
AEA 2004 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. First, one needs to eliminate the square root. To do this, we move it to the other side of
the equation and square. The equation then reads

cos2 x = 1− 1

2
sin 2x.

To continue, one can get rid of the term sin 2x by using the trigonometric identity sin 2x =
2 sinx cosx. This leads to the equation

cos2 x = 1− sinx cosx.

In order to remove the constant, one can use the identity cos2 x+ sin2 x = 1 to obtain

sin2− sinx cosx = 0.

One must then be careful not to miss any solution. In particular, one could divide both
sides by sinx, but should before be careful to ensure that sinx 6= 0. A cleaner way
of tackling the problem is to factorise by sinx. The equation sin2− sinx cosx = 0 is
equivalent to

sinx (sinx− cosx) = 0. (1)

The solutions of (1) are given by the solutions of sinx = 0 AND the solutions of sinx =
cosx.

• The solutions 0◦ ≤ x < 360◦ of the equation sinx = 0 are x = 0◦ and x = 180◦.

• The equation sinx = cosx also reads tanx = 1. The solutions 0◦ ≤ x < 360◦ are
x = 45◦ and x = 45 + 180 = 225◦.

To sum up, the solutions of cosx+
√

1− 1
2 sin 2x = 0 in the interval 0◦ ≤ x < 360◦ must

be amongst the values x = 0◦, 45◦, 180◦, 225◦. Finally, one should substitute these into the
original equation to check that we did not create any extra solutions when squaring. This
eliminates x = 0◦, 45◦, and demonstrates that the only actual solutions are x = 180◦, 225◦.

2. (a) (i) We will apply here the binomial expansion of 1/(1− x). In particular,

1

1− x
= 1 + x+ x2 + x3 + . . . =

∞∑
k=0

xk

for |x| < 1. Since
1

(1− x)2
=

d

dx

(
1

1− x

)
it thus follows that

1

(1− x)2
=

d

dx

(
1 + x+ x2 + x3 + . . .

)
= 1 + 2x+ 3x2 + 4x3 + . . . (2)

(ii) Equation (2) also reads
∑∞

n=0(n+ 1)xn. The coefficient of xn is (n+ 1).
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(b) One can notice that nxn = (n+ 1)xn − xn. Therefore, being careful with the initial
value n = 0, we have

∞∑
n=1

nxn =

∞∑
n=0

nxn

=
∞∑
n=0

(n+ 1)xn −
∞∑
n=0

xn

=
1

(1− x)2
− 1

1− x

=
x

(1− x)2
.

This identity is valid for |x| < 1.

(c) Again, we will look to build on the answers to previous parts of the question. Since
(an+ 1)xn = anxn + xn it follows that

∞∑
n=1

(an+ 1)xn = a
∞∑
n=1

nxn +
∞∑
n=1

xn.

One needs to be careful because the sum starts at n = 1. We have

∞∑
n=1

xn =
1

1− x
− 1

and therefore

∞∑
n=1

(an+ 1)xn = a
x

(1− x)2
+

1

1− x
− 1 =

(a+ 1)x− x2

(1− x)2
.

(d) To evaluate
∑∞

n=1
5n+1
23n

it suffices to notice that this also equals
∑∞

n=1(an+ 1)xn =
(a+1)x−x2

(1−x)2 with a = 5 and x = 1
23

= 1
8 . This proof is valid since |x| < 1. As a

conclusion
∞∑
n=1

5n+ 1

23n
=

47

49
.

3. (a) To check that the curve with equation y = f(x) passes through the point (2, 0), we
need to verify that 0 = f(2). Since f(2) = 23 − (k− 4)× 2 + 2k = 0 for any value of
k, the conclusion follows.

(b) Since x0 = 2 is a root of the polynomial equation f(x) = 2, the polynomial f(x) =
x3 − (k + 4)x + 2k can be factorised as f(x) = (x − 2)(ax2 + bx + c) for some
constants a, b, c ∈ R. To find the values of a, b, c, we expand (x− 2)(ax2 + bx+ c) as
ax3+(b−2a)x2+(c−2b)x−2c, and then equate the coefficients with those appearing
in the definition of f(x) given in the question. Specifically, a, b, c must satisfy

a = 1 b− 2a = 0 c− 2b = −(k + 4) − 2c = 2k.

This leads to a = 1, b = 2, c = −k and f(x) = (x + 2)(x2 + 2x − k). In order for
the equation f(x) = 0 to have exactly two distinct solutions, one must ensure that
either:
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• the equation x2 + 2x− k = 0 has only one real solution d and that this solution
is different from 2. This means that there exists d 6= 2 such that x2 + 2x− k =
(x − d)2. The only possible d that could satisfy this condition is d = −1. This
subsequently implies k = −1.

• the equation x2 + 2x − k = 0 has two distinct solutions, one of which equals 2.
As a consequence one can factorise the polynomial x2 + 2x− k as x2 + 2x− k =
(x − 2)(x − d) with d 6= 2. Expanding and equating coefficients, this leads to
d = −4 and k = 8.

To sum up, precisely when k = −1 or k = 8 does the equation f(x) = 0 have exactly
two distinct roots.

