
AEA 2007 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) The question requires us to expand an expression of the form (a+ b)n. According to
binomial theorem, if the exponent n is a positive integer, then, for any a and b,

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−1b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · ·+ bn. (1)

More generally, we can write

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + . . . , (2)

where the right-hand side here converges whenever n ≥ 0 is an integer, or when
|b/a| < 1. Note that if n ≥ 0 is an integer, then the series terminates after a finite
number of terms (and when n 6= 0 is equal to the expression at (1)). Comparing

1
(1−y)2 to the left-hand side of equation (2), we have n = −2, a = 1 and b = −y.

Substituting these values into the right-hand side, we obtain that, for |y| < 1,

1

(1− y)2
= 1 + 2y + 3y2 + 4y3 + . . . . (3)

(b) The word ‘hence’ immediately tells us that we should be trying to find a way to use
the previous part of the question. To do this, we start by observing that we can
write the left-hand side of the given equation as(

1

2
cosec2

(
θ

2

))2

=
1

(2 sin2( θ2))2
=

1

(1− cos θ)2
,

where the second equality is obtained by applying the double-angle formula cos(2α) =
1−2 sin2 α with α = θ/2. Now, we recognise that right-hand side above has the form
1/(1− y)2, with y = cos θ. Hence, by applying (3), it follows that

1

4
cosec4

(
θ

2

)
= 1 + 2 cos θ + 3 cos2 θ + 4 cos3 θ + · · ·+ (r + 1) cosr θ + . . . .

Finally, this series only converges when | cos θ| < 1. The values of θ for which this is
not the case are 0,±π,±2π, . . . .

(c) The general term in (3) is given by (r+ 1)yr. This is equal to (r+ 1)/2r when y = 1
2 .

Thus, by applying (3) with this choice of y, we find that

1 +
2

2
+

3

22
+ · · ·+ (r + 1)

2r
+ · · · = 1(

1− 1
2

)2 = 4.

(d) Similarly to the previous part of the question, by applying (3) with y = −1
2 , we

obtain

1− 2

2
+

3

22
+ · · ·+ (−1)r

(r + 1)

2r
+ · · · = 1(

1 + 1
2

)2 =
4

9
.
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2. (a) The two functions can be sketched as follows:

Note that the intersections occur at (0, 0) and (1, 1). To check this, we need to solve
x =
√
x for x ≥ 0. Clearly x = 0 is a solution. If x > 0, then we can divide x =

√
x

by
√
x to obtain

√
x = 1, which is solved by x = 1.

(b) We note from the sketch that for 0 < x < 1 we have x <
√
x. This means that∫ 1

0
xdx =

∫ 1

0

√
xdx−A1,

where A1 > 0 is the area shown here:

A1

A2

a

On the other hand for x > 1, we have x >
√
x. Thus∫ a

1
xdx =

∫ a

1

√
xdx+A2,

where A2 is also shown on the above sketch. Clearly, as a increases from 1 to ∞, the
area of A2 increases continuously from 0 to∞. Thus there exists a value a such that
A2 is identical to A1. For this choice of a, we obtain∫ a

0
xdx =

∫ 1

0
xdx+

∫ a

1
xdx =

∫ 1

0

√
xdx−A1 +

∫ a

1

√
xdx+A2 =

∫ a

0

√
xdx,

as desired.

(c) This part of the question requires usual integration. In particular, we have that∫ a

0
xdx =

[
x2

2

]a
0

=
a2

2
,

and also ∫ a

0

√
xdx =

[
2x3/2

3

]a
0

=
2a3/2

3
.

Thus, for the two integrals to be equal, we require

a2

2
=

2a
3
2

3
.
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Since a > 1, we can divide both sides by a3/2/2 to obtain

√
a =

4

3
,

which implies

a =
16

9
.

