
AEA 2009 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) The quadratic curve y = (x + 1)(2 − x) crosses the x-axis at x = −1 and x = 2,
and the y-axis at y = 2. From these facts, it is easy to draw an accurate sketch of
function:

To sketch the function y = x2 − 2|x|, it is necessary to consider the change in the
behaviour of |x| at x = 0. In particular, for x ≥ 0 it holds that |x| = x, whereas for
x ≤ 0 it is the case that |x| = −x.

Thus, when x ≥ 0, the given function looks like y = x2 − 2x = x(x − 2), which is a
quadratic function that crosses the x-axis at x = 0 and x = 2, and the y-axis at y = 0.
Moreover, in the case x ≤ 0, the given function looks like y = x2 + 2x = x(x + 2),
which is a quadratic function that crosses the x-axis at x = −2 and x = 0, and
the y-axis at y = 0. Combining these observations, the sketch can be completed as
follows:

Note that, because the two parts of the curve that have been used to draw the graph
for y = x2 − 2|x| are both U-shaped, there must be a sharp point at x = 0 rather
than a smooth join there.

(b) It can be seen from the sketch that there are two points of intersection of the two
curves. One of these occurs when x = 2. (Since it was already noted when drawing
the sketch that this is the point where both curves cross the axis, no more calculations
are needed to check this.) The other can be seen to occur in the range x ∈ (−2,−1).
Since in this range it holds that x2 − 2|x| = x2 + 2x, it is necessary to solve

(x+ 1)(2− x) = x2 + 2x.

By rearranging, this is equivalent to solving 2x2 + x− 2 = 0, which yields

x =
−1±

√
17

4
.

To select which of these roots is the one of interest, observe that

x =
−1 +

√
17

4
> −1

4
> −1,
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and so this root is outside the range (−2,−1). This means that the correct choice is
given by taking

x =
−1−

√
17

4
.

2. (a) To work out what the tangent to the curve y = xsinx is at the point where x = π
2 , it is

first necessary to work out the value of y there. This is given by y = (π2 )sin(π/2) = π
2 .

Next, one must calculate the value of the slope at this point. Although it is not
immediately clear how to differentiate y = xsinx, if logs are applied to both sides,
then one obtains

ln y = sinx lnx,

upon which the chain rule and the product rule can be used. In particular, by
differentiating using these rules, it follows that

1

y

dy

dx
= cosx lnx+

sinx

x
,

and multiplying both sides by y = xsinx gives the derivative of interest:

dy

dx
= xsinx

(
cosx lnx+

sinx

x

)
. (1)

In particular, at x = π
2 , this takes the value

π

2

(
cos
(π

2

)
ln
(π

2

)
+

sin
(
π
2

)(
π
2

) )
= 1.

If a line passes through (a, b) with slope m, then it has equation y − b = m(x − a).
Hence, since the tangent to y = xsinx at x = π

2 passes through (π2 ,
π
2 ) and has slope

1, it has equation y − π
2 = x− π

2 , which can be simplified to y = x. The diagram on
the left-hand side of Figure 1 shows the curve and this tangent.

Finally for this part, note that the above argument for differentiating y = xsinx could
be used to differentiate any function of the form y = f(x)g(x) where f(x) > 0. You
might like to check as an exercise that, for such a function,

dy

dx
= f(x)g(x)

(
g′(x) ln f(x) + g(x)

f ′(x)

f(x)

)
.

(b) The curves y = xsinx and y = x intersect at x if and only if xsinx = x. Clearly
this holds whenever sinx = 1, which occurs for x = π

2 + 2nπ for any n = 0, 1, 2, . . . .
To show that the line y = x is only touching at these points, it will be enough to
show that xsinx < x for every x > 1 which is not of the form π

2 + 2nπ, because this
means that the curve y = xsinx must rise up to hit the line y = x from below at
x = π

2 + 2nπ and then immediately fall below again. To do this, first observe that
for those x ∈ (1,∞) that are not equal to π

2 + 2nπ for some n = 0, 1, 2, . . . , it holds
that sinx < 1 and lnx > 0. Hence sinx lnx < lnx, and so, because ex is a strictly
increasing function, xsinx < x, as desired. The first five points where the two graphs
touch are shown on the right-hand side of Figure 1. Observe that y = xsinx and
y = x also intersect at x = 1, but at this point the gradient of the curve y = xsinx is
given by sin 1 6= 1, and so the two graphs actually cross there.
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(
π
2 ,

π
2

)

Figure 1: Graphs of the functions y = xsinx and y = x.

