
AEA 2012 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) Notice that f(x) is a quadratic form in x with a positive leading coefficient. Therefore
its range, which is the set {f(x) : x ∈ [0,∞)}, will be the interval [a,∞), with a
being the minimum of f (on [0,∞)) – draw a sketch if you don’t immediately see
why! To find the minimum, either complete the square:

f(x) = x2 − 2x+ 6 = (x− 1)2 − 1 + 6 = (x− 1)2 + 5,

or else differentiate:
f ′(x) = 2x− 2.

From either approach, we find that the function f attains its minimum at 1, with
f(1) = 5. Thus a = 5, and the range of f is the interval [5,∞).

(b) We are to asked to find the composition g ◦ f =: gf . (The notation gf is actually
slightly ambiguous, as it could also be interpreted as meaning the product, rather
than the composition of the functions g and f .) Notice that the range of f is a subset
of the domain of g, and hence the domain of g ◦ f is that of f , namely [0,∞). For
all x in this range, we have

(g ◦ f)(x) = g(f(x)) = 3 +
√
f(x) + 4 = 3 +

√
x2 − 2x+ 6 + 4 = 3 +

√
x2 − 2x+ 10,

as requested.

(c) As remarked in the solution to (1b), the domain of g ◦ f is [0,∞). To find the range,
we observe that g is a continuous strictly increasing function, and g(x) tends to ∞
as x tends to ∞. From this we conclude that g maps the range of f , [5,∞), onto
[g(5),∞). Since g(5) = 3 +

√
5 + 4 = 3 +

√
9 = 3 + 3 = 6, the range of g ◦ f is the

interval [6,∞).

2. (a) We need to convert the sin(3x) into trigonometric functions involving only x. To do
this, we start by using the addition formula sin(α+β) = sin(α) cos(β)+cos(α) sin(β)
with α = 2x and β = x to deduce

sin(3x) = sin(2x+ x)

= sin(2x) cos(x) + cos(2x) sin(x)

Now we can use the double angle and addition formulae, sin(2x) = 2 sin(x) cos(x)
and cos(2x) = cos2(x)− sin2(x), to obtain

sin(3x) = 2 sin(x) cos2(x) + (cos2(x)− sin2(x)) sin(x)

= 2 sin(x)(1− sin2(x)) + (1− 2 sin2(x)) sin(x),

= 3 sin(x)− 4 sin3(x),

where we have also applied sin2(x) + cos2(x) = 1 in the second line. Alternatively,
using DeMoivre’s theorem, eiθ = cos(θ) + i sin(θ), we have (for θ = 3x)

e3ix = cos(3x) + i sin(3x). (1)

On the other hand
e3ix = (eix)3 = (cos(x) + i sin(x))3,
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again by DeMoivre’s theorem (with θ = x). Finally, applying the identity (a+ b)3 =
a3 + b3 + 3a2b+ 3ab2, we expand, to get:

e3ix = cos3(x)− i sin3(x) + 3i cos2(x) sin(x)− 3 cos(x) sin(x)2. (2)

Comparing (1) and (2) (and using the fact that if two complex numbers are equal,
then so are their imaginary parts), we find

sin(3x) = 3 cos2(x) sin(x)− sin3(x) = 3(1− sin2(x)) sin(x)− sin3(x).

which easily yields the required identity.

(b) We observe that by (2a),

6 sin(x)− 2 sin(3x) = 6 sin(x)− 2(3 sin(x)− 4 sin3(x)) = 8 sin3(x).

It follows that

(6 sin(x)− 2 sin(3x))2/3 = 82/3(sin3(x))2/3 = 22 sin2(x) = 4 sin2(x).

Thus we are to compute I1 := 4
∫

sin2(x) cos(x)dx. Now, a substitution v = sin(x),
dv = cos(x)dx, yields immediately

I1 = 4

∫
v2dv =

4

3
v3 + c =

4

3
sin3(x) + c,

where c is a constant of integration.

(c) Again we first simplify the integrand (by using the double angle formula for sine,
and (2a)):

3 sin(2x)− 2 sin(3x) cos(x) = 6 sin(x) cos(x)− 2(3 sin(x)− 4 sin3(x)) cos(x)

= 8 sin3(x) cos(x),

and hence
(3 sin(2x)− 2 sin(3x) cos(x))1/3 = 2 sin(x) cos1/3(x).

