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These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. Since we are asked to calculate the value tan(3π/8), it will certainly be agreeable to find
a right-angled triangle with 3π/8 for one of its angles. We can then use the formula
tan(α) = o/a, where o (resp. a) is the length of the opposite (resp. adjacent) side to the
acute angle α = 3π/8. To this end, let the point X be the orthogonal projection of A
onto the x-axis:

We shall show 4OXB meets our needs. Firstly, since A has the same horizontal and
vertical displacement from O, it must be the case that 4OXA is an isosceles triangle
with right angle ∠OXA. Secondly, we can compute using Pythagoras’ theorem that

|OA| =
√

(1/
√

2)2 + (1/
√

2)2 = 1.

We also know that |AB| = |b − a| = |j| = 1. Hence 4OAB is another isosceles triangle.
These are key observations, which we note our sketch was helpful in identifying. (In
general, when it comes to geometry problems, it can often be a good idea to spend some
time on a good sketch and try and extract useful hypotheses/data therefrom.) Now, to
identify the angles, we start by observing that

∠OAX = ∠AOX =
π − π/2

2
=
π

4

by the angle sum theorem for the isosceles 4OXA. Thus

∠OAB = π − ∠OAX =
3π

4
,

since the points X, A and B all lie on a common line (which is parallel to the y-axis).
Another application of the angle sum theorem, this time for the isosceles 4OAB yields

∠BOA = ∠ABO =
π − 3π/4

2
=
π

8
.

Finally,

∠XOB = ∠XOA+ ∠AOB =
π

4
+
π

8
=

3π

8
.

We thus have our right-angled 4OXB, with right angle ∠OXB. We conclude that

tan

(
3π

8

)
=
|BX|
|OX|

=
1 + 1√

2

1/
√

2
= 1 +

√
2.
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2. We first remark that we should consider θ /∈ {π2 + kπ : k ∈ Z} in order for tan(θ) (or
equivalently sec(θ) = 1/ cos(θ)) to be well-defined. Now, since we are required to find the
possible values of v := tan(θ), rather than trying to find θ directly, let us endeavour to
express the quantities appearing in the equality:

2 sin2(θ)− sin(θ) sec(θ) = 2 sin(2θ)− 2 (1)

in terms of v. It is clear, by definitions of trigonometric functions, that

sin(θ) sec(θ) = sin(θ)/ cos(θ) = tan(θ) = v,

and so (1) can be written
2 sin2(θ)− v = 2 sin(2θ)− 2.

Next, we divide by cos2(θ) (which we are assuming is non-zero) to obtain

2v2 − 1

cos2(θ)
v =

2 sin(2θ)

cos2(θ)
− 2

cos2(θ)
.

Next, we use the double-angled formula sin(2θ) = 2 sin(θ) cos(θ) to get rid of the sin(2θ),
finding

2v2 − 1

cos2(θ)
v = 4v − 2

cos2(θ)
.

To convert the 1/ cos2(θ) terms, we use the formula sec2(θ) = 1 + tan2(θ). This gives

2v2 − (1 + v2)v = 4v − 2(1 + v2),

and a bit of tidying up yields

v3 − 4v2 + 5v − 2 = 0.

Now, this is a cubic equation in v, and we immediately observe that one of its solutions
is given by v1 = 1 (since the coefficients of the polynomial add to zero). Then we can
perform polynomial long division:

v3 − 4v2 + 5v − 2 = v2(v − 1) + v2 − 4v2 + 5v − 2

= v2(v − 1)− 3v(v − 1)− 3v + 5v − 2

= (v2 − 3v + 2)(v − 1)

= (v − 1)(v − 2)(v − 1).

It follows that the only other possible root is v2 = 2. Moreover, since the range of the
function tan is the whole of R, there will indeed be θ for which the equality (1) holds and
simultaneously tan(θ) = vi, i ∈ {1, 2}, i.e. the sought-after values of tan(θ) form precisely
the set {1, 2}.
An alternative (and perhaps quicker solution) is as follows. First, using sec(θ) = 1/ cos(θ),
we can write (1) as

2 sin2(θ)− sin(θ)

cos(θ)
= 2 sin(2θ)− 2.

Factoring out tan(θ) on the left-hand side,

sin(θ)

cos(θ)
(2 sin(θ) cos(θ)− 1) = 2(sin(2θ)− 1).
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We can then apply the double-angle formula sin(2θ) = 2 sin(θ) cos(θ) to deduce

tan(θ)(sin(2θ)− 1) = 2(sin(2θ)− 1).