Finally, let it be noted that the above argument implies that y = x is a tangent to
y = xsinx at each of the points x = π

2 + 2nπ for any n = 0, 1, 2, . . . . Checking this
can also be done directly by first using the formula at (1) to deduce that the gradient
of y = xsinx at x = π

2 + 2nπ is given by

(π
2

+ 2nπ
)(

cos
(π

2
+ 2nπ

)
ln
(π

2
+ 2nπ

)
+

sin
(
π
2 + 2nπ

)(
π
2 + 2nπ

) )
= 1.

Since the tangent to the curve y = xsinx at the point where x = π
2 + 2nπ passes

through (π2 + 2nπ, π2 + 2nπ) and has gradient 1, it follows that its equation is given
by y = x, as claimed.

3. (a) To start with, use the trigonometric identity

sin(a− b) = sin(a) cos(b)− cos(a) sin(b) (2)

to rewrite the given equation as

sin
(π

3

)
cos (θ)− cos

(π
3

)
sin (θ) =

1√
3

cos(θ).

Such an argument should be the first thing to spring to mind when confronted with

a similar type of equation. Since sin(π3 ) =
√
3
2 and cos(π3 ) = 1

2 , the above equation is
equivalent to

sin (θ) =

(√
3− 2√

3

)
cos(θ) =

1√
3

cos(θ).

Now, the places where cos(θ) = 0, i.e. θ = π
2 and θ = 3π

2 are not solutions of the
equation (because at these places sin(θ) 6= 0), so it is possible to ignore these values
of θ and divide through by cos(θ) to obtain

tan(θ) =
1√
3
.

(Note that if the values θ = π
2 and θ = 3π

2 were not excluded, then it would mean
dividing by 0 at these points, which is a bad thing to do!) At this point, it is
important not to forget that in general a trigonometric equation has more than one
solution. In this case, the equation has 2 solutions between 0 and 2π given by θ = π

6
and θ = 7π

6 .
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As a final remark, we recall that to solve an equation of the type a cos(θ)+b sin(θ) = c,
one may use the fact that the left-hand side can always be written as r cos(θ + α),
where r > 0 and 0 ≤ α < 2π are well-chosen constants. Can you work out what r
and α are?

(b) Suppose x solves the given equation. To get rid of the arcsin, it will be useful to take
sin of both sides, which yields

sin (arcsin (1− 2x)) = sin
(π

3
− arcsinx

)
.

For any x ∈ [−1, 1] we have sin(arcsin(x)) = x, and so the left-hand side is equal
to 1 − 2x. For the right-hand side, the trigonometric identity at (2) again seems
suitable. In particular, it implies

1− 2x = sin
(π

3

)
cos (arcsinx)− cos

(π
3

)
sin (arcsinx)

=

√
3

2
cos (arcsinx)− x

2
.

To compute cos(arcsin(x)) one can use the fact that

cos(arcsin(x))2 + sin(arcsin(x))2 = 1.

This give cos(arcsin(x)) = ±
√

1− x2. However, by assumption 0 < x < 0.5, which
implies 0 < arcsin(x) < π/6 , and consequently cos(arcsin(x)) must be positive, i.e.
cos(arcsin(x)) =

√
1− x2. Thus we can rewrite our equation as

1− 2x =

√
3

2

√
1− x2 − x

2
,

or equivalently

2− 3x =
√

3
√

1− x2.
To solve this equation, one needs to square both sides, which leads to the quadratic
equation

12x2 − 12x+ 1 = 0

whose solutions are given by x = 3±
√
6

6 . The only solution that lies in the interval

(0, 12) is x = 3−
√
6

6 .

4. (a) The function f(x) satisfies f ′(x) = u(x)
v(x) . To find f ′′(x), we need to differentiate,

which we can do by applying the quotient rule, which is just a combination of the
chain rule and the product rule. In particular,

f ′′(x) =

(
d

dx
u(x)

)
1

v(x)
+ u(x)

d

dx

(
1

v(x)

)
=

u′(x)

v(x)
− u(x)v′(x)

v(x)2

=
u′(x)v(x)− u(x)v′(x)

v(x)2
.

