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Overview of talk

1. Problem statement (setup and notation; log-likelihoods; potential applications)

2. Standard asymptotics for mis-specified likelihoods (definition of estimator;
large-sample properties of estimator and log likelihood ratio)

3. Adjusting the working log-likelihood (motivation; options for adjustment;

geometry of adjustment in 1-D; multiparameter example; comparing nested
models; other applications)

4. Open questions
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Setup and notation

Data arise as k ‘clusters’
{

y j : j = 1, . . . ,k
}

(k could be 1)
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Setup and notation

Data arise as k ‘clusters’
{

y j : j = 1, . . . ,k
}

(k could be 1)

y j =
(
y1 j . . . yn j j

)′
is vector of n j observations in cluster j

Let C j be conditioning set for y j (may include covariates and “history” — allow

yi ∈ C j for i < j , but not for i ≥ j , hence clusters may be interdependent)

Observations from family of distributions with joint density

k

∏
j=1

f j
(
y j | C j ; θ,α

)
.

for parameter vectors θ, α

Interested in / tractable model available for low-dimensional margins of joint

distributions.

Conditionally upon C j , low-dimensional margins are fully determined by θ → α is
nuisance parameter for high-dimensional joint structure.
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Log-likelihoods

Full log-likelihood function is `FULL (θ,α) = ∑k
j=1 log f j

(
y j |C j ;θ,α

)
, but joint

distributions usually difficult to model.
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Log-likelihoods

Full log-likelihood function is `FULL (θ,α) = ∑k
j=1 log f j

(
y j |C j ;θ,α

)
, but joint

distributions usually difficult to model.

Alternative : use ‘working’ log-likelihood based on low-dimensional margins:

`WORK (θ) =
k

∑
j=1

log f̃ j (y j |C j ;θ)

where log f̃ j (y j |C j ;θ) is contribution from cluster j (NB α missing here)
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j=1 log f j

(
y j |C j ;θ,α

)
, but joint

distributions usually difficult to model.

Alternative : use ‘working’ log-likelihood based on low-dimensional margins:

`WORK (θ) =
k

∑
j=1

log f̃ j (y j |C j ;θ)

where log f̃ j (y j |C j ;θ) is contribution from cluster j (NB α missing here)

Examples:

Independence log-likelihood : `IND (θ) = ∑k
j=1 ∑

n j
i=1 log fi j (yi j |C j ;θ) so that

log f̃ j (y j |C j ;θ) = ∑
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i=1 log fi j (yi j |C j ;θ).
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Full log-likelihood function is `FULL (θ,α) = ∑k
j=1 log f j

(
y j |C j ;θ,α

)
, but joint

distributions usually difficult to model.

Alternative : use ‘working’ log-likelihood based on low-dimensional margins:

`WORK (θ) =
k

∑
j=1

log f̃ j (y j |C j ;θ)

where log f̃ j (y j |C j ;θ) is contribution from cluster j (NB α missing here)

Examples:

Independence log-likelihood : `IND (θ) = ∑k
j=1 ∑

n j
i=1 log fi j (yi j |C j ;θ) so that

log f̃ j (y j |C j ;θ) = ∑
n j
i=1 log fi j (yi j |C j ;θ).

(Weighted) log pairwise likelihood :

`PAIR (θ) =∑k
j=1 w j ∑

n j−1
i1=1 ∑

n j
i2=i1+1 log fi1,i2, j (yi1 j ,yi2 j |C j ;θ) so that

log f̃ j (y j |C j ;θ) = w j ∑
n j−1
i1=1 ∑

n j
i2=i1+1 log fi1,i2, j (yi1 j ,yi2 j |C j ;θ).
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Some potential applications

Longitudinal studies:

‘Clusters’ are patients

Can be assumed independent
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Some potential applications

Longitudinal studies:

‘Clusters’ are patients

Can be assumed independent

Space-time data (multiple time series):

‘Clusters’ are observations made at same time instant

Temporal autocorrelation may be present — can be handled by including
previous observations into conditioning sets {C j}
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Definition of estimator

‘Working score’ function is

U(θ) =
∂`WORK

∂θ
=

k

∑
j=1

U j (θ) say.
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‘Working score’ function is

U(θ) =
∂`WORK

∂θ
=

k

∑
j=1

U j (θ) say.

