sn − nµ)/σ

where µ ≡ κ1 = E (Y1), σ2 ≡ κ2 = Var(Y1).

Define the rth standardised cumulant by ρr = κr/κ
r/2
2 .
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The Edgeworth expansions for the density of S∗n is:

fS∗n (x) = φ(x)
{

1 + n−1/2 ρ3

6
H3(x)

+n−1

[
ρ4H4(x)

24
+
ρ2

3H6(x)

72

]}
+ O(n−3/2).

The orders of the terms in the expansion decrease in powers of
n−1/2.

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory



Higher-order Theory

Here φ(x) is the standard normal density and Hr (x) is the rth
degree Hermite polynomial defined by

Hr (x) = (−1)r
d rφ(x)

dx r

/
φ(x)

= (−1)rφ(r)(x)/φ(x), say.

We have H3(x) = x3 − 3x , H4(x) = x4 − 6x2 + 3 and
H6(x) = x6 − 15x4 + 45x2 − 15.
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Comments

The leading term in the expansion is the standard normal density,
as is appropriate from the CLT.

The n−1/2 term is an adjustment for skewness, via the
standardised skewness ρ3.

The n−1 term is a simultaneous adjustment for skewness and
kurtosis.
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If the density of Y1 is symmetric, ρ3 = 0 and the normal
approximation is accurate to order n−1, rather than the usual
n−1/2 for ρ3 6= 0.

The accuracy of the Edgeworth approximation, which truncates the
expansion, will depend on the value of x .

Edgeworth approximations tend to be poor, and may even be
negative, in the tails of the distribution, as |x | increases.
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Distribution function

Integrating the Edgeworth expansion using the properties of the
Hermite polynomials, gives an expansion for the distribution
function of S∗n :

FS∗n (x) = Φ(x)− φ(x)
{
n−1/2 ρ3

6
H2(x)

+
ρ4

24n
H3(x) +

ρ2
3

72n
H5(x)

}
+ O(n−3/2).

Also, if Tn is a sufficiently smooth function of S∗n , then a formal
Edgeworth expansion can be obtained for the density of Tn.
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Cornish-Fisher expansion

We might wish to determine an x , xα say, such that FS∗n (xα) = α,
to the order considered in the Edgeworth approximation to the
distribution function of S∗n .

The solution is known as the Cornish-Fisher expansion and the
formula is

xα = zα +
1

6
√
n

(z2
α − 1)ρ3 +

1

24n
(z3
α − 3zα)ρ4

− 1

36n
(2z3

α − 5zα)ρ2
3 + O(n−3/2),

where Φ(zα) = α.

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory



Higher-order Theory

Derivation∗

The density of a random variable can be obtained by inversion of
its characteristic function.

In particular, the density for X̄ , the sample mean of a set of IID
random variables X1, . . . ,Xn, can be obtained as

fX̄ (x̄) =
n

2πi

∫ τ+i∞

τ−i∞
exp
[
n{K (φ)− φx̄}

]
dφ,

where K is the cumulant generating function of X , and τ is any
point in the open interval around 0 in which the moment
generating function M exists.

Edgeworth expansions are obtained by expanding the cumulant
generating function in a Taylor series around 0, exponentiating and
inverting term by term.
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Saddlepoint approximations

Saddlepoint density approximations are now considered.

First of all, we study the saddlepoint density approximation for the
density of a single random variable X . Then we will see that it is
easy to generalise the approximation to a sum of IID random
variables.

Later we will consider further topics including multivariate
saddlepoint density approximations, the Lugananni-Rice tail
probability approximation and the p∗ formula.
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Exponential tilting

Let X denote a random variable with cumulant generating function
(CGF) K0(t) and pdf f0(x).

It is assumed that K0(t) is finite for all t ∈ (−a, b) for some
a, b > 0.

The exponentially tilted pdf ft(x) is defined by

ft(x) = exp{xt − K0(t)}f0(x). (1)

Check that ft(x) is a pdf: clearly ft(x) ≥ 0, and∫
ft(x)dx = 1 because E0[exp(tX )] = exp{K0(t)}.
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Exponential tilting (continued)

Let Kt(φ) denote the CGF of the distribution with pdf ft(x).

Then it is easy to see that

Kt(φ) = K0(t + φ)− K0(t).

Note that the mean and variance of this distribution are given by

∂Kt

∂φ
(φ)

∣∣∣∣
φ=0

= K ′0(t).

and

∂2Kt

∂φ2
(φ)

∣∣∣∣
φ=0

= K ′′0 (t).
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Main idea

The main idea used in the real-variable derivation of the
saddlepoint approximation can be expressed in two steps.