Since f ′(k) = 0, it must hold that u(k) = 0, and therefore

f ′′(k) =
u′(k)v(k)

v(k)2
=
u′(k)

v(k)
.
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(b) (i) The point A is the place where the curve C crosses the y-axis. Since the y-axis is

simply the line x = 0, A must have coordinates (0, yA), where yA = 2×02+3
02−1 = −3.

(ii) It is important to remember that, in general, curves can have horizontal and/or
vertical asymptotes. As is shown on the sketch, the curve C has both. To find
the vertical asymptotes of C, we have to find where the denominator of 2x2+3

x2−1
vanishes. This is the case when x2−1 = 0, meaning that the equations of the two
vertical asymptotes are given by x = −1 and x = 1. The horizontal asymptote
is found by computing the limit of 2x2+3

x2−1 as |x| becomes large (note that, by the
symmetry of C about the y-axis, it does not matter if we look in the positive or
negative direction). To find this, we rewrite the expression as follows:

2x2 + 3

x2 − 1
=

2 + 3
x2

1− 1
x2

.

Since the terms involving x−2 disappear as |x| goes to infinity, the limit is equal
to 2, meaning that the equation of the horizontal asymptote is y = 2.

(iii) The point P = (a, b), where a > 0 and b > 0, lies on C; we note for later that
this means

b =
2a2 + 3

a2 − 1
. (3)

The point Q also lies on C with PQ parallel to the x-axis and AP = AQ. Again
using the symmetry of the curve C about the y-axis, this means that Q = (−a, b).

As with any triangle, the area A(PAQ) of the triangle PAQ equals

1

2
× (base)× (height).

In this case, we can take

(base) = |PQ| = 2a

(height) = b+ |yA| = b+ 3 =
2a2 + 3

a2 − 1
+ 3,

where we have applied (3) to obtain the final expression. Therefore

A(PAQ) = a

(
2a2 + 3

a2 − 1
+ 3

)
=

5a3

a2 − 1
.
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(iv) By the previous part of the question, in order to find the minimum area of
triangle PAQ as the variable a > 0 varies, we need to find the minimum of the
function f(a) = 5a3/(a2 − 1). By applying the quotient rule, the derivative of
this function can be checked to be equal to

f ′(a) =
5a2(a2 − 3)

(a2 − 1)2
.

This is equal to 0 if a = 0 or a = ±
√

3. Thus the only stationary point of f(a)
with a > 0 is given by a =

√
3. To check that this point is a minimum, we

study the second derivative of f there. We could do this directly, but it will be
quicker to use part (a) of the question. In particular, since we have that f ′(a) is
of the form u(a)/v(a), with u(a) := 5a2(a2 − 3) and v(a) = (a2 − 1)2, and also
u(
√

3) = 0, part (a) of the question implies that

f ′′(
√

3) =
u′(
√

3)

v(
√

3)
.

Now, u′(a) = 20a3 − 30a, and therefore

f ′′(
√

3) =
20
√

3
3 − 30

√
3

(
√

3
2 − 1)2

=
(60− 30)

√
3

4
=

15
√

3

2
> 0,

which implies that a =
√

3 is a minimum. In conclusion, the minimum area of
PAQ is equal to

f(
√

3) =
5
√

3
3

√
3
2 − 1

=
15
√

3

2
.

5. (a) (i) To compute the area A(ABC) of the triangle ABC, knowing the angles A,B,C
and the side lengths a,b and c one can use the formula

A(ABC) =
1

2
ab sin(C) =

1

2
bc sin(A) =

1

2
ca sin(B). (4)

The final expression here looks a little bit like the answer we are given. In

particular, it will be enough to check that sinB =
√
3
2 . To check this, we need

to find a way to apply the assumption that the sizes of the angles A, B and C
form an arithmetic sequence, i.e. A = θ, B = θ + α and C = θ + 2α for some
θ, α > 0.

A fact that holds for all triangles is that the internal angles sum to π. In our
case, this means

π = A+B + C = 3θ + 3α.
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Or equivalently, π/3 = θ+α = B. Hence, sinB =
√
3
2 , and so formula (4) shows

that

A(ABC) =
1

2
ca sin(B) =

ac
√

3

4
,

as desired. Note that we did not need to work out the exact values of θ or α.