If data are generated from distribution with θ = θ0 then, under general conditions,

working score contributions
{

U j (θ0)
}

are uncorrelated with zero mean (may
need to include ‘history’ into C j to ensure this when clusters are interdependent

— see Chapter 5 of Statistical Methods for Spatial-temporal Systems, eds.
Finkenstadt, Held & Isham, CRC Press, 2007).
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Definition of estimator

‘Working score’ function is

U(θ) =
∂`WORK

∂θ
=

k

∑
j=1

U j (θ) say.

If data are generated from distribution with θ = θ0 then, under general conditions,

working score contributions
{

U j (θ0)
}

are uncorrelated with zero mean (may
need to include ‘history’ into C j to ensure this when clusters are interdependent

— see Chapter 5 of Statistical Methods for Spatial-temporal Systems, eds.
Finkenstadt, Held & Isham, CRC Press, 2007).

Estimator θ̂WORK satisfies U
(
θ̂WORK

)
= ∑k

j=1 U j
(
θ̂WORK

)
= 0.
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Large-sample properties of θ̂WORK

Usual asymptotics hold e.g. for large k, θ̂WORK ∼ N
(
θ0,HV−1H

)
where

H = E

(
∂2`WORK

∂θ∂θ′

∣∣∣∣
θ=θ0

)
, V = Var

[
k

∑
j=1

Uj (θ0)

]
=

k

∑
j=1

E
[
Uj (θ0)Uj (θ0)

′]
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R = Ĥ
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— gives Wald tests & confidence regions for components of θ
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Estimate V using empirical counterpart: V̂ = ∑k
j=1 U j

(
θ̂WORK

)
U j
(
θ̂WORK

)′

Covariance matrix of θ̂WORK estimated consistently by robust estimator

R = Ĥ
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(
θ0,HV−1H

)
where
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∂2`WORK

∂θ∂θ′

∣∣∣∣
θ=θ0

)
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=
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∑
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[
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Estimate H using either expected or observed Hessian at θ̂WORK, say Ĥ.

Estimate V using empirical counterpart: V̂ = ∑k
j=1 U j

(
θ̂WORK

)
U j
(
θ̂WORK

)′

Covariance matrix of θ̂WORK estimated consistently by robust estimator

R = Ĥ
−1

V̂Ĥ
−1

— gives Wald tests & confidence regions for components of θ

Contrast with naïve estimator N = −Ĥ
−1

(ignores mis-specification of working

log- likelihood)

NB other techniques required for small k — application-dependent
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Large-sample properties of working log likelihood

Partition θ as (φ′ ψ′)
′ and let θ̃WORK = argsupψ=ψ0

`WORK(θ).
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Large-sample properties of working log likelihood

Partition θ as (φ′ ψ′)
′ and let θ̃WORK = argsupψ=ψ0

`WORK(θ).

For large k:

Distribution of ΛWORK= 2
[
`WORK

(
θ̂WORK

)
− `WORK

(
θ̃WORK

)]
is

approximately that of weighted sum of χ2
1 random variables

Weights are solution to partition-dependent eigenproblem
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Large-sample properties of working log likelihood

Partition θ as (φ′ ψ′)
′ and let θ̃WORK = argsupψ=ψ0

`WORK(θ).

For large k:

Distribution of ΛWORK= 2
[
`WORK

(
θ̂WORK

)
− `WORK

(
θ̃WORK

)]
is

approximately that of weighted sum of χ2
1 random variables

Weights are solution to partition-dependent eigenproblem

Can be used for profile-based inference on components of θ.

