
AEA 2006 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) In general, the binomial series expansion of (1 + x)α is given by

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . . .

(The sum converges to a finite limit for any |x| < 1 and α ∈ R.) Thus, setting
x = −y and α = −2, we obtain

(1− y)−2 = 1 + 2y + 3y2 + 4y3 + . . . . (1)

(When answering a question like this, remember to be careful about checking the
signs of the terms are correct!)

(b) The key to this part of the question is in noticing that the numerical coefficients are
increasing linearly, i.e. the first is 1, the second is 2, and so on. These match the
coefficients of the binomial expansion for (1−y)−2 obtained in part (a). In particular,
if we set y = x/(1 + x), then we find that

1 +
2x

1 + x
+

3x2

(1 + x)2
+ · · ·+ rxr−1

(1 + x)r−1
+ . . .

= 1 + 2y + 3y2 + 4y3 + . . .

= (1− y)−2

=

(
1− x

1 + x

)−2
= (1 + x)2.

Hence a = 1 and n = 2.

(c) Since the series in y at (1) converges if and only if |y| < 1, the series in x converges
if and only if ∣∣∣∣ x

1 + x

∣∣∣∣ < 1.

A quick sketch of the function x/(1 + x) = 1− 1/(1 + x) shows what it looks like.

From this, it is clear that |x/(1 + x)| < 1 if and only if x > xC , where xC satisfies
xC/(1 + xC) = −1. This is easily solved to give xC = −1

2 . In conclusion, the series
in part (b) is convergent if and only if x > −1

2 .

2. The first thing we observe about the given equation is that both sides contain the term
sin 2θ−

√
3 cos 2θ. This means that, after we move all the terms to the same side, we can

factorise it: (
sin 2θ −

√
3 cos 2θ

)( 2 cos 2θ

sin θ + cos θ
−
√

6

)
= 0.
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This makes things much easier, because we now just need to check when either of the two
terms is equal to zero.

For the first term, we need to solve

sin 2θ −
√

3 cos 2θ = 0.

This is equivalent to tan 2θ =
√

3, which has solutions 2θ = 60◦ + n × 180◦ for n =
. . . ,−2,−1, 0, 1, 2, . . . . In particular, the solutions that satisfy θ ∈ [0◦, 360◦) are θ =
30◦, 120◦, 210◦, 300◦.

For the second term, we need to solve

2 cos 2θ

sin θ + cos θ
−
√

6 = 0.

So that we are left with only terms involving θ rather than 2θ, we will apply the double-
angle formula cos 2θ = cos2 θ − sin2 θ, to obtain

2(cos2 θ − sin2 θ)

sin θ + cos θ
−
√

6 = 0.

Now, since cos2 θ − sin2 θ = (cos θ − sin θ)(cos θ + sin θ) (and sin θ + cos θ 6= 0), we can
simplify this to

2(cos θ − sin θ) =
√

6.

To reduce this, we will apply a second trigonometric identity,

cos(θ + 45◦) = sin 45◦ cos θ − cos 45◦ sin θ =
1√
2

(cos θ − sin θ) .

This implies that

cos(θ + 45◦) =

√
6

2
√

2
=

√
3

2
,

which has solutions θ + 45◦ = . . . , 30◦, 330◦, 390◦, . . . , and so θ = 285◦, 345◦ are the
solutions in [0◦, 360◦).

In conclusion, in the range [0◦, 360◦), the equation is solved by

θ = 30◦, 120◦, 210◦, 285◦, 300◦, 345◦.

Finally, it is worth noting that in questions like this involving trigonometric functions
examiners are not usually so mean as to require you to go through extremely complicated
algebra, and often what looks like a very awkward equation can be made simpler by a
few clever manipulations. Although there is no way to know what these are in advance, it
is typically a good idea to think about whether you can apply some of your background
knowledge, such as double-angled formulae or addition formulae, in a useful way. Indeed,
the above computations were not especially difficult, but enabled us to solve what started
out as a seemingly-tricky problem of showing where the left-hand side of the given equation
(shown in blue on the following figure) and right-hand side (shown in purple) are equal.
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3. (a) By definition, the number z = logy x solves yz = x. Raising this equation to the

power of 1/z, we obtain y = x1/z. This implies that

logx y =
1

z
=

1

logy x
.

