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* Many models with complex dependencies where full ML is too

impractical, e.g. spatial and spatial-temporal models, (hidden)

Markov random fields, truncation models, etc.

* May try PL: product over local conditionals (CCL)

* May try CL: product over local joint likelihoods (CML)

* Difficult [in general] to assess consequences [how much is lost?

what does PL or CL do when the model is not correct?]

* Markov chains: can do precise analysis

* Model selection with CL: the CLIC, the FCLIC ...

* CL better than PL: can also lead to new modelling strategies
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0. Spatial models: examples

(A) Markov Random Fields, defined on lattices:

f(x, β) =
1

Z(β)
exp{β1H1(x) + · · · + βpHp(x)},

e.g. the Ising (1925) model, with xi ∈ {−1, 1} and

H(x) =
∑

i

#{xj ∈ x∂i:xj = xi}.

ML difficult [but now doable]. Much easier, Besag (1974, 1975,

1977):

PL(β) =
∏

i

pβ(xi | rest).

(B) Hidden Markov Random Fields:

yi = g(xi) + ε(xi) = g(xi, β) + ε(xi, σ, φ),

perhaps a zero-mean stationary Gaußian noise process [image recon-

structions, etc.]. PL ok for ε(x) white noise process, but difficult in

general.



(C) Gaußian Random Fields:

y ∼ Nn(Xβ, σ2R(φ)).

ML doable, but difficult for n big, and properties not well enough un-

derstood. Much easier: CL (called QL in Hjort and Mohn, 1987,

Hjort and Omre, 1994, etc.).

(D) Point process models:

fθ(x) =
1

Z(θ)
exp{θ1A1(x) + · · · + θpAp(x)},

where x = {xi} is a set of points. ML difficult – as are PL and CL.

Might encourage new [quasi]models that start with modelling over

smaller areas.



(E) Lattice model from truncated normal processes:

yi = I{Z(xi) ≥ c}, where Z has stationary covariance structure.

Here both ML and PL have difficulties. Easier:

CL(θ) =
∏

pairs

fθ(yi, yj), or CL(θ) =
∏

triples

fθ(yi, yj , yk),

or bigger local neighbourhoods: Hjort and Omre (1994), Nott and

Rydén (1999), Heagerty and Lele (1998), others.

The talk I’m not giving [today]:

926 children in Salvador, Brazil, followed from Oct 2000 to Jan 2002,

twice-a-week 0–1 data on infant diarrhoea. Borgan, Henderson,

Barreto (2007): event history analysis via variations on Aalen’s addi-

tive hazard regression model. My approach:

yi(t) = I{Zi(t) ≥ ci} for child i,

with

Zi(t) = xi(t)
tβ + σi OUi(t).

I am using CL machinery for estimation and inference.



1. Markov Chains

Observe chain X0, X1, . . .,

πa,b = Prθ{Xi = b |xi−1 = a} = pa,b(θ)

for a, b = 1, . . . , S. The Lik:

ln(θ) =
n∏

i=1

Prθ{Xi = xi |Xi−1 = xi−1} =
∏

a,b

pa,b(θ)
Na,b .

The PL:

pln(θ) =

n−1∏

i=1

Prθ{Xi = xi | rest}

=
∏

a,b,c

{pa(θ)pa,b(θ)pb,c(θ)

pa(θ)p
(2)
a,c(θ)

}Na,b,c

.

The CL:

cln(θ) =
n∏

i=1

Prθ{Xi−1 = xi−1, Xi = xi}

=
∏

a,b

{pa(θ)pa,b(θ)}Na,b .

Higher order versions [bigger windows] can be used for PL and CL.



ML theory: goes back to Anderson and Goodman (1957), Billingsley

(1961a, 1961b). To reach result, need to sort out joint limit of

√
n{Na,b/n− pa(θ)pa,b(θ)} →d Za,b.

For a, b, c, d = 1, . . . , S:

cov(Za,b, Zc,d) = papa,b(δa,cδb,d − pcpc,d) + pa,bpc,d(paγa,c + pcγd,a),

with

γa,b =

∞∑

k=0

(p
(k)
a,b − pb).

ML theorem: √
n(θ̂ − θ) →d N(0, J−1),

where

J =
∑

a

paJa =
∑

a,b

papa,bua,bu
t
a,b,

with

ua,b(θ) =
∂ log pa,b(θ)

∂θ
.



