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1. Composite marginal likelihoods: Definition
e Low-dimensional Marginal densities (Cox & Reid, 2004).

e Univariate and bivariate distributions are often adopted, and this
leads to the so-called pairwise likelihood.

e For a single vector Y, the 1st and 2nd-order log-likelihoods
contribute

L(6;Y) = D logf(Ys;0), (1)
LOY) = > logf(Ye,Yi;0) —ali(6;Y). (2)

a is a pre-specified constant. a = 0: taking all possible bivariate dist'ns and leading to the pairwise

log-likelihood. a = 1/2: taking all possible conditional dist’'ns of one component given another.




2. Composite score functions and estimators

Composite score functions
For n i.i.d. vectors YU Y . V() the joint composite
log-likelihoods are defined by addition:

L(O; YD Y® Yy =30, YD) v =1,2.

Composite score functions are defined in the usual way by the composite
likelihood derivatives:

U,0; YD, vy® vy =a1,0,YV, vy® . vy™)/e0,v=1,2.

Maximum Composite likelihood estimator
The estimating equations

U,0; YD, vy® ymy=9

give out the maximum composite likelihood estimator 0.

3. Efficiency of Composite likelihoods

Intraclass Correlation Normal
Y =W . YONT and YV ... Y™ ~ §4.d.N,(u, %) where
X =0*((1—-p)+pJ))and 0 = (u,0°, p)".

o Full log-likelihood function of Y: [(6,Y)

e Pairwise log-likelihood function:

q
L(0;Y) =) log f(V;1, v 0)
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e Pseudo log-likelihood function: [* = [y — aqly
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3.1 Introclass Correlation Normal: Information Matrices
Question: I(0) = H(0)J 1 (0)H(6)?
Smth we need to obtain to show the equivalence:
e obtain 202, 5302, Zp, f]p, derivatives of ¥ with respect to o and p;

o H(A) = E(—%), easy one;

o J(0) = E(%gé%), difficult one.;

e need to obtain H(#), J(#) for both pairwise and pseudolikelihood.
27,
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I =HJ Y*H=H*J"' H*, regardless of the value of a.

3.2 Symmetric Normal
YO =0 YT ~ N0, V) = Ny(0, (1= p)] + )
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FIG 1 Ratio of asympotic variance of rhohat to rhotilde for g=2,3,5,8,10.




3.3 Unrestricted Multivariate Normal

e In Mardia 2007, conditional pairwise pseudolikelihood is defined as

PPL=]] ] f(wiilyri: 2)

i=1j#£k

and has been showed to be fully efficient for unrestricted
multivariate normal distributions.

o leta=1/2,logCR =log PPL.

( Jii ) = CY ~ N(0,CEC")
Yki -

if ¥ unrestricted, ;5 = CEC = C8C = (2) .

3.4 AR(1)
The working full likelihood of AR(1) process is given by

T

L(a,0®) = f(z1) | | f(alzi-)

t=2
The associated log-likelihood is

1 T 1
(a,0?) = 5 log(1 — a®) — 3 log o* — ﬁ[sl + a*Sy — 2a812]  (4)

. T 2 o T—1 9 o T—1
where Sy =3, 27, So=> 1 5 7, S12 =) 1 | T4Tit1.




Pairwise likelihood for AR(1)

We propose a composite likelihood formed by adjacent pairs, denoted by

Lo
T

Ly =[] fze,2e1) (5)

t=2
where (Xy, X;_1) follows a bivariate normal distribution with mean zero
variances o2 /(1 — a?) and correlation a.

T T T

Ly(a,0%) = f(z1) [ [ fmelzer) [ [ f(ze) = L(a,0®) [ ] f(0)

t=2 t=2 t=2
where L(a,o?) is the full likelihood function. That is,

T

lb(a,0%) = l(a,0) + 3 f(a1) (6)

t=2

3.4.1 Max likelihood and pairwise likelithood estimation

MLE
1. . 2. St
0 = (1-7)82a° — (1- 7)8126° — (Sa + )i+ 512 (7)
62 = (S1+4a*Sy —2aS12)/T (8)
For large T, it can be show a = S12/.5,.
MPLE
2512
_ D12 9
4 S1+ S5’ )
5_2 _ (Sl + 52)2 - 45%2 (10)

2(T — 1)(S1 + S2)°

For large T,




3.4.2 Simulations

Table | Maximum likelihood estimatiors and Maximum pairwise likelihood
estimators for AR(1) model X; = 0.55X;_1 + €, with € ~ N(0,0.12).

