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= Observations from family of distributions with joint density

for parameter vectors 6, a

= Interested in / tractable model available for low-dimensional margins of joint
distributions.

= Conditionally upon Cj, low-dimensional margins are fully determined by 6 — o is
nuisance parameter for high-dimensional joint structure.
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= Full log-likelihood function is /ry . (6,0) = z‘j;llog fi (y;|Cj;8,a) , but joint
distributions usually difficult to model.

= Alternative : use ‘working’ log-likelihood based on low-dimensional margins:
k ~
twork () = > logf;(y;[Cj;8)
j=1

where log fj (yj|Cj; 8) is contribution from cluster j (NB a missing here)

= Examples:
= Independence log-likelihood : /jnp (6) = le(zl Zinillog fij (Vij| Cj; ©) so that
log f (y|Cj8) = 54 log fij (¥ i3 8)-
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Some potential applications

= | ongitudinal studies:
= ‘Clusters’ are patients
= Can be assumed independent

= Space-time data (multiple time series):
m ‘Clusters’ are observations made at same time instant

= Temporal autocorrelation may be present — can be handled by including
previous observations into conditioning sets { Cj }
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= |f data are generated from distribution with 6 = Bg then, under general conditions,
working score contributions {Uj (60)} are uncorrelated with zero mean (may
need to include ‘history’ into (j to ensure this when clusters are interdependent
— see Chapter 5 of Statistical Methods for Spatial-temporal Systems, eds.
Finkenstadt, Held & Isham, CRC Press, 2007).
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= Usual asymptotics hold e.g. for large k, Byork ~ N (8o, HV_lH) where

2 k
6=60 =1 j=1

= Estimate H using either expected or observed Hessian at éWORK, say H.
= Estimate V using empirical counterpart: \V = z‘j;luj (éWORK) Uj (éWORK)/
= Covariance matrix of @WORK estimated consistently by robust estimator

R = H VH_1 — gives Wald tests & confidence regions for components of 6

: : ~—1 . : . :
= Contrast with naive estimator A = —H = (ignores mis-specification of working
log- likelihood)

= NB other techniques required for small k — application-dependent
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= Partition 6 as (([f L|J/), and let éWORK = arg SUHJ:LIJO /work (0).
= For large k:

= Distribution of Aywork= 2 [KWQRK(é\NORK) — gWORK(éWORKﬂ IS
approximately that of weighted sum of X% random variables

= Weights are solution to partition-dependent eigenproblem

= Can be used for profile-based inference on components of 6.
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Motivation

= Profile log-likelihoods useful for tests & confidence regions.

= ‘Classical’ approach adjusts ‘naive’ critical values for tests based on /\work (0),
BUT:
= Adjustments difficult to calculate (weighted sum of independent chi-squareds)
= Adjusted critical values are direction-dependent

= Alternative: adjust /\work (0) to maintain usual asymptotics (Chandler & Bate,
Biometrika, 2007):

= Naive covariance matrix is N = —I:I_1 = /work (0) has Hessian
H=-a1

= Robust covariance matrix is X = define adjusted inference function with
Hessian I:IADJ — —Q{*l.

= Borrow profile from /work (8) — hopefully informative.

Options for adjustment

Horizontal scaling : define /apj(8) = Awork (67), where
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with M'M = H, MapsMapg = HapJ. Possible choices for M, M ap:
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decomposition of H.
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Options for adjustment

Horizontal scaling : define /ap3(8) = fwork (6"), where
6" = Bwork +M Map; (6 —8)

with M'M = H, Mxp3Mapg = HapJ. Possible choices for M, M ap:
= Choleski square roots.

= ‘Minimal rotation’ square roots e.g. M = LDY?L, where LDL is spectral
decomposition of H.

Vertical scaling : define ¢apj(0) as

Awork (8) — fwork (Bwork
(86— Bwork) F (8—Bworx

= Options asymptotically equivalent (and identical in quadratic case)

Awork (Bwork) + { (06— éWORK>/ Hapy (8 — Bwork) }

= Vertical scaling has practical (and theoretical) advantages
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Geometry of adjustment in 1-D

Ho:0=06g against Hy : 6 # 6,

1(6)

' | :
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= Horizontal scaling is by ratio of robust to naive standard errors.