2. CL estimation

We have

log cln(θ) =
∑

a

Na,· log pa(θ) +
∑

a,b

Na,b log pa,b(θ),

with Na,· =
∑

bNa,b. This is for 2-window CL. For 3-window CL:

log cln,3(θ) =
∑

a

Na,·,· log pa(θ)+
∑

a,b

Na,b,· log pa,b(θ)+
∑

b,c

N·,b,c log pb,c(θ),

with 2nd and 3rd term almost the same:

log clk(θ) =
∑

a

Na log pa(θ) + (k − 1)
∑

a,b

Na,b log pa,b(θ).

With k ≥ 5 (say), very little difference between ML and CL.

Large-sample theory: Need limit in probability of 2nd deriva-

tive of n−1 log clk(θ) and limit in distribution of 1st derivative of

n−1/2 log clk(θ).



Need

ua,b =
∂ log pa,b(θ)

∂θ
and va =

∂ log pa(θ)

∂θ
,

and matrices

H =
∑

a

pavav
t
a, G =

∑

a,b

paγ̄a,bvav
t
b, L =

∑

a,b

papa,bua,bκ
t
b,

where

κb =
∑

k≥0

∑

c

(p
(k)
b,c − pc)vc and γ̄a,b =

∑

k≥1

(p
(k)
a,b − 1).

CL theorem: √
n(θ̂ − θ) →d N(0, J−1

k KkJ
−1
k ),

with
Jk = (k − 1)J +H,

Kk = (k − 1)2J +H +G+Gt + (k − 1)(L+ Lt).

Proof: ‘As expected’, keeping track of all terms, still within realm of

the limits Za,b of
√
n(Na,b/n− papa,b).



3. PL estimation

2-step and k-step probabilities enter calculations:

log pln(θ) = 2
∑

a,b

Na,b log pa,b(θ) −
∑

a,c

Na,·,c log p(2)
a,c(θ).

In addition to ua,b = ∂ log pa,b/∂θ, need

wa,c =
∂ log p

(2)
a,c

∂θ
=

∑

b

pa,bpb,c

p
(2)
a,c

(ua,b + ub,c).

Also, matrices

M =
∑

a,c

pap
(2)
a,cwa,cw

t
a,c, Q =

∑

a,c,d,f

papa,dpd,cpc,fwa,cw
t
d,f .

PL theorem: √
n(θ̂ − θ) →d N(0, J−1

0 K0J
−1
0 ),

where

J0 = 2J −M and K0 = 4J − 3M +Q+Qt.

Proof: Again ‘as expected’, but more intricate algebra etc.



Lemma: √
n(Na,b,c/n− papa,bpb,c) →d Za,b,c,

where stamina & patience give

cov(Za,b,c, Zd,e,f ) = papa,bpb,c(δa,dδb,eδc,f − pdpd,epe,f )

+ papa,bpb,c(δb,dδc,e − pdpd,e)pe,f

+ pdpd,epe,f (δe,aδf,b − papa,b)pb,c

+ papa,bpb,cγc,dpd,epe,f

+ pdpd,epe,fγf,apa,bpb,c

for a, b, c, d, e, f = 1, . . . , S. Result reached via identifying and working

with different contributions from the implied double sum.

Essence of rest of proof:

√
n(θ̂ − θ)

.
=d

{
− 1

n

∂2 log pln(θ)

∂θ∂θt

}−1 1√
n

∂ log pln(θ)

∂θ
.



4. Illustrations

For any parametric Markov model (and anywhere in the parame-

ter space) we may compute matrices

J for ML,

J,H,G,L, Jk,Kk for CL,

J,M,Q, J0,K0 for PL,

and compare

J−1 with J−1
k KkJ

−1
k with J−1

0 K0J
−1
0 .

Explicit formulae for a short list of nice models; numerical results

(in the form of ARE curves etc., directly from transition matrix) for

any given model.

Hjort and Varin (2007, Tech Report): many illlustrations (more than

in SJS paper).



Example 1: Let

P =

(
1 − θ θ
θ 1 − θ

)
.

Here ML = CL, estimator (N0,· +N·,1)/n, while PL uses

θ̂ =

√
ρn√

ρn +
√

1 − ρn
,

with ρn = (N0,1,0 +N1,0,1)/(N0,·,0 +N1,·,1):
√
n(θ̂ML − θ) →d N(0, θ(1 − θ)) and

√
n(θ̂PL − θ) →d N(0, 1/4).

Example 2: Markov (1913) took all 20,000 letters from Pushkin’s

Yevgenĭı Onegin, and fitted this model:

glasnyĭ soglasnyĭ

glasnyĭ p1 1 − p1

soglasnyĭ p2 1 − p2

with p1 = .128 and p2 = .663, giving the correct stationary probabili-

ties .432 for vowels and .458 for consonants.

ML and CL are large-sample equivalent; PL does rather worse.

HV 2008: comparisons for 2nd order Markov, for Pushkin data.



