
AEA 2005 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. In many cases, finding maxima and minima require differentiation. However, because the
the equation in this question is of a form that, after some basic manipulation, is readily
recognisable as describing a simple geometric object, this turns out not to be the best
approach. Indeed, by completing the square (twice), we can rewrite the equation as

(x− 3)2 + (y + 4)2 = 9 + 16 + 24 = 49.

Hence the point P lies on a circle with centre (3,−4) and radius 7.

An easy consequence of this is that the greatest and least values of the length OP are
attained when P , as well as sitting on the circle, lies on the line that runs through O and
C, where C is the centre of the circle. (The figure shows the case when the length OP is
the greatest.) In particular, the greatest value of the length OP is given by 7 + |OC|, and
the least is given by 7− |OC|. Since |OC| = (32 + 42)1/2 = 5, these two values are equal
to 12 and 2, respectively.

2. To simplify the expression so that all of the trigonometric functions are in terms of θ,
rather than θ and 2θ, we will start by transforming sin 2θ and cos 2θ using the double-
angle formulae

sin 2θ = 2 sin θ cos θ, cos 2θ = 2 cos2 θ − 1.

In particular, these show that the equality of the question is equivalent to

2 sin θ cos θ + 2 cos2 θ =
√

6 cos θ.

What is immediately noticeable is that all the terms incorporate a factor of cos θ. This
means, after we move all the terms to the same side, we can factorise as follows:

cos θ
(

2 sin θ + 2 cos θ −
√

6
)

= 0.

The solutions of this in the range 0 < θ < 2π are hence given by the solutions of cos θ = 0
AND the solutions of 2 sin θ + 2 cos θ −

√
6 = 0. Firstly, cos θ = 0 at θ = π

2 ,
3π
2 . Secondly,

2 sin θ + 2 cos θ −
√

6 = 0 is equivalent to

sin θ + cos θ =

√
6

2
.
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The left-hand side here can be rewritten using the identity

sin
(
θ +

π

4

)
= sin

(π
4

)
cos θ + cos

(π
4

)
sin θ =

1√
2

(cos θ + sin θ) .

Hence, we are trying to solve

sin
(
θ +

π

4

)
=

√
6

2
× 1√

2
=

√
3

2
.

This gives θ + π
4 = π

3 ,
2π
3 , and so θ = π

12 ,
5π
12 . In conclusion, the solutions of

sin 2θ + cos 2θ + 1 =
√

6 cos θ

in the range θ ∈ (0, 2π) are θ = π
12 ,

5π
12 ,

π
2 ,

3π
2 .

3. At first glance the equation looks quite awkward. However, if we write v =
√
x, then it is

clear the product rule can be applied to the left-hand side as follows:

d

dx
(uv) = u

dv

dx
+ v

du

dx
= u

d
√
x

dx
+
√
x
du

dx
.

Since
d
√
x

dx
=

1

2
√
x
,

it follows that the equation given in the question is equivalent to

u

2
√
x

+
√
x
du

dx
=

1

2
√
x

du

dx
.

Rearranging so as to collect all the terms involving du/dx on one side of the equation, we
obtain (

1

2
√
x
−
√
x

)
du

dx
=

u

2
√
x
,

and consequently, separating the variables,

1

u

du

dx
=

1

1− 2x
.

This is readily integrated to give

lnu = −1

2
ln(1− 2x) + c.

Note here that x ∈ (0, 12), and so ln(1 − 2x) is well-defined. To compute the constant of
integration, we insert the condition that at u = 4, we have x = 3

8 . In particular, this
implies

c = ln 4 +
1

2
ln(1− 2× 3

8
) = ln 4 +

1

2
ln

(
1

4

)
= ln 4− ln 2 = ln 2.

(The rules for logarithms we are applying here are that a lnx = ln(xa) and also lnx−ln y =
ln(x/y).) Hence

lnu = −1

2
ln(1− 2x) + ln 2,

and taking the exponential of both sides yields

u =
2√

1− 2x
.
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4. (a) On a question like this, a quick sketch helps to clarify the problem. (The curve shown
is cosx, −π

2 ≤ x ≤
π
2 .)

As this illustrates, the rectangle has base length equal to 2p and height equal to cos p.
Thus its area is given by 2p cos p.