(b) Combining logx y = logy x with the conclusion of part (a), we obtain

logy x =
1

logy x
,

which is equivalent to
(logy x)2 = 1.

This is solved by logy x = ±1. If logy x = 1, then it holds that x = y1 = y. However,
we are told that x > y, and so this can not be the correct solution. Thus, it must
the case that x = y−1, which is of course the same as y = x−1.

(c) From part (b), we already know that the first equation implies that y = x−1. Sub-
stituting this into the second equation yields

logx

(
x− 1

x

)
= log1/x

(
x+

1

x

)
. (2)

To solve this equation, let us again apply the definition of a logarithm to deduce that

xz = x− 1

x
,

(
1

x

)z
= x+

1

x
,

where z is defined to be equal to either side of (2). Multiplying these two equations
together, we find that (

x− 1

x

)(
x+

1

x

)
= xz

(
1

x

)z
= 1,

and so

x2 − 1

x2
= 1.

Multiplying by x2, this yields that x4 − x2 − 1 = 0, which is merely a quadratic
equation in x2. Solving this implies that

x2 =
1 +
√

5

2
,

where we note that we can ignore the root (1−
√

5)/2, because it is negative whereas
x2 is clearly positive. Since x is also positive, it follows that

x =

√
1 +
√

5

2
,

and also, recalling y = x−1,

y =

√
2

1 +
√

5
.

Note that, unlike the previous question, none of the steps here required a ‘trick’; the
key to getting to the end was simply a good grasp of the definition of a logarithm.
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4. (a) If the line y = mx is a tangent to the circle C1, then there is exactly one point (x, y)
that is on both the line and the circle. This point must satisfy both y = mx and the
equation of the circle C1 that is given in the question. Substituting the first equation
into the second and rearranging, we obtain that

(1 +m2)x2 + (8− 14m)x+ 52 = 0. (3)

Now, because there is exactly one point (x, y) that is on both the line and the circle,
it must also hold that this quadratic equation has exactly one solution. Hence, its
discriminant “b2 − 4ac” must be equal to zero, i.e.

(8− 14m)2 − 208(1 +m2) = 0.

A rearrangement yields
3m2 + 56m+ 36 = 0, (4)

as desired.

(b) From the first part of the question, we know that the gradients mA and mB of the
tangents that pass through A and B solve (4). It is straightforward to solve this
equation to find mA = −2/3, mB = −18.

+

+

AA

BB

-12 -10 -8 -6 -4 -2 2

-2

2

4

6

8

10

12

Writing A = (xA, yA), we know from substituting mA into (3) that

13

9
x2A +

52

3
xA + 52 = 0.

Recalling that the discriminant of this quadratic equation has to be zero, this is easily
solved using the quadratic formula:

xA =
−52/3

2× 13/9
= −6.

Since yA = mAxA = 4, we have proved that A = (−6, 4).

An identical argument can be used to check that B = (−2/5, 36/5).

(c) It would be possible to repeat the steps above with the new equations for the tangents
and the circle C2. However, this is a lot of work, and actually unnecessary. Instead,
observing that the centre of the circle C1 is at (−4, 7), it is easy to see that the
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situation here is a translation of the earlier parts of the question, with the origin
moved to (4,−7). (Draw a quick sketch if you are not convinced!) In particular, it
must be the case that

P = A+ (4,−7) = (−2,−3),

Q = B + (4,−7) = (18/5, 1/5).

5. Note that there appears to be a mistake in the question. In particular, the line L1 should
be given by

L1 : r = −2i− 11.5j + λ(3i− 4j− k).

It is possible to solve the question with the given values, but this results in more awkward
numerical solutions (see below).

(a) If the two lines intersect, then there must exist λ, µ ∈ R such that

−2i− 11.5j + λ(3i− 4j− k) = 11.5i + 3j + 8.5k + µ(7i + 8j− 11k).

Equating the coefficients of i, j and k, this requires

3λ− 7µ = 13.5,

4λ+ 8µ = −14.5,

λ− 11µ = −8.5.