Example 3: An equicorrelation chain:

Pi,j =

{
(1 − ρ)pj + ρ if i = j,
(1 − ρ)pj if i 6= j.

Then P k = (1 − ρk)p+ ρkp, so correlation is ρk for time interval k.

For p = (p1, . . . , pS)t known, ML = CL, and PL loses. For both p and

ρ unknown: CL loses a little to ML, PL loses rather more.

Example 4: One-dimensional Ising model:

Pr{Xi = xi−1 |xi−1, xi+1}
∝ exp

[
β(I{xi−1 = xi} + I{xi+1 = xi})

]
.

This corresponds to

P =
1

1 + exp(β)

(
exp(β) 1

1 exp(β)

)
.

Here ML = CL again, and

β̂ML = log
N0,0 +N1,1

N0,1 +N1,0
and β̂PL = 1

2

N0,0,0 +N1,1,1

N0,1,0 +N1,0,1
.

PL suffers serious efficiency loss for strong dependence.
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Example 5: The random walk with two reflecting barriers: six states

example. The solid line correspond to the ARE for PL, while the

dashed one to QL.



Markov for DNA sequences

A G C T total

A 93 13 3 3 112

G 10 105 3 4 122

C 6 4 113 18 141

T 7 4 21 93 125

total 116 126 140 118 500

Summarising evolution of n = 500 sites of two homologous

DNA sequences. Among various [related] models:

A G C T
A 1 − 2α− γ γ α α
G δ 1 − 2α− δ α α
C β β 1 − 2β − γ γ
T β β δ 1 − 2β − δ



One finds equilibrium distribution

pA =
β

α+ β

α+ δ

2α+ γ + δ
, pG =

β

α+ β

α+ γ

2α+ γ + δ
,

pC =
α

α+ β

β + δ

2β + γ + δ
, pT =

α

α+ β

β + γ

2β + γ + δ
.

Homleid (1995): applied such models to meteorology, ‘normal

weather’ split into N1 and N2, ‘ugly weather’ split into U1 and U2.

Computing all required matrices

* J for the ML;

* H,G,L for the CL;

* M,Q for the PL;

at the ‘typical’ value (.027, .041, .122, .126), shows once more that

CL is nearly efficient, while PL loses a lot.

This is in agreement with simulation runs (large-sample approxima-

tions are effective for small n).



Other parameters: Our results also imply

√
n(ψ̂ML − ψ) →d N(0, τ2

ML),
√
n(ψ̂CL − ψ) →d N(0, τ2

CL),
√
n(ψ̂PL − ψ) →d N(0, τ2

PL),

for any ψ = ψ(α, β, γ, δ).

Asynchronous distance between sequences, from Barry and Harti-

gan (1987): ∆ = −(1/4) log |P (θ)|. Can work out:

√
n{log |P (θ̂)| − log |P (θ)|} →d Tr{P (θ)−1V },

in terms of a certain zero-mean normal V = (V1, V2, V3, V4)
t

with estimable covariance matrix, for each of ML, CL, PL.



6. When the models are imperfect

Suppose only that there are transition probabilities

πa,b = Pr{Xi = b |Xi−1 = a} for a, b = 1, . . . , S.

How do estimation methods attempt to get close?

ML:

n−1 log ln(θ) =
∑

a,b

Na,b

n
log pa(θ) →p

∑

a,b

πaπa,b log pa,b(θ).

Maximising this is equivalent to minimising

dML(truth,model) =
∑

a

πa

{∑

b

πa,b log
πa,b

pa,b(θ)

}
.

This is weighted Kullback–Leibler, over each row’s model.



Similarly for PL and CL: again, weighted versions of (different) Kullback–

Leibler distances.

PL:

dPL(truth,model) =
∑

a,c

πaπ
(2)
a,c

{∑

b

πa,bπb,c

π
(2)
a,c

log
πa,bπb,c/π

(2)
a,c

pa,b(θ)pb,c(θ)/p
(2)
a,c(θ)

}
.

CL:

dCL(truth,model) =
∑

a

πa log
πa

pa(θ)
+(k−1)

∑

a

πa

{∑

b

πa,b log
πa,b

pa,b(θ)

}
.



Illustration: Using a four-parameter model when a six-parameter

model is true. Assume that a Markov chain on the four states A, G,

C, T in reality is governed by





1 − 2α− γ1 γ1 α α
δ1 1 − 2α− δ1 α α
β β 1 − 2β − γ2 γ2

β β δ2 1 − 2β − δ2



 ,

but that the four-parameter model Kimura model, assuming γ1 = γ2

and δ1 = δ2, is being used for estimation and inference.