Step 1.
Given the x at which we wish to calculate f0(x), choose t̂ so that
the mean of the distribution with pdf ft̂ is x .

Step 2.
Then approximate ft̂(x) [the tilted density ft̂ evaluated at its mean]
by a normal density evaluated at its mean [where the mean and
variance of the approximating normal are the same as the mean
and variance of ft̂ ].

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory



Higher-order Theory

The SP approximation

For Step 1, choose t̂ to solve the saddlepoint equation K ′0(t̂) = x .

Note: the solution is unique because cumulant generating
functions are convex.

In Step 2, we approximate ft̂(x) by 1
{2πK ′′0 (t̂)}1/2 .

Rearranging (1), we obtain the first-order saddlepoint density
approximation

f̂0(x) =
1

{2πK ′′0 (t̂)}1/2
exp{K0(t̂)− xt̂}. (2)
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SP approximation for IID sums

Let us now return to the IID sum Sn =
∑n

i=1 Yi where each Yi has
CGF nKY (φ) and fSn(s) is the pdf of Sn at s.

Substituting into (2), it is seen that the first-order saddlepoint
density approximation to fSn(s) is given by

f̂Sn(s) =
1

{2nπK ′′Y (φ̂)}1/2
exp{nKY (φ̂)− sφ̂}. (3)

where φ̂ is chosen to solve the saddlepoint equation nK ′Y (φ̂) = s.
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Accuracy of the SP approximation

In the case where the Edgeworth approximation to the tilted
distribution is valid, the error in Step 2 is O(n−1).

Consequently, in this case, we may write

fSn(s) = f̂Sn(s){1 + O(n−1)}, (4)

where f̂Sn(s) is defined in (3).

Three important points to note about (4):

1. The O(n−1) error is a relative error.

2. The O(n−1) relative error is uniform for s such that φ̂ = φ̂(s)
lies in a fixed, open interval containing 0.

3. As a consequence, the accuracy statement is valid uniformly in
a large deviation region for Sn, i.e. and interval of the form
s ∈ (µn − cn, µn + cn) for some c > 0.
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The O(n−1) term is actually

(3ρ̂4 − 5ρ̂2
3)/(24n),

where

ρ̂j ≡ ρ̂j(φ̂) =
K

(j)
Y (φ̂)

{K ′′Y (φ̂)}j/2
(5)

is the jth standardised derivative of the cumulant generating
function for Y1 evaluated at φ̂.
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A change of variable gives an expansion for the density of
Ȳn = Sn/n:

f̂Ȳn
(y) =

{
n

(2π)K ′′Y (φ̂)

}1/2

exp
{
n[KY (φ̂)− φ̂y ]

}
,

where now K ′Y (φ̂) = y .

Again, we have

fȲn
(y) = f̂Ȳn

(y){1 + O(n−1)},

which is value uniformly in a large deviation region for Ȳn, i.e. and
interval of the form y ∈ (µ− c , µ+ c) for some c > 0.
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Second-order SP approximation

A second-order SP approximation for fSn(s) is given by

f̂
[2]
Sn

(s) = f̂Sn(s)

{
1 +

1

n

(
3ρ̂4 − 5ρ̂2

3

24

)}
, (6)

where f̂Sn(s) is the first-order SP approximation given in (3), and
ρ̂3 and ρ̂4 are defined in (5).
In this case,

fSn(s) = f̂
[2]
Sn

(s){1 + O(n−2)}.

The approximation (6) can be derived by using an Edgeworth
expansion, with the n−1 term included, for the approximation of
the relevant tilted pdf evaluated at s (see Step 2 above).

The second-order SP approximation will not be considered further
in these lectures, but it is typically more accurate in practice than
the first-order approximation.
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Multivariate saddlepoint approximation

Suppose that X = (X 1, . . . ,Xm)> is now a random vector with
pdf f0(x) and CGF K0(t) where now t = (t1, . . . , tm)T .