(b) We need to estimate where the maximum of A = 2p cos p over p ∈ (0, π2 ) lies. We
start by investigating the derivative of A to find the stationary points of A. In
particular,

dA
dp

= 2 cos p− 2p sin p = 2 cos p(1− p tan p).

Since cos p > 0 in the range we are considering, this function is < 0, = 0 or > 0
according to whether p tan p is > 1, = 1 or < 1. Now, p tan p is strictly increasing on
(0, π/2), and satisfies

π

4
tan

(π
4

)
=
π

4
< 1,

1 tan (1) = tan(1) > tan
(π

4

)
= 1.

Hence, there is a unique value α ∈ (π4 , 1) such that

p tan p


< 1, for 0 < p < α,
= 1 for p = α,
> 1 for α < p < π

2 .

We have therefore proved that A is increasing on (0, α), stationary at α, and decreas-
ing on (α, π2 ). Thus p = α is where A is maximised, and we have already shown that
α ∈ (π4 , 1).

(c) The maximum area of the rectangle satisfies S = 2α cosα. To evaluate cosα, we recall
from the previous part of the question that α satisfies α tanα = 1, i.e. tanα = α−1.
By rearranging the identity cos2 α+ sin2 α = 1, it is thus possible to check that

cos2 α =
1

tan2 α+ 1
=

α2

1 + α2
.

Since cosα > 0, this implies that

S = 2α cosα =
2α2

√
1 + α2

.

(d) We notice that the two bounds in the question are simply the expression 2α2/
√

1 + α2

evaluated at α = π
4 and α = 1. More specifically,

2(π/4)2√
1 + (π/4)2

=
π2

2
√

16 + π2
,
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2× 12√
1 + 12

=
√

2.

Hence, to deduce the result, it will be enough to show that the expression for S is
strictly increasing in the range α ∈ (π4 , 1). To do this, we will differentiate:

dS

dα
=

4α√
1 + α2

− 2α3

(1 + α2)3/2

=
4α+ 2α3

(1 + α2)3/2

> 0.

Thus S is indeed strictly increasing, and the inequality

π2

2
√

16 + π2
< S <

√
2

follows.

5. (a) The vector
−−→
AB can be computed as a difference:

−−→
AB =

−−→
OB −

−→
OA = 5i + j− 8k. (1)

Thus the line L1 can be expressed as

r = 7i + 2j− 7k + λ (5i + j− 8k) , λ ∈ R.

(b) To show that the line L2 passes through the origin, we need to find µ ∈ R such that

0 = −4i + 12k + µ(i− 3k).

It is easy to see that this is the case with µ = 4.

(c) We will have proved that the lines L1 and L2 intersect at a point C if we can find
λ, µ ∈ R such that

7i + 2j− 7k + λ (5i + j− 8k) = −4i + 12k + µ(i− 3k).

Equating the coefficients of i, j and k, this requires

5λ− µ = −11,

λ = −2,

−8λ+ 3µ = 19.

Since these equations are solved by λ = −2 and µ = 1, the lines L1 and L2 intersect.
Moreover, the point of intersection C has position vector

−−→
OC = −4i + 12k + 1× (i− 3k) = −3i + 9k.

(d) The ∠OCA = θ is that between the vectors
−−→
CO and

−→
CA, or equivalently the angle

between
−−→
OC and

−→
AC.

θθ

−−→
CO

−→
CA

−→
AC = −

−→
CA

−−→
OC = −

−−→
CO
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In general, the cosine of the angle between two vectors is most easily computed using
their scalar product, and we will use this approach here. In particular,

−−→
OC ·

−→
AC = |

−−→
OC||

−→
AC| cos θ.

We already know that
−−→
OC = −3i + 9k from the previous part of the question. We

can also check that −→
AC =

−−→
OC −

−→
OA = −10i− 2j + 16k.

It follows that

|
−−→
OC| = (32 + 92)1/2 =

√
90 = 3

√
10,

|
−→
AC| = (102 + 22 + 162)1/2 =

√
360 = 6

√
10,

−−→
OC ·

−→
AC = −3× (−10) + 0× (−2) + 9× 16 = 174,

and hence

cos θ =

−−→
OC ·

−→
AC

|
−−→
OC||

−→
AC|

=
174

180
=

29

30
.

