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Many models with complex dependencies where full ML is too
impractical, e.g. spatial and spatial-temporal models, (hidden)

Markov random fields, truncation models, etc.
May try PL: product over local conditionals (CCL)
* May try CL: product over local joint likelihoods (CML)

Difficult [in general] to assess consequences [how much is lost?
what does PL or CL do when the model is not correct?]

Markov chains: can do precise analysis

* Model selection with CL: the CLIC, the FCLIC ...
CL better than PL: can also lead to new modelling strategies
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ML, PL, CL in spatial models

Markov chains: ML [classic]

CL

PL

Illustrations; Markov chains for DNA sequences
Model robustness: When the models are not correct
Model selection: CLIC, FCLIC

CL as model building tool; concluding comments
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0. Spatial models: examples

(A) Markov Random Fields, defined on lattices:

f@h)= 55

e.g. the Ising (1925) model, with z; € {—1,1} and

H(x) = Z #{x; € xg;:x; = x;}.

exp{B1H1(x)+ -+ GpHy(2)},

ML difficult [but now doable]. Much easier, Besag (1974, 1975,
1977):
PL(3) = | [ pa(a: | rest).

(B) Hidden Markov Random Fields:

Yi = g(xl) + 8(3%) — g(ajlaﬁ) + 8(3@',0‘, Qb),

perhaps a zero-mean stationary Gauflian noise process [image recon-
structions, etc.]. PL ok for e(x) white noise process, but difficult in

general.



(C) GauBian Random Fields:
y ~ N, (XB,0°R(9)).

ML doable, but difficult for n big, and properties not well enough un-
derstood. Much easier: CL (called QL in Hjort and Mohn, 1987,
Hjort and Omre, 1994, etc.).

(D) Point process models:

1
Z(0)

fo(x) = exp{th A1 (x) + - +0,4,(x)},

where x = {z;} is a set of points. ML difficult — as are PL and CL.
Might encourage new [quasi]models that start with modelling over

smaller areas.



(E) Lattice model from truncated normal processes:

y; = I{Z(x;) > c}, where Z has stationary covariance structure.
Here both ML and PL have difficulties. Easier:

CL(O) = [ folyi,y;), or CLO) = [] folviyjrue),

pairs triples

or bigger local neighbourhoods: Hjort and Omre (1994), Nott and
Rydén (1999), Heagerty and Lele (1998), others.
The talk I’'m not giving [today]:
926 children in Salvador, Brazil, followed from Oct 2000 to Jan 2002,
twice-a-week 0—1 data on infant diarrhoea. Borgan, Henderson,
Barreto (2007): event history analysis via variations on Aalen’s addi-
tive hazard regression model. My approach:

yi(t) = [{Z;(t) > ¢;} for child 1,
with

Zi(t) = a:i(t)tﬁ + 0; OUZ(t)

I am using CL machinery for estimation and inference.



1. Markov Chains

Observe chain X, X1,...,

fora,b=1,...

The PL:

The CL:

Tab = Pro{X; =b|xi—1 = a} = pap(0)

,S. The Lik:

— HPrQ{Xz =T; ‘ Xi—l ] jS_l} — Hpa,b(e)Na’b.
1=1 ab

H Pro{X; = z; | rest}

pa pa b pb 0(9) Nab,c
B }1{ (0)p(6) b

n

cl,(0) = | | Pro{Xi=1 = zi—1, X; = z;}

izl

= {pa( )pa,b(e)}Na’b-

ab

Higher order versions |bigger windows] can be used for PL and CL.



ML theory: goes back to Anderson and Goodman (1957), Billingsley
(1961a, 1961b). To reach result, need to sort out joint limit of

VI{Nap/n — pa(0)pan(0)} —d Zap

For a,b,c,d=1,...,5S:

cov(Zab, Ze,d) = PaPab(0a,c0b,d — PeDe,d) + Pa.bPe,d(PaYa,c + DeVd,a)s

with -
k
Yab = 3 (P — Pb).
k=0

ML theorem:
V(@ —0) =4 N(0,J71),

where

J = Zpaja — Zpapa,bua,bug,ba
a a,b

with . (0)
0g Pa,b
ua,b(e) = 99 .