The first-order multivariate saddlepoint approximation for f0(x) is:

f̂0(x) =
1

(2π)m/2|∇t∇>t K0(t̂)|1/2
exp{K0(t̂)− x>t̂},

where now t̂ solves the vector saddlepoint equation

∇tK0(t̂) = x .

and |∇t∇tK0(t̂)| is the determinant of the Hessian of K0(t)
evaluated at t = t̂.
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Multivariate saddlepoint approximation (continued)

The derivation via exponential tilting is similar to that in the
univariate case. The main difference is that in Step 2 we now
approximate ft̂(x) by

1

(2π)m/2|Σ|1/2
,

which is the density of the multivariate normal distribution
Np(µ,Σ) evaluated at its mean µ, where

Σ = ∇t∇>t K0(t̂)

is the Hessian of K0(t) evaluated at t = t̂.
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SP approximation for IID sums: multivariate case

Suppose that Sn =
∑n

i=1 Yi where now the Yi are IID
m-dimensional random vectors with common CGF KY (φ).

Then, from above,

f̂Sn(s) =
1

(2π)m/2nm/2|∇φ∇>φKY (φ̂)|1/2
exp{nKY (φ̂)− s>φ̂},

where φ̂ solves the multivariate SP equation n∇φKY (φ̂) = s; and

f̂Ȳn
(y) =

nm/2

(2π)m/2|∇φ∇>φKY (φ̂)|1/2
exp{n[KY (φ̂)− y>φ̂]},

where now Ȳn = n−1Sn and again φ̂ solves ∇φKY (φ̂) = y = n−1s.
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In the multivariate case, as in the univariate case,

fSn(s) = f̂Sn(s){1 + O(n−1)}

and

fȲn
(y) = f̂Ȳn

(y){1 + O(n−1)}.

As in the univariate case, these relative error statements are valid
uniformly in large deviation regions.
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Comparison with Edgeworth expansion

The comments below apply to the univariate case; similar
comments apply to the multivariate case.

To use the saddlepoint expansion to approximate fȲn
(y) it is

necessary to know the whole cumulant generating function, not
just the first four cumulants.

Also necessary to solve the equation K ′Y (φ̂) = y for each value of
y .
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The leading term in saddlepoint expansion is not the normal (or
any other) density; in fact it will not usually integrate to 1,
although it can be renormalised to do so.

The saddlepoint expansion is an asymptotic expansion in powers of
n−1, rather than n−1/2 as in the Edgeworth expansion. The main
correction for skewness has been absorbed by the leading term.
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More on Accuracy

Saddlepoint approximations are generally very accurate.

Even when n = 1, SP approximations often do very well in practice.

With distributions that differ from the normal density through
asymmetry, such as the gamma distribution, the saddlepoint
approximation is extremely accurate throughout the range of s.

In many important cases, the relative error of the SP approximation
remains bounded throughout the domain of the distribution.
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Renormalisation

We may consider using a renormalised version of the approximation
to fȲn

(y):

f̃Ȳn
(y) = c{n/K ′′Y (φ̂)}1/2 exp

[
n{KY (φ̂)− φ̂y}

]
where c is determined, usually numerically, so that the right-hand
side integrates to 1.
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If the O(n−1) correction term is constant in y , the renormalised
approximation will be exact. For scalar random variables this
happens only in the case of the normal, gamma and inverse
Gaussian distributions.

In general, the n−1 correction term {3ρ̂4(φ̂)− 5ρ̂2
3(φ̂)}/24 varies

only slowly with y and the relative error in the renormalised
approximation is O(n−3/2).
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Distribution function approximation

It is usually not possible to integrate the saddlepoint approximation
theoretically to obtain an approximation to the distribution
function of Sn.

However, one can do this by numerical integration of the
saddlepoint density approximation.
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Lugannani-Rice

A useful alternative approach is given by the Lugannani-Rice
approximation:

P[Sn ≤ s] ≡ FSn(s) = Φ(rs) + φ(rs)
( 1

rs
− 1

vs

)
+ O(n−1),

where

rs = sgn(φ̂)

√
2n{φ̂K ′Y (φ̂)− KY (φ̂)}

vs = φ̂

√
nK ′′Y (φ̂),

and φ̂ ≡ φ̂(s) is the saddlepoint, satisfying nK ′Y (φ̂) = s.
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An alternative approximation

The expansion can be expressed in the asymptotically equivalent
form

FSn(s) = Φ(r∗s ){1 + O(n−1)},

with

r∗s = rs −
1

rs
log

rs
vs
.
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Exponential family case

Suppose f (y) is itself in the exponential family,

f (y ; θ) = exp{yθ − c(θ)− h(y)}.