(d) There are several approaches to this part of the question, but since we already know

that
∫ 16/9
0 xdx =

∫ 16/9
0

√
xdx, we will try to apply this. Firstly, by reflecting about

the line x = 0, we find that∫ 0

−16/9
(−x)dx =

∫ 16/9

0
xdx =

∫ 16/9

0

√
xdx =

∫ 0

−16/9

√
−xdx.

Combining this with our previous result yields∫ 16/9

−16/9
|x|dx =

∫ 16/9

−16/9

√
|x|dx,

where we note that |x| = −x for x < 0 and |x| = x otherwise. Thus the problem is
solved by setting f(x) = |x| and b = 16/9. An alternative method would be to use a
translation along the x-axis so that the interval (0, 16/9) is shifted to an interval of
the form (−b, b). In particular, letting f(x) = x+ 8

9 and b = 8
9 , we obtain∫ b

−b
f(x)dx =

∫ 8/9

−8/9

(
x+

8

9

)
dx

=

∫ 16/9

0
xdx

=

∫ 16/9

0

√
xdx

=

∫ 8/9

−8/9

√(
x+

8

9

)
dx

=

∫ b

−b

√
f(x)dx.

3. (a) We will start by rewriting the equation in such a way that the arguments of the
trigonometric functions are the same. In particular, we will replace cos 2x by 2 cos2 x−
1 (which is one of the usual double-angle formulae), to obtain

0 = cosx+ cos 2x = 2 cos2 x+ cosx− 1.

This is simply a quadratic equation in the variable cosx, i.e. by letting cosx = y,
we have 2y2 + y− 1 = 0. For this quadratic, we have the factorisation 2y2 + y− 1 =
(2y−1)(y+1), and so the equation has roots 1

2 and −1. It follows that we need to find
all the values of x ∈ [0, 2π) such that either cosx = 1

2 or cosx = −1. The solutions
of the former equation are given by x = π

3 and x = 5π
3 , and the solution of the latter

is x = π. As with many trigonometry problems, this is not the only approach. An
alternative would be to rewrite cosx + cos 2x as 2 cos(3x/2) cos(x/2) using a factor
formula, and find values of x such that either cos(3x/2) = 0 or cos(x/2) = 0.

AEA Extended Solutions produced by the University of Warwick Department of Statistics 3



(b) As we are told in the question, the function arccos(x) is the inverse of cos(x), so that
cos(arccos(x)) = x. Thus, if we apply cos to both sides of the equation

arccos(2x) =
π

2
− arccos(x),

then we obtain
2x = cos

(π
2
− arccos(x)

)
.

Although the right-hand side here looks complicated, we can simplify it using the
addition formula

cos(A−B) = cosA cosB + sinA sinB.

In particular, we deduce

2x = cos
(π

2

)
cos (arccos(x)) + sin

(π
2

)
sin (arccos(x)) .

We know that cos π2 = 0, sin π
2 = 1. This means we can simplify the above equation

to
2x = sin (arccos(x)) .

Now, setting arccosx = y, i.e x = cos y, we can rewrite this as 2 cos y = sin y, and
squaring both sides yields

4 cos2 y = sin2 y = 1− cos2 y.

Hence x = cos y = ±1/
√

5. The exact value of x, x ≥ 0, for which the relevant equa-
tion holds must therefore be x = 1/

√
5. Again, alternative approaches to simplifying

the equation are possible.

4. (a) This is not a standard equation, so we will proceed by plugging in the information

we are given and seeing what happens. In particular, letting h(x) =
(
dy
dx

)2
, we have√∫

h(x)dx =

∫ √
h(x)dx

=

∫ √(
dy

dx

)2

dx

=

∫
dy

dx
dx

=

∫
dy

= y + c,

and so, squaring both sides of this equation,∫
h(x)dx = (y + c)2.

This is close to what we want, but we need to get rid of the integral. To do this, we
will differentiate, recalling that, if we have a function F defined as an integral of f ,
i.e. F (x) =

∫
f(x)dx, then the derivative of F at x is given by f(x). Applying this

in our case yields

h(x) =
d

dx

(
(y + c)2

)
= 2(y + c)

dy

dx
,
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where the second inequality is obtained using the chain rule. Substituting in the
definition of h(x), this is equivalent to(

dy

dx

)2

= 2(y + c)
dy

dx
.