Composite Likelihoods Workshop, Warwick, April 2008 – p. 10/20



1. Problem statement

2. Standard asymptotics for mis-specified likelihoods

3. Adjusting the working log-likelihood

4. Open questions

Composite Likelihoods Workshop, Warwick, April 2008 – p. 11/20

Motivation

Profile log-likelihoods useful for tests & confidence regions.
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Motivation
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‘Classical’ approach adjusts ‘naïve’ critical values for tests based on `WORK(θ),

BUT:

Adjustments difficult to calculate (weighted sum of independent chi-squareds)

Adjusted critical values are direction-dependent
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Alternative: adjust `WORK (θ) to maintain usual asymptotics (Chandler & Bate,

Biometrika, 2007):
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Motivation

Profile log-likelihoods useful for tests & confidence regions.

‘Classical’ approach adjusts ‘naïve’ critical values for tests based on `WORK(θ),

BUT:

Adjustments difficult to calculate (weighted sum of independent chi-squareds)

Adjusted critical values are direction-dependent

Alternative: adjust `WORK (θ) to maintain usual asymptotics (Chandler & Bate,

Biometrika, 2007):

Naïve covariance matrix is N = −Ĥ
−1

⇒ `WORK(θ) has Hessian

Ĥ = −N −1.

Robust covariance matrix is R ⇒ define adjusted inference function with

Hessian ĤADJ = −R −1.

Borrow profile from `WORK(θ) — hopefully informative.
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Options for adjustment

Horizontal scaling : define `ADJ (θ) = `WORK (θ∗), where

θ∗ = θ̂WORK +M−1MADJ
(
θ− θ̂

)

with M′M = Ĥ, M′
ADJMADJ = ĤADJ. Possible choices for M, MADJ:

Choleski square roots.

‘Minimal rotation’ square roots e.g. M = LD1/2L, where LDL is spectral

decomposition of Ĥ.
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Horizontal scaling : define `ADJ (θ) = `WORK (θ∗), where

θ∗ = θ̂WORK +M−1MADJ
(
θ− θ̂

)

with M′M = Ĥ, M′
ADJMADJ = ĤADJ. Possible choices for M, MADJ:

Choleski square roots.

‘Minimal rotation’ square roots e.g. M = LD1/2L, where LDL is spectral

decomposition of Ĥ.

Vertical scaling : define `ADJ (θ) as

`WORK
(
θ̂WORK

)
+
{(

θ− θ̂WORK
)′

ĤADJ
(
θ− θ̂WORK

)} `WORK(θ)− `WORK
(
θ̂WORK

)
(
θ− θ̂WORK

)′
Ĥ
(
θ− θ̂WORK

) .
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Horizontal scaling : define `ADJ (θ) = `WORK (θ∗), where

θ∗ = θ̂WORK +M−1MADJ
(
θ− θ̂

)

with M′M = Ĥ, M′
ADJMADJ = ĤADJ. Possible choices for M, MADJ:

Choleski square roots.

‘Minimal rotation’ square roots e.g. M = LD1/2L, where LDL is spectral

decomposition of Ĥ.

Vertical scaling : define `ADJ (θ) as

`WORK
(
θ̂WORK

)
+
{(

θ− θ̂WORK
)′

ĤADJ
(
θ− θ̂WORK

)} `WORK(θ)− `WORK
(
θ̂WORK

)
(
θ− θ̂WORK

)′
Ĥ
(
θ− θ̂WORK

) .

Options asymptotically equivalent (and identical in quadratic case)

Vertical scaling has practical (and theoretical) advantages
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Geometry of adjustment in 1-D

0.1 0.2 0.3 0.4 0.5

H0 : θ = θ0 against H1 : θ ≠ θ0

θ

l(θ
)

−60

−55

−50

θ̂

l(θ̂)
1.92

(θ1 − θ̂)*

Q(θ1 − θ̂)*

I1 I2D1 D2

Working log−likelihood
New inference function
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Geometry of adjustment in 1-D

0.1 0.2 0.3 0.4 0.5

H0 : θ = θ0 against H1 : θ ≠ θ0

θ

l(θ
)

−60

−55

−50

θ̂

l(θ̂)
1.92

(θ1 − θ̂)*

Q(θ1 − θ̂)*

I1 I2D1 D2

Working log−likelihood
New inference function

Horizontal scaling is by ratio of robust to naïve standard errors.