Then since KY (t) = c(θ + t)− c(θ), it follows that
λ̂ ≡ λ̂(s) = θ̂ − θ, where θ̂ is the MLE based on s = y1 + · · ·+ yn.
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The SP approximation for fSn(s; θ) is

f̂Sn(s; θ) =
1

{2πnc ′′(θ̂)}1/2
exp
[
n{c(θ̂)− c(θ)} − (θ̂ − θ)s

]
which can be expressed as

f̂Sn(s; θ) = c exp{l(θ)− l(θ̂)}|j(θ̂)|−1/2

where l(θ) is the log-likelihood function based on (y1, . . . , yn), or s,
and j(θ̂) is the observed information.
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Since θ̂ = θ̂(s) is a one-to-one function of s, with Jacobian |j(θ̂)|,
we can obtain an approximation to the density of θ̂

f̂θ̂(θ̂; θ) = c exp{l(θ)− l(θ̂)}|j(θ̂)|1/2.

This is a particular case of Barndorff-Nielsen’s p∗ formula,
considered later.
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Laplace approximation of integrals

The aim here is to obtain an approximation for the integral

gn =

∫ b

a
e−ng(y)dy .

The main contribution, for large n, will come from values of y near
the minimum of g(y), which may occur at a or b, or in the interior
of the interval (a, b).
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Assume that g(y) has a unique global minimum over (a, b) at
ỹ ∈ (a, b) and that g ′(ỹ) = 0, g ′′(ỹ) > 0.

We can write

gn =

∫ b

a
e−n{g(ỹ)+

1
2 (ỹ−y)2g ′′(ỹ)+··· }dy

≈ e−ng(ỹ)

∫ b

a
e−

n
2

(ỹ−y)2g ′′(ỹ)dy

≈ e−ng(ỹ)

√
2π

ng ′′(ỹ)

∫ ∞
−∞

φ

(
y − ỹ ;

1

ng ′′(ỹ)

)
dy

where φ(y − µ;σ2) is the density of N(µ, σ2).
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Since φ integrates to one,

gn ≈ e−ng(ỹ)

√
2π

ng ′′(ỹ)
.

A more detailed analysis gives

gn = e−ng(ỹ)

√
2π

ng ′′(ỹ)

{
1 +

5ρ̃2
3 − 3ρ̃4

24n
+ O(n−2)

}
,

where

ρ̃3 = g (3)(ỹ)/{g ′′(ỹ)}3/2,

ρ̃4 = g (4)(ỹ)/{g ′′(ỹ)}2.
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A similar analysis gives∫ b

a
h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)

√
2π

ng ′′(ỹ)
{1 + O(n−1)}.
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Provided h(y) > 0, a further refinement of the method is possible:∫ b

a
e−n{g(y)− 1

n
log h(y)}dy

=

∫ b

a
e−nqn(y)dy , say,

= e−ng(y∗)h(y∗)

√
2π

nq′′n(y∗)

× {1 + n−1(5ρ∗23 − 3ρ∗4)/24 + O(n−2)},

where
q′n(y∗) = 0, ρ∗j = q

(j)
n (y∗)/{q′′n(y∗)}j/2.
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Multivariate Laplace approximation

Suppose now that y ∈ D ⊆ Rm where D is a connected open
region.

Assume that g(y) is a (smooth) real-valued function with a unique
global minimum over D at y = ỹ ∈ D.

Then the multivariate Laplace approximation is given by

∫
y∈D

h(y)g−ng(y)dy = h(ỹ)e−ng(ỹ) (2π)m/2

|∇y∇>y g(ỹ)|1/2
{1 + O(n−1)},

(7)
where |.| is the determinant of the Hessian of g(y) evaluated at
y = ỹ .
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Comments

Assume that h(y) > 0 for all y ∈ D.

1. In (7), the convention is usually adopted that h(y) does not
play a role in the minimisation; it is g(y) in the exponent that is
minimised. However, the value of the Laplace approximation does
depend on how we define g and h. Clearly g and h are not
uniquely defined, so some care is needed.

2. Even when g(y) has a unique global minimum over D at y = ỹ ,
it is possible that g has other local minima whose contribution to
the integral on the LHS of (7) is non-neglible unless n is very large.
In such cases, the Laplace approximation may not do so well for
moderate values of n.
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Comments (continued)

3. In many examples, the Laplace approximation does well even
when n = 1.

4. Inclusion of the n−1 term in the approximation reduces the
theoretical relative error to O(n−2), and often improves the
numerical accuracy too.
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Bayesian asymptotics

The key result is that the posterior distribution is asymptotically
normal. Write

πn(θ | y) = f (y ; θ)π(θ)

/∫
f (y ; θ)π(θ)dθ

for the posterior density. Denote by θ̂ the MLE.
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Proof

For θ in a neighbourhood of θ̂ we have, by Taylor expansion,

log

{
f (y ; θ)

f (y ; θ̂)

}
≈ −1

2 (θ − θ̂)T j(θ̂)(θ − θ̂).