(e) We are asked to find the shortest distance from 0 to L1, and to do so, it is suggested
that it will be helpful to apply the conclusion of part (c) regarding the value of
cos θ, where θ = ∠OCA. Let us start by drawing a sketch that includes the relevant
quantities. (Recall that C and A are on the line L1.)

C

O

θ

L1

Clearly the point that minimises the distance from 0 to L1 is that at the root of
the perpendicular shown in the figure; let us call this point D. Since we know that

|
−−→
OC| = 3

√
10 and cos θ = 29/30, it follows that

|
−−→
OD| = |

−−→
OC| sin θ = 3

√
10

√
1−

(
29

30

)2

=

√
59

10
,

where we have used the fact that sinθ + cos2 θ = 1.

(f) We already checked in part (d) that |
−−→
CO| = |

−−→
OC| = 3

√
10. Moreover, we know from

(1) that
−−→
AB =

−−→
OB −

−→
OA = 5i + j− 8k, and so

|
−−→
AB| = (52 + 12 + 82)1/2 =

√
90 = 3

√
10.

Thus |
−−→
CO| = |

−−→
AB|, as desired.

(g) That the previous part of the question was relatively easy is a hint that the conclusion
could be useful in this part. Before we consider exactly how, let us sketch the
situation. In particular, A, B and C all lie in a line, and so we can draw these three
points and O in a common plane as follows.
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C

O

B

A

Note that A lies between C and B on the line. The dotted line shows the bisector of
∠OCA, the equation of which we are asked to find. Now, if we define D by setting

−−→
OD =

−−→
OC +

−−→
AB,

then D lies on the line L1 and also |
−−→
CD| = |

−−→
AB| = |

−−→
OC|. Thus, if we define X by

−−→
OX =

−−→
AB,

then it holds that OCDX forms a rhombus, and the bisector of ∠OCA passes through
C and X:

C

O

D

X

Since −−→
CX =

−−→
CO +

−−→
OX = 8i + j− 17k,

this means that the vector equation of the relevant line is given by

r = −3ii+ 9k + λ (8i + j− 17k) , λ ∈ R.

6. (a) The function f(x) = x(12− x2) has roots at 0 and ±
√

12. Thus P = (−
√

12, 0) and
R = (

√
12, 0). The derivative of f is given by

f ′(x) = 12− 36x2,

and so the stationary points of f (i.e. where f ′(x) = 0) are at x = ±2. Since Q has
a positive x-coordinate, it must therefore have coordinates (2, 16).

(b) (i) Whilst it would of course be possible to compute f(2x) explicitly and thereby
derive the asked-for quantities directly, it is easier to recognise that f(2x) is
obtained by a simple transformation of f(x). In particular, f(2x) has the same
shape as f(x), but is ‘compressed’ in the x-coordinate by a factor of 2. Thus,
from the quantities obtained in part (a), we can easily sketch f(2x) as follows:

(1, 16)

(√
3, 0
)(

−
√

3, 0
)

(−1,−16)

(0, 0)
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Note that the roots of f(2x) are at 0 and ±
√

12/2 = ±
√

3. The local maximum
has x-coordinate 2/2 = 1, but the y-coordinate of 16 is the same as for Q. That
local minimum is at (−1,−16) is a simple result of the symmetry f(x) = −f(−x).

(ii) For this part of the question, we have to consider the change in the behaviour
of |x| at x = 0. For x ≥ 0, we have that |x| = x, and so f(|x| + 1) = f(x + 1),
which is simply a unit shift of f(x) along the x-axis (to the left). For x ≤ 0, we
have that f(| − x|+ 1) = f(|x|+ 1), and so the function f(|x|+ 1) is symmetric
about the x-axis. In particular, using these facts we obtain the following sketch.

(1, 16)

(
2
√

3− 1, 0
)(

1− 2
√

3, 0
)

(−1, 16)

(0, 11)

Note that we now only have two roots for the function, which are at
√

12− 1 =
2
√

3− 1 and 1− 2
√

3. One local maximum has x-coordinate equal to 2− 1 = 1
and y-coordinate 16. The other, by symmetry is at (−1, 16). Finally, although
not asked for, we note that the function has a local minimum at (0, 11), with the
function having a sharp point there, rather than a smooth join.