Thus we are to compute I2 := 2
∫

cos1/3(x) sin(x)dx. Substitute u = cos(x), du =
− sin(x)dx, to obtain

I2 = −2

∫
u1/3du = − 2

4/3
u4/3 + c = −3

2
cos4/3(x) + c,

where c is a constant of integration.

3. (a) First note that θ needs to be distinct from π/4 in order for tan(2θ) to be well-defined!
We next observe that the right-hand side of the equation is a geometric progression
with common ratio ρ = cos(2θ) and scale factor a = 2. It follows that

∞∑
r=0

2 cosr(2θ) =
a

1− ρ
=

2

1− cos(2θ)
,

where, thanks to θ ∈ (0, π/2)\{π/4}, |ρ| = | cos(2θ)| < 1. So, the equation becomes:

tan θ tan(2θ) =
2

1− cos(2θ)
.
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We now use the double angle formulae, cos(2θ) = cos2(θ) − sin2(θ) = 1 − 2 sin2(θ)
and tan(2θ) = 2 tan(θ)/(1− tan2(θ)), to express everything in terms of trigonomet-
ric functions of θ (guided by the question, wherein computing tan(θ) is ultimately
desired). These give

2 tan2(θ)

1− tan2(θ)
=

1

sin2(θ)
.

We still need to express the right-hand side in terms of tan(θ). To this end, we have:

tan2(θ) =
sin2(θ)

cos2(θ)
=

sin2(θ)

1− sin2(θ)
=

1

cosec2(θ)− 1
.

It follows that

cosec2(θ) = 1 +
1

tan2(θ)
.

So we must solve:
2 tan2(θ)

1− tan2(θ)
=

1 + tan2(θ)

tan2(θ)
.

(Note that since θ ∈ (0, π/2)\{π/4}, then tan(θ) /∈ {0, 1}). Cross-multiplying yields:

2 tan4(θ) = 1− tan4(θ).

Hence tan4(θ) = 1/3, and so tan(θ) = 3−1/4, i.e. p = −1/4.

(b) On the interval (0, π/2), tan is a strictly increasing bijection from (0, π/2) onto
(0,∞). Thus, the equation tan(θ) = 3−1/4 has a unique solution, and this will
be in the interval (π/6, π/4) if and only if tan(π/6) < 3−1/4 < tan(π/4). Since
tan(π/6) = 3−1/2 < 3−1/4 and tan(π/4) = 1 > 3−1/4, the value of θ must indeed lie
in the interval (π/6, π/4).

4. (a) We first observe that if X and Y are two vertices of a cube, side length a, then
the length of the line joining them, |XY |, can be one of a, a

√
2 or a

√
3, according

to whether XY is an edge, a face diagonal, or a diagonal of the cube, respectively.
Thus if |AB|, |BC| and |AC| are all different, we shall be able to conclude that the
smallest is the length of the edge a. We calculate:

|AC| = |c− a| = |(11,−5,−1)| =
√

147;

|BC| = |c− b| = |(3,−2,−6)| =
√

49 = 7;

|AB| = |(8,−3, 5)| =
√

98.

It follows that a = 7, and the volume of the cube is a3 = 73 = 343.

(b) We will aim to find the value of α from the relation:

~PQ · ~PR = | ~PQ|| ~PR| cos(QPR).

We can compute ~PQ · ~PR = 3 · 7 + 4 · 1 + α · 0 = 25 and also

| ~PQ| =
√

32 + 42 + α2 =
√

25 + α2,

| ~PR| =
√

72 + 12 + 02 =
√

50 = 5
√

2,

cos 60◦ = 1/2.

So
50 = 5

√
2
√

25 + α2,

from which α = 5 is readily obtained.
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(c) From the first observation of (4a), it follows immediately that | ~PQ| = | ~PR| must be
lengths of face diagonals. (Indeed, were PR and PQ edges, QPR = 90◦; and since
PR 6= PQ, these two certainly can’t be space diagonals.) Thus the length of the side
is

a = | ~PQ|/
√

2 = 5
√

2/
√

2 = 5,

and the length of the space diagonal a
√

3 = 5
√

3 follows. (The term diagonal is
slightly ambiguous, and it would have been better to distinguish between the face
diagonals and diagonals of the cube explicitly in the instruction.)

5. (a) The correct was to reexpress loga x
n is n loga x. This means the equation we are

trying to solve is nz = zn, where z = loga x. Since we are told x 6= 1, we know that
z 6= 0, and we can divide by z to obtain n = zn−1. We can take roots to get

loga x = z = n1/(n−1),

where we note that n−1 > 0 (since n > 1). Finally, by the definition of the logarithm,

x = an
1/(n−1)

.