T=200 T=100 T=20
AR a o a o a o
MLE 0.5651 0.0970 0.5604 0.1006 0.4978 0.0661
MPLE 0.5579 0.0096 0.5556 0.0103 0.5037 0.0046

Sample Variance

Table Il Sample covariance matrices of Full and Pairwise likelihood for AR(1) model Xt = 0.55X;_1 + €¢, with
e ~ N(0,0.1%) with different lengths T.

N=100,T=200 N=200,T=100
ratio 0.2017444 0.1973112
f(é) 4.778e — 03 1.186e — 05 6.260e — 03 —1.958e — 05
1.186e — 05  2.318e — 05 —1.958e — 05 4.058e — 05
Hj_\lH(é) 4.796e — 03 2.801le — 06 6.380e — 03 —3.087e — 06
2.801le — 06  9.030e — 07 —3.087e — 06 1.568e — 06
N=100,T=20 N=10,T=20
ratio 0.1999862 0.2137193
7(6 3.758e — 02 4.150e — 04 7.102e — 02  9.829e — 04
(9) 4.150e — 04 2.417e — 04 9.829e — 04 2.537e — 04
Hj_\lH(é) 3.646e — 02  5.658e — 05 6.551e — 02 1.449e — 04
5.658e¢ — 05  9.470e — 06 1.449e — 04 1.254e — 05
N=100,T=3 N=10,T=3
ratio 0.2449904 0.1826142
f(é) 0.2730 —0.0024 1.5296e — 01 —5.0205e — 03
—0.0024 0.0012 —5.0205e — 03 1.4909e — 03
T T ir/A 0.2545 0.0004 1.42323e — 01 1.1454e — 03
—1
HJ=1H(0) ( 0.0004 0.00006 > < 1.1454e — 03 5.3282e — 05 )




Relative Efficiency

The efficiency of pairwise likelihood compared to full likelihood for
AR(1) model can be obtained as

H(0)J Y (0)H(6)]\
{ 70) } (1)

where 0 = (a,0?)" is a 2-dimensional parameter vector.

E{(Xi — pi) (X5 — py)(Xp — pw) (X — )} = 045001 + 0ik0j1 + 0510 i

Table Il Efficiency of pairwise likelihood for AR(1) model
X =0.55X;_1 + ¢, with € ~ N(0,0.12) with different lengths T'.

T=100 T=20 T=8 T=4
Efficiency 0.2296845 0.4101251 0.5005665 0.5636764

Figure 1: Efficiency against T

AR=0.55, sigma=0.1

0.5

0.4

Efficiency

0.2

0 50 100 150 200




igure 2:
. (:;i\/<3
N T —
— 41 |
, Efficiency a
gainst
| a
Efficiency for T=4 and o.

““\“::::“ _ni N
““““\““\ D NN N N
NN NN NN N C“‘\:\‘\‘ N

R
NN

RN
S

AOUe\‘O\.Ha
o
D

o
N

N
NN
N

MR
N
NN

RN
NN
R
\\\\“\\\\\‘:\\\\‘\\\:\‘\\\g\\\:\\\\\\‘\
N NN N
N
é§§%%%&@
\“\\“@‘\\\‘\\\\\\\\\\
Y
W\ N

0.8

Figur
e
P
=2
0, Efficiency a
gainst a
and o

Effici
fficiency for T
=20

RN
RN
AR N\
\\\\\\\\\\\\\ R
N
NN
M
NN
WY W
RN
Nk
\\\\\\\\\\\ W
\\\\\\\\\\\\\::\\s\\;t}\;t:\
\\\\\\\\\\\\\\\\\:\\\\

o
o

\O\-M a

f\OU 9

RN
RN N

W
N R W\
\\\\\ \\\\\\\\\ W N K :
IR R N ni \
‘ \
\

R N
NN
XN
RN
XN
RN
RN
N NN
R \\\\s\
N
N

0.8




4. Higher order asymptotics

e Higher accuracy inference in terms of 7 under simple null hypothesis
under

e Expansions for the expectation and variance of the composite signed
likelihood ratio root are found to the order n=3/2 and n=2,
respectively.

e |deally we would expect that
E(7) =m(0) + O(n™*?),Var() =1 +v(d) + O(n~?)

where m(0) is of order O(n™1) and v(0) is of order O(n™1).

e Then, the standard normal approximation to the distribution of

7 — E(F)
{Var(r)}1/2

has an error of order O(n=3/2).