One learns:

ML and CL react very similarly, and in a robust way;

PL reacts very differently, and is too sensitive.



7. CLIC and FCLIC:

model selection [and averaging]

For a given parametric model:

An(θ) = n−1 log cln(θ)

→pr A(θ) =
∑

a

πa log pa(θ) + (k − 1)
∑

a,b

πaπa,b log pa,b(θ)

for each θ, and

dCL(truth,model) = const.−A(θ).

How good is the model? Answer: size of A(θ̂).

Model selection idea: estimate A(θ̂) (almost unbiasedly), for each

candidate model.



Convergence of basic empirical process:

Hn(s) = log cln(θ0 + s/
√
n) − log cln(θ0)

.
=

√
nU t

ns− 1
2s

tJns+ opr(1) →d H(s) = stU − 1
2s

tJks.

Corollary 1:

argmax(Hn) =
√
n(θ̂ − θ0) →d argmax(H) = J−1

k U ∼ Np(0, J
−1
k KkJk).

Corollary 2:

maxHn = log cln(θ̂)−log cln(θ0) = n{An(θ̂)−An(θ0)} →d maxH = 1
2Z,

for Z = U tJ−1
k U . A bit more analysis:

An(θ̂) − A(θ̂) = n−1Zn + variable with mean zero

where Zn →d Z. Model selector:

CLIC = log cln,max − p̂∗, with p∗ = EZ = Tr(J−1
k Kk).

Can also construct Focussed CLIC [following Cleaskens and Hjort].



Concluding comments

(A) Why is CL better than PL?

log cln(θ) =
∑

a

Na,· log pa(θ) +
∑

a,b

Na,b log pa,b(θ),

with 2nd term equal to ordinary log ln(θ). The 1st term uses [some]

forces to make sure that the equilibrium is well assessed.

So CL = penalised likelihood, and can also be seen as an empirical

Bayes strategy with a prior of the type

g(θ) ∝ exp
{
−ρ

∑

a

p0
a log

p0
a

pa(θ)

}
.

This is sensible! – But

log pln(θ) = 2
∑

a,b

Na,b log pa,b(θ) −
∑

a,c

Na,·,c log p(2)
a,c(θ),

amounting to a ‘strange penalisation’ of the log-likelihood. Translated

to Bayes and empirical Bayes: The PL uses a strange prior, intent on

conflict with the ML objectives, and the strength of the prior is pro-

portional to n.



(B) Variations and other models:

Can study many short chains instead of one long.

2-step memory length (etc.):

Essentially contained in the 1-step theory.

Markov chain regression models:

Pi =

(
1 − αi αi

βi 1 − βi

)
,

with

αi =
exp(r + szi)

1 + exp(r + szi) + exp(t+ uzi)
,

βi =
exp(t+ uzi)

1 + exp(r + szi) + exp(t+ uzi)
.

Hidden Markov chains: Can do CL. Bickel, Ritov, Rydén (1998):

show that the ML works, in principle, but impossible to find formulae

for limiting variance matrix J(θ)−1. This appears possible with CL,

for at least the simpler HMM models.



(C) Using CL for model building:

Forget (or bypass) transition probabilities, model joint behaviour

of block directly: e.g.

fa,b,c,d,e = A(ρ) exp
[
−ρ{h2(a, c) + h1(b, c) + h1(d, c) + h2(e, c)}

]
.

Could be parameters inside 1-neighbour function h1 and 2-neighbour

function h2. Can use CL to estimate parameters – without writing

down the two-step Markov model with transition probabilities etc.

NB: Tempting to use local models of type

f(xi, xi±1, xi±2, xi±3) ∝ exp
[
−ρHθ(xi, xi±1, xi±2, xi±3)

]

but only a subset of these correspond to genuine full models. Char-

acterisation exercise: derive local characteristics from local f and

check with Hammersley–Clifford–Besag theorems.

Ok or not [cf. comment from Reid]? Depends on purpose. Local in-

ference: meaningful. But only full models give full insight and predic-

tions.



(D) Time series models: May be handled in reasonable generality.

For Zi Jin’s AR(1) process: may find explicit limit distributions for

ML, PL, CL.

(E) More CL in 2D:

Could invent new spatial models for which

cln(θ) =

n∏

i=1

pθ(xi, x∂i) =

n∏

i=1

pθ(xi)pθ(x∂i |xi)

works well. This is turning PL inside out.

Heagerty and Lele (1998): pairwise CL method for model

Y (s) = I{Z(s) ≥ c},

a Gaußian truncation model. Can get this to work also with say

quintuple-wise CL, with data plus four neighbours: needs ‘only’

a separate function that computes 5-dim-normal probabilities for the

32 quintotants in R5.