Moving everything across to one side, this is equivalent to

(tan(θ)− 2)(sin(2θ)− 1) = 0,

which holds whenever either tan(θ) = 2 or sin(2θ) = 1. Finally, sin(2θ) = 1 holds if and
only if 2θ = π

2 + 2kπ for some k ∈ Z, and for these values of θ we have that tan(θ) = 1.
The same conclusions as above follow.

3. We start by finding the coordinates of Q. From this, the area of the shaded region will
follow quickly by performing a suitable integration.

First, to obtain the equation for the tangent T to C at the point P , we calculate its slope
s by differentiation:

s =
dy

dx x=8
=
dy/dt

dx/dt t=2

=
2t

3t2 t=2
=

1

3
.

Denoting by (xP , yP ) the coordinates of P , it follows that the equation of T is y − yP =
s(x− xP ), i.e. y − 4 = 1

3(x− 8) or 3y = x+ 4.

Next, to find the coordinates of Q (equivalently the value of t in the parametrization of
the curve C), we must determine where (other than the point P ), T meets C. Plugging
into the equation for T the parametrization of C, we have

3t2 = t3 + 4. (2)

Now, since the point P lies on C and T , it must be the case that t = 2 solves (2). We can
perform polynomial long division to find the other root(s):

t3 − 3t2 + 4 = t2(t− 2) + 2t2 − 3t2 + 4

= t2(t− 2)− (t− 2)(t+ 2)

= (t− 2)(t2 − t− 2)

= (t− 2)2(t+ 1).

Thus the only other root, and that corresponding to Q, is t = −1. Hence Q has coordinates
((−1)3, (−1)2) = (−1, 1).

Finally, we obtain the area of the shaded region A by subtracting the area A1 between
the x-axis and the curve C (in the range t ∈ [−1, 2]) from the area A2 of the trapezium
PQQ′P ′, as shown on the following figure:
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The area A1 follows by integration (we use a change of variables, but one need not (the
alternative being to express y(x) explicitly in terms of x, and then integrating directly.).
In particular, A1 is given by∫ xP

xQ

ydx =

∫ 2

−1
y
dx

dt
dt =

∫ 2

−1
(t2)(3t2)dt = 3

∫ 2

−1
t4dt =

[
3

5
t5
]t=2

t=−1
=

3

5
(32 + 1) =

99

5
.

On the other hand, we can compute A2 directly:

A2 = |P ′Q′| |PP |+ |QQ
′|

2
= (xP − xQ)

yP + yQ
2

= (8− (−1))
4 + 1

2
=

45

2
.

Hence we conclude that

A = A2 −A1 =
225

10
− 198

10
= 2.7.

4. (a) We first collect together all the terms of

Ax+B

1 + 3x2
+

C

1− x
+

D

(1− x)2

over a common denominator, which gives

(Ax+B)(1− x)2 + C(1− x)(1 + 3x2) +D(1 + 3x2)

(1 + 3x2)(1− x)2
.

If this expression is to be equal to f(x), we must have that

(A− 3C)x3 + (−2A+B + 3C + 3D)x2 + (A− 2B − C)x+ (B + C +D) = 1− 3x

(for every x 6= 1). Plainly then the coefficients before the respective terms 1 = x0,
x = x1, x2 and x3 on the left-hand and the right-hand side must be the same, i.e.

0 = A− 3C, (3)

0 = −2A+B + 3C + 3D, (4)

−3 = A− 2B − C, (5)

1 = B + C +D. (6)

Now, from (3), A = 3C, and then 3×(6)+(5)−(4) yields C = 0. It follows that A = 0
too, and (5) gives B = 3/2. From (4) we have, finally, B = −3D, so that D = −1/2.
(Of course, there are many other ways to go about solving the above equations.) To
summarise, we have shown that, for x 6= 1,

f(x) =
3

2(1 + 3x2)
− 1

2(1− x)2
. (7)

(b) Recall the binomial series:

(1 + z)α =

∞∑
k=0

(
α

k

)
zk, |z| < 1, α ∈ R,

where (
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
.
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By applying this identity with (α, z) = (−1, 3x2) and (α, z) = (−2,−x), we obtain
from (7) that

f(x) =
3

2

(
1 +

(−1)

1!
3x2 +

(−1)(−2)

2!
(3x2)2 + · · ·

)
−1

2

(
1 +

(−2)

1!
(−x) +

(−2)(−3)

2!
(−x)2 + 4x3 + 5x4 + · · ·

)
=

3

2
− 9

2
x2 +

27

2
x4 + · · · − 1

2
− x− 3

2
x2 − 2x3 − 5

2
x4 + · · ·

= 1− x− 6x2 − 2x3 + 11x4 + · · · ,

for |x| < 1, as required.