Finally, we are told that h(x) > 0, and so it must also be the case that dy
dx 6= 0. This

means we can divide the above equation by dy
dx to obtain

dy

dx
= y + c,

as desired.

(b) To find an expression for y, we will integrate the equation dy
dx = 2(y + c). First,

though, let us rearrange so that all the terms involving y are on the left-hand side:

1

y + c

dy

dx
= 2.

Now, integrating with respect to x,∫
1

y + c

dy

dx
dx =

∫
2dx∫

1

y + c
dy =

∫
2dx

ln(y + c) = 2x+ α,

where α is a constant of integration. Taking exponentials, this implies y + c = Ae2x

for some constant A(= eα), or equivalently

y = Ae2x − c.

(c) We know that y = Ae2x − c and hence dy
dx = 2Ae2x. Substituting this into h(x), we

obtain

h(x) =

(
dy

dx

)2

= (2Ae2x)2 = 4A2e4x.

Thus, finding A2 will determine h(x) completely. Since we are given that h(0) = 1,
it must hold that 1 = 4A2e0 = 4A2, and so h(x) = e4x.

5. (a) To the original square S1, 4 squares of side a
3 were added to form S2. To each of

these, 3 squares of side a
9 were added to form S3. To each of these, 3 squares of side

a
27 need to be added to form S4. Thus, in total 4×3×3 = 36 squares of side a

27 need
to be added to S3 to form S4.

(b) Denote by Pn the perimeter of Sn. The perimeter of S1 is readily observed to be
P1 = 4a. The perimeter of S2 is obtained from this by adding 2× a

3 for each of the
4 squares of side a

3 added. Hence

P2 = 4a+ 4× 2× a

3
=

20a

3
.

Similarly, the perimeter of S3 is obtained from P2 by adding 2 × a
9 for each of the

4× 3 = 12 squares of side a
9 added. Hence

P3 =
20a

3
+ 12× 2× a

9
=

28a

3
.
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(c) By continuing the iteration described in part (a), we have that, in general, 4× 3n−1

squares of side a
3n need to be added to go from Sn to Sn+1. For each of these, we

increase the perimeter of Sn by 2× a
3n . Hence we obtain the relationship

Pn+1 = Pn + 4× 3n−1 × 2× a

3n
= Pn +

8a

3
.

Thus, we obtain that P1, P2, . . . is an arithmetic progression with common difference
8a
3 . Since P1 = 4a, this means that

Pn = 4a+
8a(n− 1)

3
=

4a

3
+

8a

3
n.

(d) From part (d), we see that as n increases, so does the perimeter Pn in a linear fashion.
A particular consequence of this is that as n → ∞, we have Pn → ∞, i.e. for any
constant C, we can always find a value of n such that the perimeter Pn is larger than
C.

(e) Denote by An the area of Sn. Clearly A1 = a2. The area of S2 is obtained from this

by adding
(
a
3

)2
for each of the 4 squares of side a

3 added. Hence

A2 = a2 + 4×
(a

3

)2
=

13a2

9
.

Similarly, the area of S3 is obtained from A2 by adding
(
a
9

)2
for each of the 12 squares

of side a
9 added. Hence

A3 =
13a2

9
+ 12×

(a
9

)2
=

43a2

27
.

(f) As we have already noted, in general, 4× 3n−1 squares of side a
3n need to be added

to go from Sn to Sn+1. For each of these we add
(
a
3n

)2
to the area of An. Hence

An+1 = An + 4× 3n−1 ×
( a

3n

)2
= An +

4a2

3n+1
.

Since A1 = a2, this implies that

An = A1 +
4a2

3

n−1∑
m=1

3−m = a2 +
4a2

9

n−2∑
m=0

3−m.