(c) Since f is a cubic, the conditions that x is a tangent to the curve and there is a
line y = p intersecting the curve in three distinct points mean that f(x) = 0 has
exactly two distinct roots (see sketch below – note that it is often a good idea to
draw a sketch to work out what the conditions in a question really mean). From
our answer to question 3b, this means that k is equal to either −1 or 8. As we are
told in the question that k > 0, k must take the latter of these two values, and
f(x) = (x+ 4)(x− 2)2.

First note that there exists an α ∈ (−4, 2) such that the curve y = f(x) is strictly
increasing for −∞ < x < α and strictly decreasing for α < x < 2 (and then strictly
increasing for 2 < x < ∞). Consequently, the equation f(x) = p has exactly 3
solutions if, and only if, the value of p satisfies 0 < p < f(α). To find α ∈ (−4, 2)
one must solve the equation f ′(α) = 0, which also reads 3x2 − 12 = 0. Therefore
α = −2 and the equation f(x) = p has exactly three solutions if, and only if, we
have 0 < p < f(−2) = 32.

4. (a) (i) Since the circle has radius r and touches the y-axis at (0, 4), its centre C must
have coordinates (r, 4). The circle touches the line 4y − 3x = 0 at the point
A = (4k, 3k), where k > 0. Note that |OA| =

√
(4k)2 + (3k)2 = 5k. Moreover,

by symmetry about the line OC, we must have that |OA| = 4. Equating these
two expressions for |OA| yields k = 4

5 and A = (xA, yA) = (165 ,
12
5 ). There are

then several approaches to compute the exact value of the radius r.

• One can exploit the fact that the distance |CA| equals r. This leads to the
equation (xA− r)2 + (yA− 4)2 = r2 with (xA, yA) = (165 ,

12
5 ). This quadratic

equation is easily solved and the positive solution is given by r = 2.
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• One can notice that the vector
−→
CA is perpendicular to the line 4y − 3x = 0.

This leads to the equation 4(xA− r) + 3(yA− 4) = 0. The solution is indeed
r = 2.

(ii) The most obvious right-angle in the picture is that between the x and y axes.
We can obtain this as follows:

∠(XOA) + ∠(AOC) + ∠(COY ) =
π

2
,

where we set X = (1, 0) and Y = (0, 1). Furthermore, ∠(XOA) = arctan
(
3
4

)
and ∠(AOC) = ∠(COY ) = arctan

(
r
4

)
with r = 2. In other words,

arctan

(
4

3

)
+ 2 arctan

(
1

2

)
=
π

2
,

as desired.

(b) Let B = (c, d) be the point on the circle where the line 4x+ 3y = q is a tangent (for
some q > 12). We must have that |CB| = r = 2. Moreover, the tangent condition

means that
−−→
CB is perpendicular to the line 4x+ 3y = q. Let us now gives the details

of the computations that these observations imply, starting with the latter.

• The point B = (c, d), which satisfies 4c + 3d = q (since it lies on the line), also
satisfies 3(c− 2)− 4(d− 4) = 0. The solution to these equations is given by

B =

(
4q − 30

25
,
3q + 40

25

)
.

• The square of the distance from C = (2, 4) to the line is(
4q − 30

25
− 2

)2

+

(
3q + 40

25
− 4

)2

.

This quantity equals r2 = 4 only if

(4q − 80)2 + (3q − 60)2 = 502.

The solutions of this quadratic are q = 10, 30. Since it is the only solution in the
desired range, the solution we are looking for is therefore q = 30.

5. (a) One can use the chain rule applied to y = lnu where u = t+
√

1 + t2,

dy

dt
=
dy

du

du

dt
=

1

u

(
1 +

t√
1 + t2

)
=

1

t+
√

1 + t2

(
1 +

t√
1 + t2

)
=

1√
1 + t2

.

Note that we also used the chain rule to compute du
dt .

(b) (i) The student made a mistake when computing the quantity dy
dx . Indeed, the

variable t is not independent from the variable x since they satisfy the relation
x = (1 + t2)−

1
2 . The student should have written instead

dy

dx
=
t+ x dt

dx

tx+ 1
− 1

x
.

(The term t+ x dt
dx comes from differentiating tx according to the product rule.)
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(ii) When confronted with parametric equations, the usual approach for computing
the gradient dy

dx is to compute separately dy
dt and dx

dt and then use the relation

dy

dx
=

(dy/dt)

(dx/dt)
.

We have dx
dt = −t(1 + t2)−3/2 and it was shown in part 5a that dy

dt = (1 + t2)−1/2.
This leads to

dy

dx
=

(1 + t2)−1/2

−t(1 + t2)−3/2
= −1 + t2

t
.

(c) The key here is to recall that − lnu = ln(1/u). In particular, we have

− ln
(
t+
√

1 + t2
)

= ln

(
1

t+
√

1 + t2

)
.