(c) To find the equation of the tangent to f at x = 0, we need to compute f(0) and f ′(0).
This can be done by using the series expansion from (4b). In particular, we easily read
off that f(0) = 1. Moreover, f ′(x) = −1 + 12x+ · · · for |x| < 1, and so f ′(0) = −1.
The equation of tangent at the point where x = 0, i.e. y − f(0) = f ′(0)(x − 0), is
therefore y = 1− x.

5. (a) Note that λ is simply a scaling factor for the y-coordinate. The crossing of the graph
with the y-axis is obtained by computing f(0) = 100/λ. Moreover, the crossing points
on the x-axis are given by solving the equation f(x) = 0 in x. Since (x2−4)(x2−25) =
(x− 2)(x+ 2)(x− 5)(x+ 5), we obtain the zeros ±2 and ±5. Further, f is an even
function, with limx→±∞ f(x) = +∞, positive on (−∞,−5) ∪ (−2, 2) ∪ (5,∞) and
negative on (−5,−2) ∪ (2, 5). We thus are able to sketch the graph as follows:

(b) To find the range of f , we need to find its minimum. To this end, we compute the
derivative of f using the product rule (gh)′ = g′h + gh′ with g(x) = x2 − 4 and
h(x) = x2 − 25. In particular,

λf ′(x) = 2x
(
(x2 − 25) + (x2 − 4)

)
= 2x(2x2 − 29).

The roots of f ′(x) = 0 are then 0 and ±
√

29/2. We recognize the latter two are
the x-coordinates of the global minima of f (as shown in our sketch above). (We
can convince ourselves that these are indeed coordinates of global minima by observ-
ing that f ′ is negative (resp. positive, negative, positive) on (−∞,−

√
29/2) (resp.

(−
√

29/2, 0), (0,
√

29/2), (
√

29/2,+∞)).) By the continuity of f , and the previously
made observation that limx→±∞ f(x) = +∞, we obtain the range of f as being[

f

(√
29

2

)
,∞

)
=

[
−441

4λ
,∞
)
.

(c) The figure below shows a sketch of the graph of |f |. Recall from (5b) that a1 :=
|f(±

√
29/2)| = 110.25/λ, whereas a0 = f(0) = 100/λ. In particular, note that we

always have a0 < a1.
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On the figure, we have superimposed a line H with equation y = k. In this particular
configuration H crosses L and R, B−1 and B1 and just touches B0 for a total of k = 7
roots to the equation |f | = k. As we shall see, this situation would require λ not to
be a positive integer, and so in fact does not contribute to the integer solution set
for (k, λ).

From the figure, we identify the following possible values of k, according to which of
L, R, B−1, B0 and B1 the horizontal line H crosses/touches:

(i) k = 2: H crosses L and R. This condition is equivalent to a1 < k, i.e. λ >
110.25/2. Since λ is required to be a positive integer, we have the pairs (k, λ) ∈
{(2, 56), (2, 57), . . .}.

(ii) k = 4: H crosses L and R, just touches B−1 and B1. Equivalently a1 = k,
i.e. 4 = 110.25/λ, which does not yield an integer-valued solution for λ.

(iii) k = 6: H crosses L, R, B−1 and B1. Equivalently a1 > k > a0, i.e. 110.25/λ >
6 > 100/λ. This gives that λ ∈ {17, 18}. So here we get the pairs (k, λ) ∈
{(6, 17), (6, 18)}.

(iv) k = 7: H crosses L and R, B−1 and B1, touches B0. Equivalently k = a0,
i.e. 7 = 100/λ, which again does not yield an integer-valued solution for λ.

(v) k = 8: H crosses L, R, B−1, B0, B1. Equivalently k < a0, i.e. λ < 100/8. Thus
we get the pairs (k, λ) ∈ {(8, 1), . . . , (8, 12)}.

In conclusion, the sought-after pairs of (k, λ) constitute the set

{(2, n) : n ≥ 56} ∪ {(6, 17), (6, 18)} ∪ {(8, n) : 1 ≤ n ≤ 12.}.

6. (a) Since both the left-hand side L =
√

2 +
√

3 −
√

2−
√

3 and the right-hand side
R =

√
2 of the equality we are trying to establish are positive and real, to show

that L = R, it will be enough to establish that L2 = R2. Now, using the relations
(a− b)2 = a2 − 2ab+ b2 and (a+ b)(a− b) = a2 − b2,

L2 =

(√
2 +
√

3

)2

− 2

√
(2 +

√
3)(2−

√
3) +

(√
2−
√

3

)2

= 2 +
√

3− 2
√

4− 3 + 2−
√

3

= 2

= R2,

as required.

(b) By part (6a), we are being asked to show that

log 1
8

(√
2
)

= −1

6
.

