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Abstract:
Composite likelihood, including pairwise likelihood, procedures can be used for multivariate models with

regression/univariate and dependence parameters, when the joint multivariate probability or density is computa-
tionally too difficult. We have studied composite likelihood methods for some models for clustered/longitudinal
data and times series data. In some cases, the asymptotic efficiency of composite likelihood estimation can be
studied via the theory of estimating equations. For clustered data with varying cluster sizes, for several models
we study asymptotic relative efficiencies for various weighted pairwise likelihoods, with weight being a function of
cluster size. For longitudinal data, we also consider weighted pairwise likelihoods with weights that can depend
on lag. Based on our analyses, we can give some recommendations on the choice of weights to achieve better
efficiency. We also report on some results for bivariate composite likelihood applied to a stochastic volatility
model for financial time series.

Outline

1. Composite likelihood as part of inference based on low-dimensional margins.

2. Examples where I have used composite likelihood

3. Choice of weights for bivariate composite likelihood for clustered data : cluster size di, weight wi ∝ w(di)

4. Choice of margins for models for longitudinal and time series data

bivariate composite log-likelihood (BCL); same as pairwise log-likelihood but P in PL can be pairwise, pseudo,
penalized or partial
also have extension to trivariate composite likelihood (TCL)
Goals: To show relative efficiency of BCL and not computational details; to show when BCL can have good or
poor performance.

My research in composite likelihood is part of more general research for multivariate inference based on
low-dimensional margins.

There are several methods for inference based on low-dimensional margins, and they are called limited infor-
mation methods in psychometrics.

Used when

• high-dimensional probability/density numerically too time-consuming to compute

• data sparse in high dimensions but not sparse in low-dimensional margins.

Examples:
1. Inference function for margins (IFM): different parameters for different univariate margins; fit separate uni-
variate models, then consider several different mult models with the given univariate margins. IFM is useful if
the joint log-likelihood is not simple and the total number of univariate plus multivariate parameters is large (say,
> 20).

2. Composite likelihood: Familial data with several different familial correlations, and common univariate
regression parameters for different members of family; multivariate probit model (binary response), multivariate
normal copula/mixture models (count response, survival data).

3. Item response data: m items (say m ≥ 20), ordinal response with K categories per item; m-dimensional
table with Km categories is sparse, but want inferences for model, including GOF.
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Item response data: m items, K categories per item, n=sample size, n/Km small; e.g., K = 5, m = 10.
Logit-normit model or graded logistic with one latent trait: θ = (α′,β′)′, α = (αi1, . . . , αi,K−1 : i = 1, . . . ,m)′,

β = (β1, . . . , βm)′,

Pr
[
∩m

i=1{Yi = yi}
]

=
∫ ∞

−∞

m∏
i=1

Pr(Yi = yi | η) φ(η)dη, yi ∈ {0, . . . ,K − 1}

Pr(Yi = j | η) =


1−G(αi,1 + βiη) if j = 0
G(αi,j + βiη)−G(αi,j+1 + βiη) if 0 < j < K − 1
G(αi,K−1 + βiη) if j = K − 1

where φ(·) is the standard normal density, G is logistic cdf.
Rasch submodel has β = β1 (constant slope).

For our family of quadratic form GOF statistics (Maydeu & Joe 2005 in JASA, 2006 in Psychometrika), either
MLE or bivariate composite log-likelihood (BCL) or any

√
n -consistent estimator can be used, and theory is

similar.
For estimation, expected Fisher information cannot be computed when Km is too large, but asymptotic covariance
matrix of the BCL estimator can be computed.
Efficiency of BCL slowly decreases as number of items m increases, but above 0.98 for less than 10 items and 2–5
categories per item.

Familial data: neurofibromatosis, many phenotypes: binary (presence of symptom) and count (#tumours);
one covariate is genotype = type of mutation

Y binary, x covariates, Z latent variable, Y = I(Z ≤ α + βT x).
Probit: Z ∼ N(0,1), FZ(z) = Φ(z).
In genetics, latent var. = liability, threshold=τ , mean liability depends on covariates.
If π(x) = Pr(Z ≤ α + β′x), then F−1

Z (π(x)) = α + β′x.
Probit model for multivariate binary: (Y1, . . . , Yd) binary response vector for a family of size d, x1, . . . ,xd

covariate vectors, Yj = I(Zj ≤ α + β′xj).
(Z1, . . . , Zd) ∼ N(0, R): where correlations in R = R(ρss, ρpo, ρ2, ρ3) depend on the relationships of the family

members.

Model for count data
For a count response, a useful model with a general dependence structure is the Poisson-lognormal mixture

model.
family i, member j within family, count Yj

Yj |Λj = λj ∼ Pois(λj) and log Λj ∼ N(µj , σ
2), where µj = α + β′xj ,

(log Λ1, . . . , log Λd) ∼ Nd(µ,Σ) with correlation parameters
ρss, ρpo, ρ2, ρ3.

[sib-sib, parent-offspring, degree 2, degree 3]

With these multiv models (probit or Poisson random effects), fY1,...,Yd
involves a d-dimensional numerical

integral, with computation complexity increasing exponentially with d.
For a continuous variable Y (e.g., onset time) that can be right-censored, use of the multivariate normal

distribution means that the dimension of the numerical integral is equal to the number of censored observations.
There are parameters common to different margins, e.g., common regression parameters for different univariate

margins, and common dependence parameters for different bivariate margins.
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Because family size (e.g., multi-generation families) can be large and is varying, composition likelihood methods
based on sum of log-likelihoods of univariate/bivariate margins were considered.