We now wish to show that no such λ and µ satisfy these equations. The general
strategy is to solve any two of the equations, and then show that the solutions do
not fit the remaining one. In particular, solving the first and third equations, we
obtain that λ = 8 and µ = 1.5. With these values, 4λ+ 8µ = 32 + 12 = 44, which is
inconsistent with the second equation. Hence, the lines L1 and L2 do not intersect.

(b) Observe that

(3i− 4j− k) · (2i + j + 2k) = 3× 2− 4× 1− 1× 2 = 0,

(7i + 8j− 11k) · (2i + j + 2k) = 7× 2 + 8× 1− 11× 2 = 0.

This implies that the vector (2i + j + 2k) is perpendicular to both L1 and L2.

(c) If A lies on L1 and B lies on L2, then

−→
OA = −2i− 11.5j + λ(3i− 4j− k),
−−→
OB = 11.5i + 3j + 8.5k + µ(7i + 8j− 11k),

for some λ, µ ∈ R. Hence,

−−→
AB =

 13.5 + 7µ− 3λ
14.5 + 8µ+ 4λ
8.5− 11µ+ λ

 .

The third fact we are given is that the line AB is perpendicular to both L1 and L2,
which means that it is parallel to (2i + j + 2k), or in symbols:

−−→
AB =

 2ν
ν
2ν

 ,
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for some ν ∈ R. By comparing the various coordinates of the two expressions for−−→
AB, we obtain that

13.5 + 7µ− 3λ = 2ν = 2(14.5 + 8µ+ 4λ),

13.5 + 7µ− 3λ = 2ν = 8.5− 11µ+ λ.

These can be solved to give λ = −1 and µ = −1/2. Hence we can conclude that

−→
OA = −5i− 7.5j + k,
−−→
OB = 8i− j + 14k.

If the question is solved with L1 as given, then we find that λ = 67/234, µ = 33/13.

6. (a) To show that P = (1, 0) lies on the curve, we just need to note that if x = 1 and
(x, y) lies on C, then y = sin(ln 1) = sin(0) = 0.

(b) To find the coordinates of Q, we need to find the first stationary point of the curve
C with x-coordinate greater than or equal to 1. To do this, our first step will be
to inspect when the derivative of y(x) = sin(lnx) is equal to 0. In particular, by
applying the chain rule,

y′(x) = cos(lnx)
1

x
.

For this to be equal to zero, we require that cos(lnx) = 0. The first time this happens
with x ≥ 1 is when lnx = π/2, i.e. x = eπ/2. The corresponding y-coordinate is
given by y = sin(ln eπ/2) = 1. Hence

Q =
(
eπ/2, 1

)
.

(c) Rather than computing the area A of the shaded region directly, we will compute it
as the difference

A = Area(under C)−Area(PQR),

where: R is defined to be the point (eπ/2, 0); the Area(under C) is that enclosed by
C, the x-axis and the line QR; and the Area(PQR) is that of the triangle PQR.

Firstly,

Area(PQR) =
1

2
(base)× (height) =

1

2

(
eπ/2 − 1

)
. (5)

Secondly, the Area(under C) can be obtained as the integral∫ eπ/2

1
y(x)dx =

∫ eπ/2

1
sin(lnx)dx.
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The composition of two functions suggests that it will be helpful to make a substi-
tution. Setting u = lnx, we have that du = (du/dx)dx = (1/x)dx, or equivalently
dx = eudu, and so

Area(under C) =

∫ π/2

0
sin(u)eudu.

(Remember to change the limits of integration!) Since we can not integrate this
directly, the product of two terms here leads us to try integrating by parts. Doing
this yields

Area(under C) = [eu sinu]
π/2
0 −

∫ π/2

0
cos(u)eudu

= eπ/2 −
∫ π/2

0
cos(u)eudu

Once again, we are left with an integral we can not solve directly, and so we will try
integration by parts for a second time. This gives

Area(under C) = eπ/2 − [eu cosu]
π/2
0 −

∫ π/2

0
sin(u)eudu

= eπ/2 + 1−
∫ π/2

0
sin(u)eudu.