2. CL estimation

We have

log Cln (9) — Z Na,- logpa(g) + Z Na,b logpa,b(9)7
a a,b

with N, . =), Ngp. This is for 2-window CL. For 3-window CL:

logcln3(0) =Y Na,..10gpa(0)+)  Nap,. logpap(0)+)  N.pclogpy.e(h),
a a,b b,c

with 2nd and 3rd term almost the same:

log clx(6) = Z Nglogpa(0) + (kE—1) Z Naplogpa p(0).
a a,b

With k& > 5 (say), very little difference between ML and CL.

Large-sample theory: Need limit in probability of 2nd deriva-
tive of n™1logcly(6) and limit in distribution of 1st derivative of
n~1/21og cl(6).



Need

log pg.p (0 log p, (0
ua,b:30g§0,b() and vaza()%g(),

and matrices

t = t t
H = § :pa’l)a’l)a, G = E PaYa,bVaUp, L= E PaPa,bUa, bRy,
a a,b CL,b

where

CL theorem:

AN

V(0 —0) —4 N(0, J, 'Ky J, 1),

with
Jk:(k—l)J—l—H,

Kp=(k—-1°J+H+G+G" + (k—1)(L+L".

Proof: ‘As expected’, keeping track of all terms, still within realm of
the limits Z, p of \/n(Nap/n — paDab)-



3. PL estimation

2-step and k-step probabilities enter calculations:
logpl,,(0) =2 Naplogpas(0) — Y Na,.clogpPl6).
a,b a,c
In addition to ugp = 0log pa.,/00, need
(2)

. alogpa,c L pa,bpb,c( 4 )
Wq,c = 90 — (2) Ug,b Up,c)-
b Pac

Also, matrices

M = Zpap((fgwa,cwg,cp Q= Z papa,dpd,cpc,fwa,cwg,f-
a,c a,c,d,f

PL theorem:

AN

V(0 — ) —q N(0, J; T KoJy h),

where

Jo=2J—M and Ko=4J—3M+Q + Q".

Proof: Again ‘as expected’, but more intricate algebra etc.



Lemma:

\/E(Na,b,c/n - papa,bpb,c) —d Za,b,ca

where stamina & patience give

coV(Zab,cs Zd,e,f) = PaPa,bPb,c(0a,adb,e0c,f — PdPd,ePe,f)
+ DaPa,bPb.c(0b,d0c.e — PdDd,e)Pe. f
+ PaPd,ePe,f (0e,alfb — PaPa,b)Pb,c
+ PaPa,bPb,cVe,dPd,ePe, f
+ PdPd,eDe,fVf,aPa,bPb,c
for a,b,c,d,e, f =1,...,5. Result reached via identifying and working
with different contributions from the implied double sum.

Essence of rest of proof:

~ , 1 9%logpl,(0)y—1 1 dlogpl, (0)
Vn(® =) _d{_ﬁ 5000 } N



4. Illustrations

For any parametric Markov model (and anywhere in the parame-

ter space) we may compute matrices

J for ML,
J, H, G,L,Jk,Kk for CL,
J,M,Q, Jy, Ko for PL,

and compare
J~V with J'KiJ, " with  Jy ' KoJy

Explicit formulae for a short list of nice models; numerical results
(in the form of ARE curves etc., directly from transition matrix) for

any given model.

Hjort and Varin (2007, Tech Report): many illlustrations (more than
in SJS paper).



Example 1: Let

1—-60 6
r=("5"12),
Here ML = CL, estimator (Ny. + N. 1)/n, while PL uses

= v Pn
vV Pn + V 1 — Pn
with p, = (No,1,0 + N1,0,1)/(No,..0 + N1,.1):

V(O — 0) =4 N(0,0(1—0)) and  v/n(Opr, — 0) —4 N(0,1/4).

Example 2: Markov (1913) took all 20,000 letters from Pushkin’s
Yevgenii Onegin, and fitted this model:

rJIACHLIN COTJIACHLIN
TJIaCHBIN P1 1—p
COTJIACHBIN D2 1 —po

with p; = .128 and py = .663, giving the correct stationary probabili-

ties .432 for vowels and .458 for consonants.
ML and CL are large-sample equivalent; PL does rather worse.

HV 2008: comparisons for 2nd order Markov, for Pushkin data.