Now, for any geometric series, we have that

N∑
m=0

rm =
1− rN+1

1− r
,

(assuming r 6= 1), and so

An = a2 +
4a2

9
× 1− 3−(n−1)

1− 3−1
.

This value is strictly smaller than

S = a2 +
4a2

9
× 1

1− 3−1
=

5a2

3
.

Moreover, by letting n → ∞, the area An can be made as close as we like to this
value, and so this is the smallest value of a constant with this property.
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6. (a) The area of the rectangle R in Figure 2 of the exam paper is obtained by multiplying
its width, π2 −x, by its height, tan x

2 (since point P has coordinates (x, tan x
2 )). Hence

its area is
A =

(π
2
− x
)

tan
x

2
.

(b) The area A is a product of two functions, f(x) = π
2 − x and g(x) = tan(x/2). As a

consequence, we can apply the product rule when differentiating it:

dA

dx
=

df

dx
g(x) + f(x)

dg

dx

= − tan
x

2
+
(π

2
− x
) d(tan x

2 )

dx
.

We now recall that the derivative of tanx is given by sec2 x, and so

dA

dx
= − tan

x

2
+

1

2

(π
2
− x
)

sec2
x

2
.

Moreover, because

tan
x

2
=

sin x
2

cos x2
= cos

x

2
sin

x

2
sec2

x

2
=

1

2
sinx sec2

x

2
,

where we have applied the identity sinx = 2 sin x
2 cos x2 , it follows that

dA

dx
= −1

2
sinx sec2

x

2
+

1

2

(π
2
− x
)

sec2
x

2

=
1

4
(π − 2x− 2 sinx) sec2

x

2

as required.

(c) The quantity dA
dx is a measure of rate of change in the area A in terms of x, and to find

a maximum it would be helpful to find where it takes the value of 0. However, the
function is a bit too complicated to do this directly. Instead, we start by observing
that A is increasing if dA

dx is positive and decreasing if dA
dx is negative. Hence, because

dA
dx is a continuous function, to show that A has a maximum in the interval (π4 ,

π
3 ),

it will be enough to check that dA
dx > 0 for x ≤ π/4 and dA

dx < 0 for x ≥ π/3. To do

this, first note that if 0 ≤ x ≤ π/4, then sinx ≤ sin π
4 = 1/

√
2. Hence, for x ∈ [0, π4 ],

we have
dA

dx
≥ 1

4

(
π − π

2
− 2√

2

)
sec2

x

2
≥ 1

4

(π
2
−
√

2
)

sec2
x

2
> 0.

(Note that sec2 x is always strictly positive.) Similarly, if x ∈ [π3 ,
π
2 ], we have sinx ≥

sin π
3 =
√

3/2, and so

dA

dx
≤ 1

4

(
π − 2π

3
−
√

3

)
sec2

x

2
=

1

4

(π
3
−
√

3
)

sec2
x

2
< 0.

This confirms that A does indeed reach its maximum at a value of x that is strictly
between x = π

4 and x = π
3 .

(d) To solve this part of the question, we start by recalling that tan π
4 = 1. Applying

this fact in conjunction with the double-angle formula

tanx =
2 tan x

2

1− tan2 x
2

,
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we obtain

1 =
2 tan π

8

1− tan2 π
8

.

Rearranging, this implies that

tan2 π

8
+ 2 tan

π

8
− 1 = 0.

Now, the solutions of the quadratic equation x2 + 2x − 1 = 0 are −1 ±
√

2. Hence,
because tan π

8 is positive, we must have that

tan
π

8
=
√

2− 1.

(e) From 6(c) we know that at x = π
4 the area A of the rectangle R is smaller than its

maximum value. Moreover, by applying the conclusion of part (d) we know that the
area of A when x = π

4 is given by

A|x=π
4

=
(π

2
− x
)

tan
x

2

∣∣∣
x=π

4

=
(π

2
− π

4

)
tan

π

8
=
π

4
(
√

2− 1).

Thus the maximum value of A is strictly greater than π
4 (
√

2− 1).