Provided the likelihood dominates the prior, we can approximate
π(θ) in a neighbourhood of θ̂ by π(θ̂).

Then we have

f (y ; θ)π(θ) ≈ f (y ; θ̂)π(θ̂) exp{−1
2 (θ − θ̂)T j(θ̂)(θ − θ̂)}.
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Then, to first order,

πn(θ | y) ∼ N
(
θ̂, j(θ̂)−1

)
.
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Another approximation

When the likelihood does not dominate the prior, expand about
the posterior mode θ̂π, which maximises f (y ; θ)π(θ).

Then
πn(θ | y) ∼ N

(
θ̂π, jπ(θ̂π)−1

)
,

where jπ is minus the matrix of second derivatives of f (y ; θ)π(θ).
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A more accurate approximation

We have

πn(θ | y) = f (y ; θ)π(θ)

/∫
f (y ; θ)π(θ)dθ

≈ c exp{l(θ; y)}π(θ)

exp{l(θ̂; y)}|j(θ̂)|−1/2π(θ̂)
,

by Laplace approximation of the denominator.

We can rewrite as

πn(θ | y) ≈ c|j(θ̂)|1/2 exp{l(θ)− l(θ̂)} × {π(θ)/π(θ̂)}.
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Posterior expectations

To approximate to the posterior expectation of a function g(θ) of
interest,

E{g(θ) | y} =

∫
g(θ)enl̄n(θ)π(θ)dθ∫
enl̄n(θ)π(θ)dθ

,

where l̄n = n−1
∑n

i=1 log f (yi ; θ) is the average log-likelihood
function.

Rewrite the integrals as

E{g(θ) | y} =

∫
en{l̄n(θ)+q(θ)/n}dθ∫
en{l̄n(θ)+p(θ)/n}dθ

and use the modified version of the Laplace approximation.
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Applying this to the numerator and denominator gives

E{g(θ) | y} ≈ enl̄n(θ∗)+q(θ∗)

enl̄n(θ̃)+p(θ̃)

× {−nl̄ ′′n (θ̃)− p′′(θ̃)}1/2

{−nl̄ ′′n (θ∗)− q′′(θ∗)}1/2

{1 + O(n−1)}
{1 + O(n−1)}

where θ∗ maximises nl̄n(θ) + log g(θ) + log π(θ) and θ̃ maximises
nl̄n(θ) + log π(θ).

Detailed analysis shows that the relative error is, in fact, O(n−2).
If the integrals are approximated in their unmodified form the
result is not as accurate.
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Logistic regression example: approximate Bayesian analysis

Let us return to the logistic regression model for binary data.

Here,

L(β|y) =
n∏

i=1

pyii (1− pi )
1−yi , yi = 0, 1,

where

pi =
eβ
>xi

1 + eβ>xi
,

β = (β1, . . . , βd)> is the parameter vector and xi is a
d-dimensional covariate vector, i = 1, . . . , n.

Suppose we wish to perform a Bayesian analysis with a
non-informative prior for β.

Take π(β) ≡ 1, so that π(β) is an improper prior for β.
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Logistic regression example (continued)

The posterior π(β|y) for β is given by

π(β|y) = c−1L(β),

where c is the normalising constant. Applying Laplace’s
approximation we find

c =

∫
β∈Rd

L(β)dβ ≈ L(β̂)
(2π)d/2

|j(β̂)|1/2
,

where β̂ is the MLE of β and |j(β̂)| is the determinant of the
observed information for β evaluated at β = β̂, with

j(β̂) =
n∑

i=1

p̂i (1− p̂i )xix
>
i .
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Logistic regression example (continued)

Now suppose we would like to approximate the marginal posterior
pdf of βd , the final component of β = (β1, . . . , βd)>.

Define βγ = (β1, . . . , βd−1, γ)> and write

LP(γ) = sup
(β1,...,βd−1)>∈Rd−1

L(βγ) = L(β̂γ),

so that β̂γ is the MLE of β under the hypothesis Hγ : βd = γ.