The final term is equal to the integral we started with, and from this observation it
follows that

2×Area(under C) = eπ/2 + 1. (6)

Combining the results at (5) and (6), we obtain

A =
1

2

(
eπ/2 + 1

)
− 1

2

(
eπ/2 − 1

)
= 1.

7. (a) Solving any question involving geometry is nearly always made easier by starting
with a good sketch. The following shows the ith and (i+1)th circles in the sequence:

ri
ri+1

α

Here, ri is the radius of the ith circle, and ri+1 the radius of the (i+ 1)th circle. We
observe from this that the two radii and the line joining the centres of the two circles
enclose a right-angled triangle, with the ‘left-hand’ angle being equal to α. Since the
hypotenuse of this triangle is given by ri + ri+1, and the opposite side to the angle
of size α is given by ri − ri+1, it follows that

sinα =
ri − ri+1

ri + ri+1
.

Rearranging this yields
ri+1

ri
=

1− sinα

1 + sinα
.
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(b) The area enclosed by all the circles is given by

πr21 + πr22 + πr23 + . . . .

From the previous part of the question, we know that

ri = Rsi−1,

where s = (1 − sinα)/(1 + sinα). By applying the standard result for geometric
series that 1 + r+ r2 + · · · = 1/(1− r) with r = s2, it follows that the area of interest
is given by

πR2
(
1 + s2 + s4 + . . .

)
=

πR2

1− s2
.

Substituting in the value of s, the area is thus equal to

πR2(1 + sinα)2

(1 + sinα)2 − (1− sinα)2
=
πR2(1 + sinα)2

4 sinα
. (7)

(c) The first step here is to decompose the area into parts that we can compute. In
particular, we can write the desired area as:

S = 2×Area(POA) + Area(major sector AOB)−Area(enclosed by circles),

where Area(POA) is the area of the triangle POA, Area(major sector AOB) is the
larger sector of C1 when decomposed by the radii AO and OB, and Area(enclosed
by circles) was computed at (7).

To compute the area of POA, we use 1
2 × base × height. The height is given by R,

and the base is given by R cotα, therefore Area(POA)=1
2R

2 cotα.

The area of a sector is given by 1
2R

2θ, where R is the radius of the circle and θ
is the central angle. We know that ∠POA = π/2 − α (since the triangle has one
right-angle). Thus, for the sector we are interested in, θ = 2π−2(π/2−α) = π+ 2α.
It follows that Area(major sector AOB)=1

2R
2θ = (π2 + α)R2.

Combining the various results, we obtain that

S = R2

(
α+ cotα+

π

2
− π(1 + sinα)2

4 sinα

)
.

By expanding the square and simplifying, this can be rewritten as

S = R2
(
α+ cotα− π

4
cosecα− π

4
sinα

)
.

(d) Differentiating the trigonometric functions involved yields

dS

dα
= R2

(
1− cosec2α+

π

4
cosecα cotα− π

4
cosα

)
.

Now, observe that

cosecα cotα =
cosα

sin2 α
= cosαcosec2α,

and so

dS

dα
= R2

(
1− cosec2α+

π

4
cosαcosec2α− π

4
cosα

)
= R2(1− cosec2α)

(
1− π

4
cosα

)
= R2 cot2 α

(π
4

cosα− 1
)
,

where we have applied that cosec2α− 1 = cot2 α to obtain the final equality.
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(e) The usual approach to find a minimum of a functions is to start by looking at values
where its derivative is zero, and this is what we will do here. In the range π

6 ≤ α ≤
π
4 ,

we have that cot2 α > 0 and also

π

4
cosα− 1 ≤ π

4
− 1 < 0,

because cosx ≤ 1 for any value of x. Therefore

dS

dα
< 0,

for every α ∈ [π6 ,
π
4 ]. We learn from this that there are no values of α ∈ [π6 ,

π
4 ] where

the derivative of S is zero. Nonetheless, because the above inequality means that the
function S is decreasing in α, it is possible to conclude that its minimum is obtained
when α = π/4, i.e.

S = R2
(π

4
+ cot

(π
4

)
− π

4
cosec

(π
4

)
− π

4
sin
(π

4

))
= R2

(
1 +

π(
√

2− 3)

4
√

2

)
.
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