Example 3: An equicorrelation chain:

p..:{(l—p)pj+p if i = j,
o (1= p)p;j if i # j.

Then P¥ = (1 — p*)p + p¥p, so correlation is p* for time interval k.

For p = (p1,...,ps)" known, ML = CL, and PL loses. For both p and

p unknown: CL loses a little to ML, PL loses rather more.

Example 4: One-dimensional Ising model:
Pr{X; =x;—1|zi—1,Tit1}
o< exp|B(I{zi—1 =z} + H{zi1 = x:})].

This corresponds to

p_ 1 (exp(ﬁ) 1 ) |

1 + exp(B) 1 exp((3)
Here ML = CL again, and
-~ Noo+ N1 = 1 Nooo+ N1
Bup = log 20T L png By = 12000 FRLLL
Mk & No1+ Nio PL T2 Noi1,0+ Nioa

PL suffers serious efficiency loss for strong dependence.
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Example 5: The random walk with two reflecting barriers: six states
example. The solid line correspond to the ARE for PL, while the
dashed one to QL.



Markov for DN A sequences

A G C T total

A 93 13 3 3 112
G 10 105 3 4 122
C 6 4 113 18 141
T 7 4 21 93 125

total 116 126 140 118 500

Summarising evolution of n = 500 sites of two homologous

DNA sequences. Among various [related] models:

A G C T
A 1-2a—7v y o o)
G ) 1—2a—9¢ Q o
C B b 1 —26—~ Y
T 15 15 o 1—20



One finds equilibrium distribution

B a+9o B o+
ba a+[B22a+v+0 be a+B20+~y+90
o f+0 o B+
pPc = pPr =

a+[B28+y+96’ a+B28+~y+6

Homleid (1995): applied such models to meteorology, ‘normal
weather’ split into N1 and N2, ‘ugly weather’ split into Ul and U2.

Computing all required matrices
* J for the ML;
* H,G, L for the CL;
* M, Q for the PL;

at the ‘typical’ value (.027,.041,.122,.126), shows once more that
CL is nearly efficient, while PL loses a lot.

This is in agreement with simulation runs (large-sample approxima-

tions are effective for small n).



Other parameters: Our results also imply

\/ﬁ({D\ML - 10) —d N(07 7_1\2/IL)7
V(e —¥) —a N(0,781),
Vn(pr, — ) —q N(0, 781),

for any ¢ = ¢(a, 5,7, 6).

Asynchronous distance between sequences, from Barry and Harti-
gan (1987): A = —(1/4)log|P(6)|. Can work out:

Vn{log |P(0)| — log|P(0)|} —a Tr{P(0) 'V},

in terms of a certain zero-mean normal V = (V1, V5, V3, Vj)*

with estimable covariance matrix, for each of ML, CL, PL.



6. When the models are imperfect

Suppose only that there are transition probabilities
Tap =Pr{X; =b|X,_1 =a} fora,b=1,...,5.

How do estimation methods attempt to get close?

ML:

N
~1og 1, (0) = %0 1og p, (6 T 5102 Do u(6).
n~Hogln(0) = Y —=10gpa(0) —p Y TaTap108pa,b(f)

a,b a,b

Maximising this is equivalent to minimising

dyir, (truth, model) = Z Tg {zb: Tab 10g p:::ib@) }

a

This is weighted Kullback—Leibler, over each row’s model.



Similarly for PL and CL: again, weighted versions of (different) Kullback—

Leibler distances.

PL:
(2)

dpr, (truth, model) Z”a (2){2%10g Ta,bTh,c/Ta,c
7 omie pap(O)puc(8)/pi

20 >}'
CL:

Ta,b
dor (truth, model) malog =+ (k1 wa{ 7o log }
o -2 F1) 2 m 2 men o8, g,




Illustration: Using a four-parameter model when a six-parameter
model is true. Assume that a Markov chain on the four states A, G,

C, T in reality is governed by

1—-2a—m Y1 « «
01 1 —2a0— 63 o o
5 5 1 =20 — V2 ’
5 5 02 1 =28 — 02

but that the four-parameter model Kimura model, assuming v; = 75

and 01 = 0o, is being used for estimation and inference.
One learns:

ML and CL react very similarly, and in a robust way;

PL reacts very differently, and is too sensitive.