(c) It would be possible to compute f(x − v) + w directly, solve for v and w using
the given constraints, and then compute its roots. However, this ignores the useful
observation that f(x − v) + w simply represents the function f(x) being shifted to
the right by v and up by w. In particular, to move the local minimum that was
originally at (−2,−16) to T = (−2 + v, 0), we need to shift f(x) up by 16. Hence we
straightaway find that w = 16. Now, we are told that S = (0, f(0− v) + 16) has the
same y-coordinate as U , which is a local maximum. Since the local maximum of f
had coordinates (2, 16), we deduce that U = (2 + v, 16 + 16 = 32) (from the fact the
new graph has been shifted up by 16 units), and therefore f(−v) + 16 = 32. Hence
we can find v by solving f(−v) = 16. This means solving

−v(12− v2) = 16,

or equivalently
(v + 2)2(v − 4) = 0,

which implies that v = −2 or v = 4. Since the minimum of f has moved to a positive
value, we know that v is positive. Thus v = 4, and we can conclude that the graph
shows f(x− 4) + 16.

To find the roots of f(x − 4) + 16, we again need to do no detailed calculations.
Indeed, the first root is at T , and so this has x-coordinate −2 + v = 2. For the
second, we observe that the symmetry f(x) = −f(−x) implies that the x-coordinate
of the root is greater than the x-coordinate of U by precisely the same amount as
the x-coordinate of T is greater than that of S, i.e. 2. Hence the second root is at
6 + 2 = 8.
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7. (a) If x = sec θ, then dx = sec θ tan θdθ. Thus, making the suggested substitution,∫ √
x2 − 1dx =

∫ √
sec2 θ − 1 sec θ tan θdθ

=

∫
sec θ tan2 θdθ,

where the second inequality holds because sec2 θ − 1 = tan2 θ.

(b) We are told to integrate by parts, and so the difficulty here is choosing how to
decompose sec θ tan2 θ into a part we can integrate and a part we can differentiate.
Recall that integration by parts states that∫

u(θ)v′(θ)dθ = u(θ)v(θ)−
∫
u′(θ)v(θ)dθ.

Inspecting the form of the solution, this suggests we should take u(θ) = tan θ and
v(θ) = sec θ. In particular, with this choice u′(θ) = sec2 θ and v′(θ) = sec θ tan θ, and
so ∫

sec θ tan2 θdθ =

∫
u(θ)v′(θ)dθ

= u(θ)v(θ)−
∫
u′(θ)v(θ)dθ

= sec θ tan θ −
∫

sec3 θdθ

= sec θ tan θ −
∫

sec θ(1 + tan2 θ)dθ,

where for the final equality, we again apply that sec2 θ − 1 = tan2 θ. We can not
solve the remaining integral. However, if we break it into two terms, then these are:∫

sec θdθ, which is known to be equal to ln | sec θ+ tan θ|; and
∫

sec θ tan2 θdθ, which
is equal to the left-hand side. Thus a rearrangement gives

2

∫
sec θ tan2 θdθ = sec θ tan θ − ln | sec θ + tan θ|.

Of course, in the above calculation we have omitted to include the constant of inte-
gration. Adding this on, we obtain∫

sec θ tan2 θdθ =
1

2
[sec θ tan θ − ln | sec θ + tan θ|] + c.

(c) The obvious first thought on a question like this should be: How do I use the previous
conclusions to help solve this integral? The clue is in the square root that appears
here and in part (a). In particular, if we apply the identity cos 2x = 2 cos2 x − 1,
then we can write

I =

∫ π/4

0
sinx
√

cos 2xdx =

∫ π/4

0
sinx

√
2 cos2 x− 1dx.

To get an integrand similar to part (a), this suggests we should set u =
√

2 cosx.
Indeed, if we do this, then

√
2 cos2 x− 1 =

√
u2 − 1 and du = −

√
2 sinxdx, from

which it follows that

I = − 1√
2

∫ 1

√
2

√
u2 − 1du =

1√
2

∫ √2
1

√
u2 − 1du.
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(Note the change of sign when we reversed the limits of integration.) Now, by
applying parts (a) and (b), we obtain that

I =
1√
2

∫ π/4

0
sec θ tan2 θdθ

=
1

2
√

2
[sec θ tan θ − ln | sec θ + tan θ|]π/40

=
1

2
√

2

(√
2− ln(1 +

√
2)
)
.
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