Applying Laplace’s approximation again,∫
(β1,...,βd−1)>∈Rd−1

L(βγ)dβ1 · · · dβd−1 ≈ L(β̂γ)
(2π)(d−1)/2

|jd−1(β̂γ)|1/2
,

where jd−1 is the (d − 1)× (d − 1) submatrix of j , with column d
and row d removed.
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Logistic regression example (continued)

So we may approximate the posterior density of βd = γ by

π(γ|y) ≈ L(β̂γ)(2π)(d−1)/2

|jd−1(β̂γ)|1/2

/
L(β̂)(2π)d/2

|j(β̂)|1/2

=
L(β̂γ)

(2π)1/2L(β̂)

{
|j(β̂)|
|jd−1(β̂γ)|

}1/2

.

Note that calculation of β̂ and β̂γ is routine in a standard
generalised linear model analysis using e.g. glm in R.

Under mild conditions on the sequence of covariate vectors
x1, x2, . . ., the relative error in the above Laplace approximation for
π(γ|y) is O(n−1).
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Bartlett correction

The first-order approximation to the distribution of the likelihood
ratio statistic w(ψ) is

Prθ{w(ψ) ≤ ω◦} = P{χ2
q ≤ ω◦}{1 + O(n−1)},

where q = dψ, θ = (ψ, λ), say.
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In the case of IID sampling, it can be shown that

Eθ[w(ψ)] = q{1 + b(θ)/n + O(n−2)},

and so Eθ[w ′(ψ)] = q{1 + O(n−2)}, where w ′ = w/{1 + b(θ)/n}.

The adjustment procedure of replacing w by w ′, is known as
Bartlett correction.
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Discussion

Bartlett correction yields remarkably good results under continuous
models.

Division by {1 + b(θ)/n} adjusts not only the mean but
simultaneously all the cumulants—and hence the whole
distribution—of w towards those of χ2

q. It can be shown that

Pθ{w ′(ψ) ≤ ω◦} = P{χ2
q ≤ ω◦}{1 + O(n−2)}.

In practice, b(θ) will be replaced by b(ψ, λ̂ψ). The above result
still holds, even to O(n−2).
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The small O(n−2) error resulting from Bartlett correction depends
on the special character of the likelihood ratio statistic, and the
same device applied to, for instance, the score test does not have a
similar effect.

Also, under discrete models this type of adjustment does not
generally lead to an improved χ2 approximation.
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The p∗ formula

The p∗ formula, due to Barndorff-Nielsen, is a general
approximation for the conditional pdf of the maximum likelihood
estimator θ̂.

Consider a log-likelihood l(θ) with data vector Y .

The formula is:

p∗(θ̂|a, θ) = c |ĵ |1/2e l(θ)−l(θ̂), (8)

where θ̂ = (θ̂1, . . . , θ̂d)> is the MLE, c is a normalising constant,
ĵ = j(θ̂) is the observed information matrix evaluated at the MLE,
|.| denotes determinant, and a = a(Y ) is a random vector such that

I (θ̂, a) is a minimal sufficient reduction of the data Y ; and
I a is an ancillary statistic for θ, i.e. the distribution of a(Y )

should be independent of θ.

Note that p∗ gives the pdf of the distribution of θ̂ conditional on a.
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Transformation models

A class of models in which a minimal sufficient reduction of the
data (θ̂, a) exists with a ancillary for θ is the class of
transformation models.

The simplest cases of transformation models are the univariate
location models and location-scale models.

A location model is a model of the form

fµ(x) = g(x − µ),

where g is a known pdf and µ is an unknown location parameter.
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Transformation models (continued)

A location-scale model has the form

fµ,σ(x) =
1

σ
g

(
x − µ
σ

)
,

where g is a known pdf, µ is an unknown location parameter, and
σ is an unknown scale parameter, with θ = (µ, σ)>.

In transformation models

I an ancillary statistic a can be constructed such that (θ̂, a) is
minimal sufficient; and

I the p∗ formula is typically exact, a result that goes back to
R.A. Fisher.
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(m,m) exponential family models

A second class of models for which p∗ is immediately applicable is
the (m,m) exponential family class.

In this case there is no need for an ancillary a because θ̂ is of the
same dimension of the natural statistic and in fact is a smooth
1 : 1 function of it.

Let Y1, . . . ,Yn be an independent sample from a full (m,m)
exponential density

exp{y>φ− K (φ) + D(y)}.

We have already seen that the saddlepoint approximation to the
density of natural parameter vector φ̂ is

p∗(φ̂|φ) = c |j(φ̂)|1/2e l(φ)−l(φ̂), (9)

which is of the same form as p∗.
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(m,m) exponential family models (continued)

What happens if we consider an alternative parametrisation
φ = φ(θ), where the relationship between φ and θ is smooth and
1 : 1?