7. CLIC and FCLIC:
model selection [and averaging]

For a given parametric model:

A, (0) = n"tlogcl, ()

—pr A(0) =D Talogpa(0) + (k= 1) Tamalog pa,s(6)
a a,b

for each 0, and

dor (truth, model) = const. — A(6).

AN

How good is the model? Answer: size of A(6).

AN

Model selection idea: estimate A(#) (almost unbiasedly), for each

candidate model.



Convergence of basic empirical process:

H,,(s) = og cl, (8o + 3/v/) — logcl, (6o)
= /nUys — 25" J,s + 0pe(1) =4 H(s) = s'U — 35" Jgs.

Corollary 1:
argmax(H,) = \/ﬁ(@\— 00) —a argmax(H) = J, 'U ~ N, (0, J, 'K Jy).

Corollary 2:

AN

max H,, = logcl,(8)—logcl,(6o) = n{An(0)—A,(0y)} —¢ maxH = 12,

>
for Z = U*J,_'U. A bit more analysis:

An(@\) — A(@) = n~'Z, + variable with mean zero
where Z,, —4 Z. Model selector:

CLIC = log cly max — P*, with p* = EZ = Tr(J, ' Kj).

Can also construct Focussed CLIC [following Cleaskens and Hjort].



Concluding comments
(A) Why is CL better than PL?

log cly, (9) — Z Na,- logpa(e) + Z Na,b logpa,b(e)a
a a,b

with 2nd term equal to ordinary logl, (6). The 1st term uses [some]

forces to make sure that the equilibrium is well assessed.

So CL = penalised likelihood, and can also be seen as an empirical

Bayes strategy with a prior of the type

g(0) o exp{ pzpa log -~
This is sensible! — But

log pl,(8) =2~ Nap10g pa,s( Z N, log p2)(0),
a,b

amounting to a ‘strange penalisation’ of the log—hkehhood. Translated
to Bayes and empirical Bayes: The PL uses a strange prior, intent on
conflict with the ML objectives, and the strength of the prior is pro-

portional to n.



(B) Variations and other models:
Can study many short chains instead of one long.

2-step memory length (etc.):
Essentially contained in the 1-step theory.

Markov chain regression models:

. 1—0&2‘ (07
Pi_( Bi 1—@')’

exp(r + sz;)

1+ exp(r + sz;) +exp(t +uz;)’
exp(t + uz;)

1+ exp(r + sz;) +exp(t +uz;)

with

o; =

5 =

Hidden Markov chains: Can do CL. Bickel, Ritov, Rydén (1998):
show that the ML works, in principle, but impossible to find formulae
for limiting variance matrix J(6)~!. This appears possible with CL,
for at least the simpler HMM models.



(C) Using CL for model building:

Forget (or bypass) transition probabilities, model joint behaviour

of block directly: e.g.

fa,b,c,d,e = A(,O) exp [—p{hg(a, C) + hl (b, C) + hl (d, C) + hg (6, C)}}

Could be parameters inside 1-neighbour function A; and 2-neighbour
function ho. Can use CL to estimate parameters — without writing

down the two-step Markov model with transition probabilities etc.

NB: Tempting to use local models of type

(@i, wiz1, Tito, Tix3) X eXP[—[)He(CBz‘, Litl, Li+2, CUi:I:S)}

but only a subset of these correspond to genuine full models. Char-
acterisation exercise: derive local characteristics from local f and

check with Hammersley—Clifford—Besag theorems.

Ok or not [cf. comment from Reid]? Depends on purpose. Local in-
ference: meaningful. But only full models give full insight and predic-

tions.



(D) Time series models: May be handled in reasonable generality.
For Zi Jin’s AR(1) process: may find explicit limit distributions for
ML, PL, CL.

(E) More CL in 2D:

Could invent new spatial models for which

cl, () = Hpe(a:i,xai) = ][ po(zi)po(zoi | =:)

i=1
works well. This is turning PL inside out.

Heagerty and Lele (1998): pairwise CL method for model
Y(s) = 114(s) 2 cj,

a Gauflian truncation model. Can get this to work also with say
quintuple-wise CL, with data plus four neighbours: needs ‘only’
a separate function that computes 5-dim-normal probabilities for the

32 quintotants in R°.