(b) (i) To solve this equation, we first simplify the left-hand side, by using loga x
m =

m loga x, m ∈ {1, 2, 3}. This yields:

6 loga x = loga x+ loga x
2 + loga x

3.

Hence, we are now trying to solve

z3 + z2 − 5z = 0,

where we again write z = loga x. As in our previous answer, we know that z 6= 0,
and so we can divide by z to obtain z2 + z − 5 = 0. This has solutions

z1 =
−1 +

√
21

2
, z2 =

−1−
√

21

2
.

Now, since a > 1, it must be that az1 > 1 > az2 . We conclude

x1 = az1 = a
−1+

√
21

2 , x2 = az2 = a
−1−

√
21

2 .

(ii) It follows from (5b) that

loga

(
x1
x2

)
= loga x1 − loga x2 = z1 − z2 =

√
21.

(c) The left-hand side can be simplified in a similar way as in (5b). Specifically:

loga x+ · · ·+ loga x
n = (1 + · · ·+ n) loga x =

n(n+ 1)

2
loga x, (3)

where we have used loga x
m = m loga x for m ∈ {1, . . . , n}, and also the identity

1 + · · ·+ n =
n(n+ 1)

2
.
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To simplify the right-hand side, we use the geometric progression formula

1 + · · ·+ zm =
zm+1 − 1

z − 1

for m ∈ N, z 6= 1. This gives (with z = loga x, m = n− 1):

(loga x)1 + · · ·+ (loga x)n = loga x
(
1 + · · ·+ (loga x)n−1

)
= loga x

(loga x)n − 1

loga x− 1
, (4)

where we have benefited from x 6= a, hence loga x 6= 1. Equating (3) and (4), we are
thus able to simplify the equation to

n(n+ 1)

2
���loga x = ���loga x

(loga x)n − 1

loga x− 1
,

where the cancellation is allowed because loga x 6= 0 (as x 6= 1). Rearranging gives,

n(n+ 1) loga x− n(n+ 1) = 2(loga x)n − 2,

from which the desired identity follows.

6. (a) The points P and Q have y-coordinates 0, and the x-coordinates are obtained by
solving y = (x+ a)(x− b)2 with y = 0. This yields that xP = −a and xQ = b, i.e. P
has coordinates (−a, 0) and Q has coordinates (b, 0).

(b) To calculate the area of the shaded region between the curve PSQ and the x-axis,
we must compute the integral:

G :=

∫ b

−a
(x+ a)(x− b)2dx.

To this end, first make a change of variables, y = x+ a, dy = dx, to get

G =

∫ (a+b)

0
y(y − (a+ b))2dy.

(The motivation for this shift is that the limits of integration, 0 and a + b, seem
convenient given the answer we are trying to obtain.) We now expand the square to
give

G =

∫ (a+b)

0
y3dy − 2(a+ b)

∫ (a+b)

0
y2dy + (a+ b)2

∫ (a+b)

0
ydy.

Since
∫ (a+b)
0 y3dy = (a+ b)4/4,

∫ (a+b)
0 y2dy = (a+ b)3/3 and

∫ (a+b)
0 ydy = (a+ b)2/2,

it follows that

G =
(a+ b)4

4
− 2(a+ b)4

3
+

(a+ b)4

2
=

(a+ b)4

12
.

Of course, an alternative would be to conduct a direct expansion of (x + a)(x − b)2
into a polynomial in x, followed by term-by-term integration, though this is more
cumbersome.

(c) We first sketch the rectangle PQRST we are trying to find the area of:
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We know that the horizontal edges of PQRST have length (b − (−a)) = (a + b).
Thus, to find the area of PQRST , it will suffice to find the length of its vertical
edges. This quantity is given by the y-coordinate of S, yS say. Since S is a local
maximum of the curve y(x), we first try to identify its x-coordinate by looking for
solutions to the equation y′(x) = 0. Using the product rule (fg)′ = f ′g + fg′ with
f(x) = x+ a and g(x) = (x− b)2:

y′(x) =
d

dx

(
(x+ a)(x− b)2

)
= 1 · (x− b)2 + (x+ a) · 2(x− b).