Changing variables from φ̂ to θ̂ in (9), we obtain

p∗(θ̂|θ) = p∗(φ̂|φ)

∣∣∣∣∂φ>∂θ (θ̂)

∣∣∣∣ (10)

which is not obviously of the same form as (8).
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(m,m) exponential family models (continued)

However, we shall show on the next slide that

j(θ̂) =
∂φ>

∂θ
(θ̂)j(φ̂)

∂φ

∂θ>
(θ̂), (11)

where j(θ̂) is the observed information for θ at θ = θ̂ and j(φ̂) is
the observed information for φ at φ = φ̂.

Consequently,

|j(θ̂)|1/2 = |j(φ̂)|1/2

∣∣∣∣ ∂φ∂θ> (θ̂)

∣∣∣∣,
and so (10) is indeed of the form (8).
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Jacobian result for p∗

Using the summation convention, and the chain and product rules
for partial differentiation,

∂l

∂θr
= liφ

i
r

and

∂2l

∂θrθs
= liφ

i
rs + lijφ

i
rφ

j
s , (12)

where li = ∂l/∂φi , lij = ∂2l/∂φi∂φj , φir = ∂φi/∂θr and
φirs = ∂2l/∂θr∂θs .

The key point is that at the MLE θ̂, li{φ(θ̂)} = 0, so that the RHS
of (12) is equal to (11) when written in matrix form.
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Discussion

1. The p∗ formula is very useful for transformation models, for
which it is generally exact, with c = c(θ, a) is independent of θ.

2. In (m.m) exponential models, p∗ is equivalent to a saddlepoint
approximation, perhaps after a smooth 1 : 1 transformation of the
parameter vector.

3. Outside these two model classes, p∗ is generally more difficult
to implement, because of the difficulty of constructing ancillary
statistics.

4. In general models, ancillary statistics may not exist, or may exist
but not be unique. However, there are methods for constructing
approximate ancillaries, and also methods for constructing
approximations to p∗ which are discussed later.
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Discussion (continued)

5. In general, c = c(θ, a) = (2π)−d/2c̄ , where c̄ = 1 + O(n−1).

6. Outside the realm of exactness cases, the formula is quite
generally accurate to relative error of order O(n−3/2):

f (θ̂; θ | a) = p∗(θ̂; θ | a)
(
1 + O(n−3/2)

)
,

provided a is exactly ancillary, or approximately ancillary to a
suitably high order.

7. For a detailed discussion of the theoretical accuracy of p∗ in
curved exponential families with different choices of ancillaries, see
Barndorff-Nielsen and Wood (Bernoulli, 1998).
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Distribution function approximation

Suppose we wish to evaluate Pr(θ̂ ≤ t; θ | a), where θ is assumed
to be a scalar.

Exact integration of the p∗ formula to obtain an approximation to
the distribution function of the MLE is generally not possible.

However, accuracte theoretical approximations to the integral of p∗

can be derived; cf. the Lugananni-Rice formula.
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Notation

Write

rt ≡ rt(θ) = sgn(t − θ)
√

2(l(t; t, a)− l(θ; t, a)),

and let

vt ≡ vt(θ) = j(t; t, a)−1/2{l;θ̂(t; t, a)− l;θ̂(θ; t, a)},

in terms of the sample space derivative l;θ̂ defined by

l;θ̂(θ; θ̂, a) =
∂

∂θ̂
l(θ; θ̂, a),

and with j the observed information.
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The formula

Then

P(θ̂ ≤ t; θ | a) = Φ{r∗t (θ)}{1 + O(n−3/2)},

where r∗t (θ) = rt(θ) + rt(θ)−1 log{vt(θ)/rt(θ)}.

The random variable r∗(θ) corresponding to r∗t (θ) [replace fixed t
by random θ̂] is an adjusted form of the signed root likelihood ratio
statistic, N(0, 1) to (relative) error O(n−3/2), conditional on
ancillary a.
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Conditional inference in exponential families

Suppose that Y1, . . . ,Yn are independent, identically distributed
from the exponential family density

f (y ;ψ, λ) = exp{ψτ1(y) + λτ2(y)− d(ψ, λ)− Q(y)},

where we will suppose for simplicity that the parameter of interest
ψ and the nuisance parameter λ are both scalar.

The natural statistics are T = n−1
∑
τ1(yi ) and S = n−1

∑
τ2(yi ).