Vertical scaling is by ratio of robust to naïve variances (same as adjusting critical
value)
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Multiparameter case: a 2-dimensional example

k bivariate normal pairs
{
(Y1 j ,Y2 j) : j = 1, . . . ,k

}
with unknown mean µ and

covariance matrix Σ.
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Multiparameter case: a 2-dimensional example

k bivariate normal pairs
{
(Y1 j ,Y2 j) : j = 1, . . . ,k

}
with unknown mean µ and

covariance matrix Σ.

Independence log-likelihood for θ =
(
µ1 µ2 σ2

1 σ2
2

)′
is

`IND(θ) = −1
2 ∑k

j=1 ∑2
i=1

[
logσ2

i +σ−2
i (Yi j −µi)

2
]
+constant.
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with unknown mean µ and

covariance matrix Σ.

Independence log-likelihood for θ =
(
µ1 µ2 σ2

1 σ2
2

)′
is

`IND(θ) = −1
2 ∑k

j=1 ∑2
i=1

[
logσ2

i +σ−2
i (Yi j −µi)

2
]
+constant.

µ- and σ- components of θ are orthogonal in `IND(θ)

Naïve and robust covariance matrices of µ̂= Y are N = k−1diag
(
σ̂2

1 σ̂2
2

)
;

R = k−1Σ̂.
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Multiparameter case: a 2-dimensional example

k bivariate normal pairs
{
(Y1 j ,Y2 j) : j = 1, . . . ,k

}
with unknown mean µ and

covariance matrix Σ.

Independence log-likelihood for θ =
(
µ1 µ2 σ2

1 σ2
2

)′
is

`IND(θ) = −1
2 ∑k

j=1 ∑2
i=1

[
logσ2

i +σ−2
i (Yi j −µi)

2
]
+constant.

µ- and σ- components of θ are orthogonal in `IND(θ)

Naïve and robust covariance matrices of µ̂= Y are N = k−1diag
(
σ̂2

1 σ̂2
2

)
;

R = k−1Σ̂.

Adjusted profile log-likelihood for µ (horizontal or vertical scaling) is

`ADJ(µ) = − k
2

(
Y−µ

)′ Σ̂−1(
Y−µ

)
+constant— i.e. correct bivariate

log-likelihood.
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i (Yi j −µi)

2
]
+constant.

µ- and σ- components of θ are orthogonal in `IND(θ)

Naïve and robust covariance matrices of µ̂= Y are N = k−1diag
(
σ̂2

1 σ̂2
2

)
;

R = k−1Σ̂.

Adjusted profile log-likelihood for µ (horizontal or vertical scaling) is

`ADJ(µ) = − k
2

(
Y−µ

)′ Σ̂−1(
Y−µ

)
+constant— i.e. correct bivariate

log-likelihood.

NB contours of `IND are always circular — hence classical approach of adjusting

critical value is sub-optimal.
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Comparing nested models

Adjustment preserves χ2 asymptotics by construction ⇒ to test H0 : ∆θ = δ0,

use statistic ΛADJ = 2
{

`ADJ
(
θ̂WORK

)
− `ADJ

(
θ̃ADJ

)}
, where θ̃ADJ maximises

`ADJ under H0.
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{

`ADJ
(
θ̂WORK

)
− `ADJ

(
θ̃ADJ

)}
, where θ̃ADJ maximises

`ADJ under H0.

Problem: θ̃ADJ could be difficult / expensive to compute.

Alternative: use asymptotically equivalent statistic based on one-step

approximation to `ADJ

(
θ̃ADJ

)
:

Λ∗
ADJ = 2c

{
`ADJ

(
θ̂WORK

)
− `ADJ

(
θ̃WORK

)}

where c =

(
∆θ̂WORK−δ0

)′ [∆H−1
ADJ∆′

]−1(∆θ̂WORK−δ0
)

(
θ̂WORK− θ̃WORK

)′
ĤADJ

(
θ̂WORK− θ̃WORK

)
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Comparing nested models

Adjustment preserves χ2 asymptotics by construction ⇒ to test H0 : ∆θ = δ0,

use statistic ΛADJ = 2
{

`ADJ
(
θ̂WORK

)
− `ADJ

(
θ̃ADJ

)}
, where θ̃ADJ maximises

`ADJ under H0.

