APTS High-Dimensional Statistics: Assignments

Yi Yu*

July 8, 2022

1. Assume that

$$
Y=X \beta^{*}+\varepsilon \in \mathbb{R}^{n},
$$

where $\beta^{*} \in \mathbb{R}^{p}, p<n$ and $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$. Let $\mu_{\text {min }}$ be the smallest eigenvalue of $\Sigma=$ $X^{\top} X / n>0$. Let

$$
\widehat{\beta}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{2 n}\|Y-X \beta\|^{2}+\lambda\|\beta\|_{1}\right\}
$$

be the Lasso estimator with tuning parameter λ. Use basic inequality to show that

$$
\mathbb{E}\left\|\widehat{\beta}-\beta^{*}\right\|^{2} \leq \frac{8 \sigma^{2} p}{n \mu_{\min }}+\frac{16 \lambda^{2} p}{\mu_{\min }^{2}} .
$$

2. Define the cone

$$
\mathcal{C}(S ; \alpha)=\left\{\theta \in \mathbb{R}^{p} \mid\left\|\theta_{S^{c}}\right\|_{1} \leq \alpha\left\|\theta_{S}\right\|_{1}\right\}
$$

for $S \subset\{1, \ldots, p\}$ and $\alpha \geq 1$. We say a matrix $\Sigma \in \mathbb{R}^{p \times p}$ satisfies a restricted eigenvalue condition of order k with parameter α, γ, if

$$
\theta^{\top} \Sigma \theta \geq \gamma^{2}\|\theta\|^{2}, \quad \forall \theta \in \mathcal{C}(S ; \alpha), \forall|S| \leq k
$$

We have learned in the course that for any $X \in \mathbb{R}^{n \times p}$ with i.i.d. $\mathcal{N}(0, \sigma)$ rows, there is a universal constant $c>0$ such that

$$
\frac{\|X v\|}{\sqrt{n}} \geq \frac{1}{4}\left\|\Sigma^{1 / 2} v\right\|-9 \rho(\Sigma) \sqrt{\frac{\log (p)}{n}}\|v\|_{1}, \quad v \in \mathbb{R}^{p}
$$

with probability at least $1-\exp (-c n)$, where $\rho^{2}(\Sigma)=\max _{j=1}^{p}\left(\Sigma_{j j}\right)$.
Suppose that Σ satisfies the restricted eigenvalue condition of order k with parameter (α, γ). For universal constants $c_{1}, c_{2}, c_{3}>0$, assume that the sample size satisfies

$$
n>c \frac{\rho^{2}(\Sigma)(1+\alpha)^{2}}{\gamma^{2}} k \log (p) .
$$

Show that the matrix $\widehat{\Sigma}=X^{\top} X / n$ satisfies the restricted eigenvalue condition with parameters $(\alpha, \gamma / 8)$ with probability at least $1-c_{1} \exp \left(-c_{2} n\right)$.

[^0]3. Let (T, d) be a metric space. For every $\varepsilon>0$, show that
$$
\mathcal{N}(T, \varepsilon) \leq \mathcal{M}(T, \varepsilon) \leq \mathcal{N}(T, \varepsilon / 2)
$$
where $\mathcal{N}(T, \varepsilon)$ and $\mathcal{M}(T, \varepsilon)$ are the ε-covering number and ε-packing number, respectively.
4. Let $A \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries $A_{i j} \sim \mathcal{N}(0,1)$. Then there exists a universal constant $C>0$ such that for any $t>0$,
$$
\|A\|_{\mathrm{op}} \leq C(\sqrt{m}+\sqrt{n}+t)
$$
with probability at least $1-2 \exp \left(-t^{2}\right)$.

[^0]: *Department of Statistics, University of Warwick. Email: yi.yu.2@warwick.ac.uk