The definition of the logarithm is that loga x = b if and only if x = ab (where
a, x ∈ R+, b ∈ R). Hence, the above statement is equivalent to

√
2 = (1/8)−1/6.
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Now, the right-hand side of this satisfies

(1/8)−1/6 = ((1/2)3)−1/6 = (1/2)−1/2 = 21/2 =
√

2,

which confirms the desired result. (Note that we have used the elementary relations
(ax)y = axy and a−x = 1/ax for a ∈ R+, x, y ∈ R.)

(c) Again applying the definition of the logarithm, we are looking for pairs of integers
(a, n) such that √

a+
√

15−
√
a−
√

15 = (1/n)−1/2 =
√
n.

We remark that is necessary to have a ≥
√

15 and n ≥ 1. Both sides of this equation
are then real and positive, hence squaring yields the equivalent demand

a+
√

15− 2
√
a2 − 15 + a−

√
15 = n,

which after cancellation becomes

2(a−
√
a2 − 15) = n.

Hence, we see that n must be even. We can thus divide by 2 to obtain

a− n

2
=
√
a2 − 15.

This implies that b := a − (n/2) is greater than or equal to 0. As a result, the
previous equation is equivalent to

b2 = a2 − 15,

which yields
(a− b)(a+ b) = 15.

It is now essential to observe that a and b are both positive integers. In particular
a + b ≥ a − b. Further to this, 15 factorizes into a product of two integers in
nondecreasing order in precisely two ways: 15 = 1 · 15 and 15 = 3 · 5. It follows that
we can have:

(i) either a− b = 1 and a+ b = 15, i.e. a = 8 and b = 7, hence n = 2(a− b) = 2;

(ii) or a− b = 3 and a+ b = 5, i.e. a = 4 and b = 1, hence n = 2(a− b) = 6.

The sought-after pairs of integers (a, n) are therefore seen to be (8, 2) and (4, 6).

7. (a) The points where C crosses the x-axis are obtained by solving e−x sin(x) = 0. Since
e−x > 0 for all x, the only solutions of this are those for which sin(x) = 0, i.e. x = kπ,
k ∈ Z. Thus the coordinates of P , Q and R are (π, 0), (2π, 0) and (3π, 0), respectively.

(b) The key here is to perform integration by parts (
∫
udv = uv −

∫
vdu) twice. First

(with u = e−x, v = − cos(x), du = −e−xdx, dv = sin(x)dx):

I :=

∫
e−x sin(x)dx = e−x(− cos(x))−

∫
(− cos(x))(−e−x)dx

= −e−x cos(x)−
∫
e−x cos(x)dx.

Now do it again (but with u = e−x, v = sin(x), du = −e−xdx, dv = cos(x)dx), to
get:

I = −e−x cos(x)−
(
e−x sin(x)−

∫
sin(x)(−e−x)dx

)
.
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On the right-hand side we recognize I (modulo an additive constant 2C), from which
we conclude

2I = −e−x (sin(x) + cos(x)) + 2C,

i.e.

I = −1

2
e−x (sin(x) + cos(x)) + C.

(c) To find the area of An, by the findings of (7a), we need to compute:

An =

∫ (2n−1)π

2(n−1)π
e−x sin(x)dx.

Using the formula from (7b), we have:

An =

[
−1

2
(sin(x) + cos(x))

](2n−1)π
2(n−1)π

=
1

2

(
(0 + 1)e−2(n−1)π − (0 + (−1))e−(2n−1)π

)
=

1

2
e−2nπeπ (eπ + 1) .

(d) It is clear from the final expression for An in (7c) that
∑∞

i=1Ai is a geometric series
of the form a+ ar+ ar2 + · · · with a = (1 + e−π)/2 and r = e−2π. Moreover, |r| < 1.
Thus its sum is equal to:

S∞ =
a

1− r
=

1 + e−π

2(1− e−2π)
=

1 + e−π

2(1− e−π)(1 + e−π)
=

1

2(1− e−π)
=

eπ

2(eπ − 1)
,

where in the third to last equality we have used the formula 1− x2 = (1− x)(1 + x)
with x = e−π.

(e) Denote

I =

∫ ∞
0

e−x sin(x)dx,

S =

∫ ∞
0
|e−x sin(x)|dx,

SA =

∞∑
n=1

An,

SB =
∞∑
n=1

Bn,

where B1, B2, . . . represent the (negative) areas between the x-axis and successive
portions of C where y is negative. We then have that

S = SA − SB, I = SA + SB.

We have already identified SA = eπ/2(eπ − 1) in (7d) and we are given I = 1/2.
Hence SB = I − SA = −1/(2(eπ − 1)). Finally,

S = SA − SB =
eπ

2(eπ − 1)
+

1

2(eπ − 1)
=

eπ + 1

2(eπ − 1)
.
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