Problem: θ̃ADJ could be difficult / expensive to compute.

Alternative: use asymptotically equivalent statistic based on one-step

approximation to `ADJ

(
θ̃ADJ

)
:

Λ∗
ADJ = 2c

{
`ADJ

(
θ̂WORK

)
− `ADJ

(
θ̃WORK

)}

where c =

(
∆θ̂WORK−δ0

)′ [∆H−1
ADJ∆′

]−1(∆θ̂WORK−δ0
)

(
θ̂WORK− θ̃WORK

)′
ĤADJ

(
θ̂WORK− θ̃WORK

)

Λ∗
ADJ needs only estimates from working likelihood.

Details: Chandler & Bate, Biometrika, 2007.
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Other applications

Not restricted to clustered data — applicable in principle whenever ‘working’

likelihood is used e.g. inference in ‘wrong but useful’ models (NB
mis-specification of model or likelihood)
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Other applications

Not restricted to clustered data — applicable in principle whenever ‘working’

likelihood is used e.g. inference in ‘wrong but useful’ models (NB
mis-specification of model or likelihood)

Approach not restricted to likelihood-based inference — applicable whenever:

Estimation is done by optimising some objective function

Resulting estimating equations are (asymptotically) unbiased

Robust (and reliable) covariance matrix estimator is available

Example: generalised method of moments — θ̂ = argminθ S(θ;y), where:

S(θ;y) = ∑p
r=1wr [Tr(y)− τr(θ)]2

{Tr(y) : r = 1, . . . , p} are statistics (e.g. sample moments)

τr(θ) = Eθ [Tr(y)] (r = 1, . . . , p).

{wr : r = 1, . . . , p} are weights (independent of θ).
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1. Problem statement

2. Standard asymptotics for mis-specified likelihoods

3. Adjusting the working log-likelihood

4. Open questions
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Open questions (1)

When does adjustment recover profile log-likelihood for θ asymptotically?
Requirements (cf bivariate normal example):
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Open questions (1)

When does adjustment recover profile log-likelihood for θ asymptotically?
Requirements (cf bivariate normal example):

`WORK (approximately) quadratic in region of interest∣∣θ̂WORK− θ̂FULL
∣∣ is ‘small enough’ i.e. θ̂WORK is efficient

NB conditions known for ‘independence’ working log-likelihood in Gaussian linear

models — result given by Watson (Biometrika, 1972).

When is `ADJ a bona fide useful profile log-likelihood for θ? Could then
argue that adjustment gives full likelihood-based inference under ‘convenient’

model for higher-order structure.

To be useful, need to maintain interpretation of θ
Requirement seems to be existence of joint densities

{
f j
(
y j |C j ;θ,α

)}
for

which adjustment recovers profile log-likelihood for θ (asymptotically?)
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Open questions (2)

Adjustment is model-dependent: can this be overcome?
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M1 and M2 could be based on adjusted profiles from M2,M3, . . . or MM —

each model will give different ĤADJ, hence adjustment is model-dependent.

Composite Likelihoods Workshop, Warwick, April 2008 – p. 20/20



Open questions (2)

Adjustment is model-dependent: can this be overcome?

In sequence of nested models M1 ⊂ M2 ⊂ . . . ⊂ MM, comparison of (e.g.)
M1 and M2 could be based on adjusted profiles from M2,M3, . . . or MM —
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Can base all inference on profiles derived from ‘maximal’ model MM if
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Possible alternative: derive ĤADJ for ‘saturated’ model (cf deviance for GLMs)
— but asymptotic arguments then fail except in special situations e.g. iid

clusters.

Other alternatives?

ANY QUESTIONS / SUGGESTIONS?
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