Setting the derivative equal to zero yields that either x = b (x-coordinate of point
Q, a local minimum), or else x − b + 2(x + a) = 0, hence x = (b − 2a)/3. Since the
point (b, y(b)) = (b, 0) corresponds to Q, we deduce that xS = (b − 2a)/3. We then
obtain yS by computing

yS = y(xS) = y((b− 2a)/3) =
a+ b

3

(
−2a− 2b

3

)2

=
4

27
(a+ b)3.

Finally, the area of the rectangle PQRST is (a+ b)yS = 4
27(a+ b)4, and so:

k =
1
12(a+ b)4

4
27(a+ b)4

=
27

48
=

9

16
,

where we have taken into account that G = (a+ b)4/12, as shown in (6b).

7. (a) The cosine function attains its maximum 1 at 2kπ, k ∈ Z. Since its range is the
interval [−1, 1] and 1 < 2π, it follows that cos(cos(x)) attains its maximum of 1
at values x, for which cos(x) = 0, i.e. x = π

2 + kπ, k ∈ Z. Thus we obtain that
P = (π/2, 1) and R = (3π/2, 1). On the other hand, since the range of cos is
[−1, 1], cos is even and decreasing on [0, π/2], and 1 ≤ π/2, it must be the case
that cos(cos(x)) attains its minimum of cos(1) = cos(−1) at values x for which
cos(x) = ±1, i.e. x = kπ, k ∈ Z. Thus Q has coordinates (π, cos(1)).

(b) As x increases over the interval [0, 2π), cos(x) decreases from 1 to −1 and then
increases back to 1 again. The function sin(cos(x)) thus starts at sin(1), decreases
to 0 at x = π/2, continues to decrease to sin(−1) at x = π, and then makes a return,
crossing 0 again at x = 3π/2. From this it is clear that the minimum point of C2

has coordinates (π,− sin(1)), whereas the points of intersection of C2 with the x-axis
are (π/2, 0) and (3π/2, 0). Moreover, cos(1) < sin(1) < 1, since π/4 < 1 < π/2. The
sketch of C2 follows:
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(c) The point S is an intersection of curves C1 and C2, and this means that

cos(cos(α)) = sin(cos(α)),

where α is the x-coordinate of S. Thus

tan(cos(α)) = 1

(there is no risk of dividing by zero, since cos(cos(α)) is no smaller than cos(1) > 0).
This implies cos(α) = π/4 + kπ, k ∈ Z. Since cos(α) ∈ [−1, 1], we conclude cos(α) =
π/4, and so α = arccos(π/4), as desired.

(d) The number d is the y-coordinate value of S, so we need only to plug in α into the
equation for C2 (or C1):

d = sin(cos(arccos(π/4))) = sin(π/4) = 1/
√

2.

Since cos(x) = cos(2π − x), the two curves C1 and C2 are symmetric in a reflection
about the line x = π. Thus, the x-coordinate of T is given by 2π − arccos(π/4) and
the y-coordinate by 1/

√
2.

(e) To obtain the gradient m = tan(β) of the tangent to C1 at S, we should evaluate the
derivative of cos(cos(x)) with respect to x at x = arccos(π/4). Using the chain rule
(g ◦ f)′ = (g′ ◦ f) · f ′ with g = f = cos, we obtain

d

dx
(cos(cos(x))) = − sin(cos(x))(− sin(x)) = sin(x) sin(cos(x)).

Plugging in x = arccos(π/4), we get

m = sin(arccos(π/4)) sin(π/4).

Now, sin(π/4) = 1/
√

2 and

sin(arccos(π/4)) = +
√

1− cos2(arccos(π/4)) =
√

1− (π/4)2,

where it is clear that sin(arccos(π/4)) ≥ 0 (since the gradient at the point S is clearly
positive). Finally,

m =
1√
2

√
1− (π/4)2 =

√
16− π2

32
,

as required.
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(f) Just as we have found the gradient of the tangent to C1 at S in (7e), we find the
gradient m′ = tanβ′ of the tangent to C2 at S. First,

d

dx
(sin(cos(x))) = cos(cos(x))(− sin(x)) = − sin(x) cos(cos(x)).

Plugging in x = arccos(π/4)), we get

m′ = −m = −
√

16− π2
32

.

We now remark that
√

16−π2

32 < 1, hence β < π/4, and β′ = −β > −π/4. The acute

angle between the two tangents is thus β−β′ = β− (−β) = 2β < π/2 and the obtuse
angle (∈ (π/2, π)) is π − 2β.
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