One can then multiply the numerator and the denominator of the fraction inside the
logarithm on the right-hand side by the conjugate quantity t−

√
1 + t2, yielding that

− ln
(
t+
√

1 + t2
)

= ln

(
1

t+
√

1 + t2

)
= ln

(
t−
√

1 + t2

(t−
√

1 + t2)(t+
√

1 + t2)

)

= ln

(
t−
√

1 + t2

t2 − (1 + t2)

)
= ln

(
−t+

√
1 + t2

)
.

(d) Using question 5c it follows that (x(−t), y(−t)) = (x(t),−y(t)). It follows that the
curve is symmetric about the x-axis. It can be sketched as follows:

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-3

-2

-1

0

1

2

3

The key points to drawing this are that at t = 0, the curve passes through the point
(1, 0). Moreover, the derivative there is infinite (see the answer to part 5b(ii)), and
so there is no cusp at this point. As t goes to infinity, x tends to 0 and y tends to
infinity (i.e. the y-axis is an asymptote). Finally, the curve should be symmetric
about the x-axis, as we just observed!

6. (a) The function f(x) = x− [x] is the fractional part of x, and can be sketched as follows:
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(b) Since ∫ 3

2
f(x) dx =

∫ 3

2
(x− 2) dx =

1

2
> 0.18,

it follows that 2 < p < 3. Consequently,

0.18 =

∫ p

2
f(x) dx =

∫ p

2
(x− 2) dx =

1

2
(p− 2)2,

which yields p = 2 +
√

2× 0.18 = 2.6.

(c) The value x0 = 1
2 is a root of the equation x− [x] = 1

1+kx , i.e. we have

1

2
=

1

1 + k
2

.

Solving for k gives k = 2.

(d) The curves of the function y = 1
1+2x and the function y = x− [x] intersect at x0 = 1

2 .
Using this fact, we can draw the following sketch:

(e) The solution n < xn < n+ 1 of the equation x− [x] = 1
1+2x satisfies

xn − n =
1

1 + 2xn
,

since the integral part of xn is n. This also reads

2x2n − (2n− 1)xn − (n+ 1) = 0.

(f) The smallest integer n ∈ N such that xn − n < 0.05 is the smallest integer such that

1

1 + 2xn
= xn − n < 0.05.

Therefore, this is the smallest integer n ∈ N such that

1 + 2xn >
1

0.05
= 20,

which also reads xn > 9.5. Noting that n < xn ≤ n+ 1
2 for every n, we deduce that

n = 10.

7. (a) Since c = AB is a diameter of the circumcircle of the triangle ABC, the angle ACB
must be a right-angle. It follows that a2 + b2 = c2 (draw a sketch to see this!). It is
assumed that a2, b2 and c2 are three consecutive terms of an arithmetic progression.
The common difference d > 0 of this arithmetic progression verifies b2 = a2 + d and
c2 = a2 + 2d. The relation a2 + b2 = c2 is thus equivalent to 2a2 + d = a2 + 2d. This
shows that d = a2 and

b =
√

2a and c =
√

3a.
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(b) The triangle ABC has a right angle at the vertex C. This is why

cotA =
b

a
=
√

2,

cotB =
a

b
=

1√
2

=

√
2

2

and
cotC = 0.

These are three consecutive terms of an arithmetic progression with common differ-

ence −
√
2
2 .

(c) There are several approaches for proving the ‘sine rule’, and we will give just one.
For example, the area of the triangle PQR can be expressed in three different ways,

Area(triangle PQR) =
1

2
p q sinR =

1

2
q r sinP =

1

2
r p sinQ.

The equation 1
2p q sinR = 1

2q r sinP leads to the identity sinR
r = sinP

p . Similarly,

the equation 1
2q r sinP = 1

2r p sinQ leads to the identity sinQ
q = sinP

p . The result
follows by putting these two equalities together.

(d) The cosine rule states that

p2 = q2 + r2 − 2qr cosP,

which also reads
cosP

p
=
q2 + r2 − p2

2pqr
.

Similarly, we have
cosQ

q
=
r2 + p2 − q2

2pqr

and
cosR

r
=
p2 + q2 − r2

2pqr
.

It is assumed that p2, q2 and r2 are three consecutive terms of an arithmetic pro-
gression with common difference d. It follows that

2
(
r2 + p2 − q2

)
= 2q2 =

(
q2 + r2 − p2

)
+
(
p2 + q2 − r2

)
.

Dividing both sides of this equation by 2pqr we have

2(r2 + p2 − q2)
2pqr

=
q2 + r2 − p2

2pqr
+
p2 + q2 − r2

2pqr
,

which is equivalent to

2 cosQ

q
=

cosP

p
+

cosR

r
. (3)
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(e) The sine rule states that

α =
sinP

p
=

sinP

q
=

sinR

r
.

Dividing both sides of equation (3) by α 6= 0, we have

2
1

α

cosQ

q
=

1

α

cosP

p
+

1

α

cosR

r
.

This is equivalent to

2
q

sinQ

cosQ

q
=

p

sinP

cosP

p
+

r

sinR

cosR

r
,

which also reads 2 cotQ = cotP + cotR or cotQ − cotP = cotR − cotQ. This
expresses the fact that cotP , cotQ and cotR are three consecutive terms of an
arithmetic progression.
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