(ii) To exploit the relationships between the angles and the side lengths of a triangle
one can use the sine rule,

sin(A)

a
=

sin(B)

b
=

sin(C)

c
.

Since B = π
3 and a = 2 and sin(A) =

√
15
5 , it follows that b = a sin(B)

sin(A) =
√

5.

(iii) Here, it will be easiest to use the cosine rule,

b2 = a2 + c2 − 2ac cos(B),

because we already know the values of a, b and B. In particular, replacing these
variables by their numerical values leads to the quadratic equation

c2 − 2c− 1 = 0.

The solutions of this equation are c = 1 ±
√

2, but since c is clearly positive, it
must be the case that c = 1 +

√
2.

Alternate solution: Again using the sine rule,

c = a
sin(C)

sin(A)
=

10 sin(C)√
15

.

We do need to compute the value of sin(C), though. To do this, we again use
that A+B + C = π, and also that sin(π − x) = sin(x), to deduce

sin(C) = sin(π − (A+B)) = sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

=

√
15

5

1

2
+ cos(A)

√
3

2
.

Since sin(A) =
√
15
5 and sin(A)2 + cos(A)2 = 1, we have that cos(A) =

√
2√
5

(recall

that 0 < A < B = π/3, and so cos(A) is positive). This shows that

sin(C) =

√
3(1 +

√
2)

2
√

5

and gives

c =
10 sin(C)√

15
= 1 +

√
2.

(b) For any n-sided polygon, the sum of the internal angles equals (n−2)×180◦. We will
use this fact to help us work out the value of n. In particular, we are told that the
internal angles form an arithmetic sequence with first term u1 = 143◦ and common
difference 2◦, i.e. the k-th internal angle uk is given by uk = 143◦+(k−1)×2◦. Since
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a polynomial with n sides has n internal angles, it follows that the sum of internal
angles is given by

S = u1 + · · ·+ un

=
n

2
(u1 + un)

=
n

2
(143◦ + 143◦ + (n− 1)× 2◦)

= (n2 + 142n)◦.

By equating the two different expressions that we have for the sum of internal angles,
we obtain that

n(142 + n) = 180(n− 2). (5)

The quadratic equation (5) is readily solved, with its two solutions being given by
n = 18 and n = 20. The solution n = 20 is not satisfying because u20 = 143◦ + 19×
2◦ = 181◦ > 180◦. Hence, the polygon has n = 18 sides.

6. (a) The point P = (xP , yP ) corresponds to the point on the curve C where t = π
3 .

Therefore
xP = 2 sin(tp) =

√
3, yP = ln(sec(tp)) = ln(2).

We also need to find the gradient of C at P . Since x and y are functions of the
variable t, we start by rewriting dy

dx in terms of dy
dt and dx

dt as follows:

dy

dx
=
dy

dt

(
dx

dt

)−1
=

tan(t)

2 cos(t)
.

Thus, the gradient of C at the point P , is given by

m =
dy

dx tp
=

tan(π/3)

2 cos(π/3)
=
√

3.

Hence, because the equation of the tangent to C at P is given by y = yP +m(x−xP ),
we obtain

y = ln(2) +
√

3(x−
√

3).

This line intersects the x-axis at A = (xA, 0). The x-coordinate xA satisfies

0 = ln(2) +
√

3(xA −
√

3).

This shows that

A =

(
3− ln 2√

3
, 0

)
.

(b) The area R is difficult to compute directly. However, if we let Q = (xP , 0) (see figure
below), then one can compute the area of R as the difference

Area(R) = Area(under C)−Area(APQ),

where by Area(under C) we mean the area enclosed by C, the x-axis and the line
PQ.
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We have Area(APQ) = 1
2 × (base)× (height) with (base) = |AQ| =

√
3− 3−ln 2√

3
and

(height) = yP = ln(2), therefore

Area(APQ) =
(ln 2)2

2
√

3
. (6)

The area under C between O and P can be obtained by integration,

Area(under C) =

∫ π
3

t=0
y dx

=

∫ π
3

t=0
y
dx

dt
dt

=

∫ π
3

t=0
ln(sec t) 2 cos(t) dt.

The term ln(sec t) is difficult to integrate but has a simple derivative,

d

dt
ln(sec t) = tan t.

This motivates an integration by parts,

Area(under C) =

∫ π
3

t=0
ln(sec t) 2 cos(t) dt

=
[
2 tan(t) cos(t)

]π
3

0
−
∫ π

3

t=0
2 tan(t) sin(t) dt.