7. (a) The key to solving this part of the question is the observation that the angles formed
by drawing lines from the ends of the diameter of a circle to its circumference form
a right angle. In particular, the angle ∠OPQ is a right-angle, and so

−−→
PO ·

−−→
PQ = |

−−→
PO||

−−→
PQ| cos(∠OPQ) = 0.

Now, we can write that
−−→
PO = −p and

−−→
PQ = q−p, which means the above inequality

can be written as
−p · (q− p) = 0.

Since the dot product is distributive (i.e. a · (b+ c) = a ·b+ a · c), this implies that

p · q = p · p = |p|2.

(b) A quick sketch using the facts about S given in the question helps us to clarify where
the point lies:

Since
−→
PS = λq− p is perpendicular to

−−→
OQ = q, it must be the case that

(λq− p) · q = 0.
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Rearranging, again using the distributivity of the dot product, we obtain

λq · q = p · q = |p|2,

where we have applied the conclusion of part (a) to deduce the second inequality.
Now, q·q = |q|2 = 22+12+(−2)2 = 9, while |p|2 = 12+22+(−1)2 = 6. Substituting
these values into the above equation, we find that

λ =
2

3
.

(c) Since OPQR is a kite, the triangle OQR is just a mirror image of OQP (with respect
to the line of reflection OQ). It follows that

−→
SR = −

−→
SP =

−→
PS,

and subsequently −→
PR =

−→
PS +

−→
SR = 2

−→
PS.

Therefore, the position of R relative to O is given by
−−→
OR =

−−→
OP +

−→
PR =

−−→
OP + 2

−→
PS =

−−→
OP + 2

(−→
OS −

−−→
OP
)

= 2
−→
OS −

−−→
OP = 2λq− p.

Substituting p = i + 2j− k, q = 2i + j− 2k and λ = 2/3, we obtain

−−→
OR =

5

3
i− 2

3
j− 5

3
k.

(d) The area of K is equal to the sum of the areas of the triangles OPQ and OQR. Since
by symmetry both triangles have the same area, we must therefore have the area of
K is equal to twice the area of OPQ. Thus,

Area of K = 2×Area of OPQ

= 2× 1

2
|
−−→
OQ||

−→
PS|

=
√

18,

since |
−−→
OQ| = |q| = 3 and

|
−→
PS| =

√(
1

3

)2

+

(
4

3

)2

+

(
1

3

)2

=

√
18

3
.

(e) Since OQP and OQR are mirror images, it suffices just to look at one triangle OQP .
We are told that the circle C1 is tangent to the sides of the kite, which includes the
lines OP and PQ. This means that if we draw a radius from the centre of the circle,
U say, to the point where it touches OP , T say, then this will be perpendicular to
the line OP . A similar observation may be made about the radius that touches PQ.
Hence, we obtain the square shown in the following figure:
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As a consequence, we are able to deduce that

|
−−→
PQ|
|
−−→
OP |

= tan(∠POQ) = tan(∠TOU) =
|
−→
TU |
|
−→
OT |

=
r

|
−−→
OP | − r

.

Substituting in the values |
−−→
PQ| =

√
3 and |

−−→
OP | =

√
6, this implies that

√
3√
6

=
r√

6− r
,

and rearranging gives

r =

√
18√

6 +
√

3
=
√

6(
√

2− 1).

(f) We are given that K1 is to C1 as K is to C. Moreover, we know that the radius of C
is given by 1

2 |q| =
3
2 and the radius of C1 is given by

√
6(
√

2−1). This means that the

ratio between the side lengths of the kite K1 to those of K is equal to 2
3

√
6(
√

2− 1).
(Note that similarity means the angles of the two kites will be the same.) Since areas
scale like length squared, it follows that

Area of K1 = Area of K ×
(

2

3

√
6(
√

2− 1)

)2

=
√

18×
(

2

3

√
6(
√

2− 1)

)2

= 8
√

2
(√

2− 1
)2
.

Notice that we did not have to do any complicated calculations to compute the area
directly.
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