From the general properties of exponential families, the conditional
distribution of T given S = s depends only on ψ, so that inference
about ψ may be derived from a conditional likelihood, given s.
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The log-likelihood based on the full data y1, . . . , yn is

nψt + nλs − nd(ψ, λ),

ignoring terms not involving ψ and λ, and a conditional
log-likelihood function is the full log-likelihood minus the
log-likelihood function based on the marginal distribution of S .

We consider an approximation to the marginal distribution of S ,
based on a saddlepoint approximation to the density of S ,
evaluated at its observed value s.
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The cumulant generating function of τ2(Yi ) is given by

K (z) = d(ψ, λ+ z)− d(ψ, λ).

The saddlepoint equation is therefore given by

dλ(ψ, λ+ ẑ) = s.
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With s the observed value of S , the likelihood equation for the
model with ψ held fixed is

ns − ndλ(ψ, λ̂ψ) = 0,

so that λ+ ẑ = λ̂ψ, where λ̂ψ denotes the maximum likelihood
estimator of λ for fixed ψ.
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Applying the saddlepoint approximation, ignoring constants, we
approximate the marginal likelihood function based on S as

|dλλ(ψ, λ̂ψ)|−1/2 exp{n[d(ψ, λ̂ψ)− d(ψ, λ)]− (λ̂ψ − λ)s};

the resulting approximation to the conditional log-likelihood
function is given by

nψt + nλ̂Tψ s − nd(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|

≡ l(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|.
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Modified profile likelihood

The profile likelihood Lp(ψ) for a parameter of interest ψ can
largely be thought of as if it were a genuine likelihood.

This amounts to behaving as if the nuisance parameter over which
the maximisation has been carried out were known. Inference on ψ
based on treating Lp(ψ) as a proper likelihood may therefore be
grossly misleading if the data contain insufficient information
about χ, or if there are many nuisance parameters.

Below, we shall discuss modifications of Lp(φ).
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Definition

The modified profile likelihood L̃p(ψ) for a parameter of interest ψ,
with nuisance parameter χ, is defined by

L̃p(ψ) = M(ψ)Lp(ψ),

where M is a modifying factor

M(ψ) =

∣∣∣∣ ∂χ̂∂χ̂ψ
∣∣∣∣ |ĵψ|−1/2.
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Here ∂χ̂/∂χ̂ψ is the matrix of partial derivatives of χ̂ with respect

to χ̂ψ, where χ̂ is considered as a function of (ψ̂, χ̂ψ, a) and
ĵψ = jχχ(ψ, χ̂ψ), the observed information on χ assuming ψ is
known.
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Comments

The modified profile likelihood L̃p is, like Lp, parameterisation
invariant.

An alternative expression for the modifying factor M is

M(ψ) = |lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a)|−1 × |jχχ(ψ, χ̂ψ; ψ̂, χ̂, a)|1/2.
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This follows from the likelihood equation for χ̂ψ:

lχ(ψ, χ̂ψ; ψ̂, χ̂, a) = 0.

Differentiation with respect to χ̂ yields

lχχ(ψ, χ̂ψ; ψ̂, χ̂, a)
∂χ̂ψ
∂χ̂

+ lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a) = 0.
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Justification

Asymptotically, L̃p and Lp are equivalent to first-order.

The reason for using L̃p rather than Lp is that the former arises as
a higher-order approximation to a marginal likelihood for ψ when
such a marginal likelihood function is available, and to a
conditional likelihood for ψ when this is available.
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Details

Suppose that the density f (ψ̂, χ̂;ψ, χ | a) factorises, either as

f (ψ̂, χ̂;ψ, χ | a) = f (ψ̂;ψ | a)f (χ̂;ψ, χ | ψ̂, a)

or as
f (ψ̂, χ̂;ψ, χ | a) = f (χ̂;ψ, χ | a)f (ψ̂;ψ | χ̂, a).
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In the first case modified profile likelihood can be obtained as an
approximation (using the p∗-formula) to the marginal likelihood for
ψ based on ψ̂ and conditional on a, i.e. to the likelihood for ψ
determined by f (ψ̂;ψ | a).

In the second case it is obtained as an approximation to the
conditional likelihood for ψ given χ̂ and a.
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Further comments

Note that if χ̂ψ does not depend on ψ,

χ̂ψ = χ̂,

then
L̃p(ψ) = |ĵψ|−1/2Lp(ψ).

In the case that ψ and χ are orthogonal, which is a weaker
assumption, both hold to order O(n−1).

Andrew Wood Statistical Asymptotics Part III: Higher-order Theory