Expansion of 72 with asymptotic magnitude of order n=3/2

rsutuukumyuzzgyrtv Vszzlulwlylp

S

-~ o~ = 1 -~ -
—l—ursutuukuxyuﬁvHsmlulwly + —ursutuuvaTtvlslulw

1 -~ o~ -
—|—Eursutuuvwuwyvrtvmlslulwly + Op(n_3/2) (12)

e The leading term u’"sl;l; is the composite score statistic.

e The 1st order result of the composite likelihood ratio statistic

E[i?] = p"E[l I + O(n™Y?) = u"*v, s + O(n~Y?).




Expansion of the expectation of 7 /7
Similar as defined in Peter McCullagh(1987, Ch.7)[10], let

~ 1 ~ ~ ~
ft = lt -+ EUTS(SHTtlS -+ u“wvrmlslw)

1 . -
—i—ﬁursu“w [27HTtHsvlw + 8uY UVt Vsg 2 L lylp

30U 0o Hoplwly + 12H 0 lsly + 30 0rpualsluly | (13)

It can be verified that

2 = Fyiau™ + Op(n=%/?) (14)
while 1 o o
Br) = Eurs{?’E(thZS) + u" v E(lslw) } + O(n_3/2)
1
= U {Burts + U VrUsw ) + O(n=3/2) (15)

Expansion of the expectation of 7/7 with Bartlett
|dentities

If the second Bartlett Identity holds, equation (15) can be simplified into

1
E(ft) - Eurs{gvrt,s + Urst} + O(?’L_3/2) (16)

consistent with the results shown in Barndorff & Cox 1994,
It suffices to write the variance of 7 as
Var(f) = {1+ v(0)} + O(n"?)

where v(6) is of order O(n™1), computed directly with sufficient
algebraic diligence.




Comments

For certain distributions, composite marginal likelihoods may vyield
full MLE and are fully efficient.

Loss of efficiency is, in general, not ignorable for curved exponential
family, or restricted normal distributions.

Though from time to time we tend to overlook the fact that
composite likelihood estimators are not consistent or asymptotically
normally distributed especially under the second scenario, their
asymptotic behaviors are still worth of further consideration.

Profile based inference for AR(1) model, as 02 can be treated as a
nuisance parameter. Performance of 7 and its higher order
approximation.

Arnold, B.C. and Strauss, D. (1991), Pseudolikelihood estimation:
some examples, Sankhya: The Indian Journal of Statistics, 53,
233-243.

Barndorff-Nielsen, O.E. and Cox, D.R. (1994), Inference and
Asymptotics, Chap.

Besag, J.E. (1974), Spatial interaction and the statistical analysis of
lattice systems (with discussion), Journal of the Royal Statistical
Society, B 34, 192-236.

Cox, D.R. and Reid, N. (2004), A note on pseudolikelihood
constructed from marginal densities, Biometrika, 91, 727-737.

DiCiccio, T.J. and Stern, S.E. (1994), Constructing Approximately
Standard Normal Pivots from Signed Roots of Adjusted Likelihood
Ratio Statistics, The Scandinavian Journal of Statistics, 21,
447-460.

Geys, H., Molenberghs, G. and Ryan, L. M. (1999), Pseudolikelihood

Modeling of Multivariate Outcomes in Developmental Toxicology,
Journal of the American Statistical Association, 94:734-745.




[=)

=) ) = W

Kent, J.T. (1982), Robust Properties of Likelihood Ratio Test,
Biometrika, 69, 19-27.

Lindsay, B.G. (1988). Composite likelihood methods, Contemporary
Mathematics, 80, 221-240.

Mardia K.V., Hughes G. and Taylor C.C. (2007), Efficiency of the
pseudolikelihood for multivariate normal and von Mises distributions,

Research reports, STAT07-02, Department of Statistics, University
of Leeds.

McCullagh, P. (1987), Tensor Methods in Statistics, Chapman and
Hall.

Severini, T.A. (2000), Likelihood Methods in Statistics, Oxford
University Press.

Stern, S.E.(2006), Simple and accurate one-sided inference based on
a class of M -estimators, Biometrika, 93, 973-987.

Varin, C.(2007), On composite marginal likelihoods, preprint.