To integrate the term tan(t) cos(t), one can try first to simplify it and express it in
terms of the usual trigonometric functions,

tan(t) sin(t) =
sin(x)2

cos(x)
=

1− cos(x)2

cos(x)
= sec(x)− cos(x).

Consequently
∫

tan(t) sin(t) dt = ln
∣∣ sec(t) + sin(t)

∣∣− sin(t) and

Area(under C) =
[
2 tan(t) cos(t)− 2 ln

∣∣ sec(t) + sin(t)
∣∣+ 2 sin(t)

]π
3

0
(7)

=
√

3
(

ln(2) + 1
)
− 2 ln

(
2 +
√

3
)
.
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By combining (6) and (7) it follows that

Area(R) = Area(under C)−Area(APQ)

=
√

3
(

ln(2) + 1
)
− 2 ln

(
2 +
√

3
)
−
√

3

6
(ln 2)2,

which is what we were asked to prove.

7. (a) To find the cosine of the angle θ between two vectors ~u and ~v, the most obvious thing
to do is to use the formula

~u · ~v = ‖~u‖‖~u‖ cos(θ). (8)

Consequently, θ = angle(ABC) satisfies
−−→
BA ·

−−→
BC = ‖

−−→
BA‖‖

−−→
BC‖ cos(θ). We have

−−→
BA = a− b = −5i + 5k
−−→
BC = c− b = 2i + 4j.

Thus
−−→
BA ·

−−→
BC = −10 and ‖

−−→
BA‖ = 5

√
2 and ‖

−−→
BC‖ = 2

√
5. This gives

cos(θ) = − 1√
10
.

(b) The area of a triangle ABC is equal to 1
2×|BC|×|BA|×sin(θ) with θ = angle(ABC).

Since

sin(θ) =
√

1− cos(θ)2 =

√
1− 1

10

(note that we must take the positive root, because the angle is less than π), it follows
that the area of the triangle ABC equals

1

2
× 2
√

5× 5
√

2×
√

1− 1

10
.

By symmetry, the area of the kite K is equal to twice the area of ABC,

Area(K) = 2 Area(ABC) = 2× 1

2
× 2
√

5× 5
√

2×
√

1− 1

10
= 30.

(c) The circle is drawn inside K and touches each of the 4 sides of K. Notice that, since
K is a kite, the centre Y of the circle lies on the segment AC. Moreover, the two
radii shown in the following figure are perpendicular to BC and AB, respectively.

A

B

C

Y

r

r
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To find the radius r of the inscribed circle, we start by observing that

Area(K) = 2×
[
Area(ABY ) + Area(BCY )

]
.

This formula is useful because the triangles can be considered as each having height
r. In particular, Area(ABY ) = 1

2r × |AB| and Area(BCY ) = 1
2r × |BC|. Since

|AB| = 5
√

2 and |BC| = 2
√

5 it follows that

30 = Area(K) = 2×
[1

2
r × 5

√
2 +

1

2
r × 2

√
5
]
,

where we have recalled the value of Area(K) from part (b). This equation is readily
solved and gives r = 5

√
2− 2

√
5.

(d) The point D is the symmetric to B with respect to the line AC, and there are
many different approaches to compute it. One can, for example, compute first the
coordinate of the middle point X of the segment BD.

A

B

C

A

B DX

Since K is a kite, the point X belongs to AC and vector
−−→
BX is perpendicular to

−→
AC.

The first of these observations means that
−−→
AX = t ×

−→
AC for a certain real number

t ∈ [0, 1], which is equivalent to
−−→
AX = (7t, 4t,−5t). Since

−−→
BX =

−−→
BA +

−−→
AX =

(−5 + 7t, 4t, 5− 5t) and
−→
AC = (7, 4,−5), it follows from the second observation that

0 =
−−→
BX ·

−→
AC = 7× (−5 + 7t) + 4× 4t− 5× (5− 5t).

This gives t = 2
3 . To obtain D one can use the equation

−−→
OD =

−−→
OB + 2

−−→
BX with

−−→
OB = (4, 43 , 2) and

−−→
BX = (−5 + 7t, 4t, 5− 5t) and t = 2

3 . This shows that

−−→
OD =

(
10

3
,
20

3
,
16

3

)
.
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