= Vertical scaling is by ratio of robust to naive variances (same as adjusting critical

value)
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Multiparameter case: a 2-dimensional example

= k bivariate normal pairs {(Yj,Y2j) : j = 1,...,k} with unknown mean p and
covariance matrix 2.

- Independence log-likelihood for 8 = (W o 03 03)"is
{np () = —3 ZJ 12, {IogoiZJroiZ (Yij — M‘)Z} -+ constant

= - and 0- components of 6 are orthogonal in /;np (0)

= Naive and robust covariance matrices of fl="Y are A’ =k ‘diag(67 63);
R =k15.

= Adjusted profile log-likelihood for i (horizontal or vertical scaling) is

Capa(p) = — & (Y - p)/ st (Y — ) + constant— i.e. correct bivariate
log-likelihood.

= NB contours of /|yp are always circular — hence classical approach of adjusting
critical value is sub-optimal.
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= Adjustment preserves X2 asymptotics by construction = to test Hg : A8 = o,

use statistic Aapj = 2 {EADJ (éWORK> —4ADJ (6ADJ> }, where éADJ maximises
{apj under Hp.

= Problem: 6ADJ could be difficult / expensive to compute.
= Alternative: use asymptotically equivalent statistic based on one-step

approximation to /apj (6ADJ):

NAapy = 2C{€ADJ (Bwork) — £ADJ (§WORK) }

A . _l A
(ABwork— 50), [AH 550 (ABwork— &)
(Bwork— éWORK)/ Hap (Bwork— Bwork)

= /\\p; Needs only estimates from working likelihood.

= Details: Chandler & Bate, Biometrika, 2007.
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Other applications

= Not restricted to clustered data — applicable in principle whenever ‘working’
likelihood is used e.g. inference in ‘wrong but useful’ models (NB
mis-specification of model or likelihood)
= Approach not restricted to likelihood-based inference — applicable whenever:
= Estimation is done by optimising some objective function
= Resulting estimating equations are (asymptotically) unbiased
= Robust (and reliable) covariance matrix estimator is available

= Example: generalised method of moments — 8 = arg miry S(6;y), where:

=S(0;y) = 3y W [Te(y) — Tr(e)]z
= {T;(y):r=1,...,p} are statistics (e.g. sample moments)

=1 (0) =Eg[Tr(y)] (r =1,...,p).
= {w; :r=1,...,p} are weights (independent of 0).
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Open questions (1)

= When does adjustment recover profile log-likelihood for 0 asymptotically?
Requirements (cf bivariate normal example):

= /\WwoRrk (approximately) quadratic in region of interest

- ‘QWORK — éFULL\ is ‘small enough’ i.e. Bwork is efficient
NB conditions known for ‘independence’ working log-likelihood in Gaussian linear
models — result given by Watson (Biometrika, 1972).

= When is /apj a bona fide useful profile log-likelihood for 62 Could then
argue that adjustment gives full likelihood-based inference under ‘convenient’
model for higher-order structure.
= To be useful, need to maintain interpretation of 6
= Requirement seems to be existence of joint densities { f; (y;|Cj;8,a) } for
which adjustment recovers profile log-likelihood for 8 (asymptotically?)
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Open questions (2)

= Adjustment is model-dependent: can this be overcome?

= In sequence of nested models My C M> C ... C My, comparison of (e.g.)
My and M5 could be based on adjusted profiles from M, Ms, ... or My —
each model will give different Hapj, hence adjustment is model-dependent.

= Can base all inference on profiles derived from ‘maximal’ model My, if
specified in advance — but not always feasible.

= Possible alternative: derive |:|ADJ for ‘saturated’ model (cf deviance for GLMs)
— but asymptotic arguments then fail except in special situations e.g. iid
clusters.

m Other alternatives?

ANY QUESTIONS / SUGGESTIONS?