[Zhao and Joe, 2005, CJS]
CL1 method: estimate univariate parameters θ by maximizing :

Ψ1(θ) =
∑

i

∑
j

l1(yij ;θ,xij),

where l1(yij ;θ,xij) is the univariate marginal log-likelihood of Yij . Then estimate dependence parameters δ by
maximizing

Ψ2(θ̂, δ) =
∑

i

∑
j>j′

l2(yij , yij′ ; θ̂, δ;xij ,xij′),

wrt δ, where l2(yij , yij′ ;θ, δ;xij ,xij′) is the bivariate log likelihood of (Yij , Yij′) and θ̂ is the estimate of θ obtained
in the first step.

CL2 method: estimate θ and δ in one step by maximizing

Ψ∗
2(θ, δ) =

∑
i

wi

∑
j>j′

l2(yij , yij′ ;θ, δ;xij ,xij′),

where wi is a weight depending on the family size. Our choice of weight was wi = (di − 1)−1 [explanations later];
this choice also used by others. wi = 1 puts too much weight on large families.

For the estimated covariance matrix for CL1 or CL2, one approach is the jackknife if the derivatives for the
Godambe matrix are difficult to obtain.

Theory and Efficiency results - familial data: Zhao (2004) PhD thesis, Zhao, Y and Joe, H (2005). Composite
likelihood estimation in multivariate data analysis, Canad J Statist, 33, 335–356.

Analysis via theory of estimating equations; theoretical limits for independent and perfect dependence, and
numerical calculations for intermediate dependence.
Relative efficiency : AVar (θ̂MLE,k)/AVar (θ̂CL,k)

Performance of the two methods is reasonable, except that when the dependence is strong, the first approach
is inefficient for the regression parameters. The second approach is generally better for the regression parameters,
but may be less efficient for the dependence parameters when the dependence is weak.

[Joe & Lee, 2008] My collaborator Y. Lee thought that choice of weights should be considered more carefully
in clustered data with varying cluster size.

Data Yi = (Yi1, . . . , Yidi), i = 1, . . . , n, covariates (xi1, . . . ,xidi).

LBCL(θ) =
∑

i

∑
1≤j<k≤di

wi,jkLjk(θ),

where wi,jk = weight that depends on di for clustered data,
wi,jk can depend on lag for longitudinal data.
Set of estimating equations:

g(θ) = ∂LBCL/∂θ (1)

Under regularity conditions, θ̃BCL is the solution of (1), and the asymptotic cov matrix of n1/2(θ̃BCL − θ) has
form
V = D−1M(D′)−1 where D = −E [∂g/∂θ], M = Cov (g).

Cases where BCL is same as log-likelihood
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1. Observations are independent within each cluster: fYi
=

∏di

j=1 fYij
, choice wi,jk = 1/(di − 1) results in

log-likelihood.

2. Discrete observations such that perfect dependence (Fréchet upper bound) holds: for all clusters yi1 =
· · · = yidi , fYi(yi) = fYi1(yi1) for yi = yi11, and fYij ,Yik

(yij , yik) = fYi1(yi1) for yij = yik = yi1; choice
wi,jk = 1/[di(di − 1)] results in log-likelihood.

Cases 1 and 2 mean that the optimal weights should depend on the amount of dependence within clusters.

3. Longitudinal data based on AR(1) time series, log-lik is:

∑
i

[
−

di−1∑
j=2

log fYij (yij ;α) +
di∑

j=2

fYi,j−1,Yij (yi,j−1, yij ;θ)
]
,

where α=subset of univariate parameters. If α assumed known, then BCL=log-likelihood when wi,jk = 1
for k = j + 1 and 0 otherwise.

Case 3 suggests weights that depend on lag for longitudinal data; see also Varin & Vidoni (2006, CSDA)

Models for which efficiency calculations can be made: multivariate exchangeable normal (one-way random
effects with varying cluster sizes) and probit; these provide insight on efficiency.

For the exchangeable d-variate normal distribution, the mean vector and covariance matrix are respectively

µ1d and Σd = η2R(ρ),

where R(ρ) = [(1− ρ)Id + ρJd], Id is the identity matrix of order p and Jd is the d× d matrix of 1s. Univariate
parameters are mean µ , variance η2, and dependence parameter is ρ.
Exchangeable probit:

Yj = I(Zj ≤ µ), j = 1, . . . , d, (Z1, . . . , Zd)′ ∼ N(0,R(ρ)).

Optimal weight wi as a function of di depends on parameter (µ, η2 or ρ).

Varying cluster size; est’n of µ with ρ known; exch normal
For the BCL, if ρ were known, optimal wi is

wi = (di − 1)−1[1 + (di − 1)ρ]−1. (2)

Consider some weights that do not depend on ρ:

(a) wi = 1 (unweighted);

(b) wi = (di − 1)−1 (matches loglik for independence);

(c) wi = (di − 1)−1[1 + 1
2 (di − 1)]−1 (from subst ρ = 1

2 in (2));

(d) wi = (di − 1)−1d−1
i (matches loglik for perfect dependence)

Varying cluster size; est’n of ρ with µ, η2 known; exch normal
For ρ = 0, 0.5, 1, optimal weight is:

wi ∝

{ 1, ρ = 0;
[0.0625d2

i + 1.0625di + 0.4375]−1, ρ = 0.5;
d−1

i , ρ = 1.
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For 2 cases of moderate to strong dependence, inverse weight is close to linear for small di.
Varying cluster size, est’n of η2 with ρ, µ known; exch normal
Optimal choice of wi ∝ ti = d2

i ρ
2 + di(1 + 2ρ− 3ρ2)− (1 + 2ρ− 3ρ2).

wi ∝

 (di − 1)−1, ρ = 0;
[0.25d2

i + 1.25di − 1.25]−1, ρ = 0.5;
d−2

i , ρ = 1.

In the middle case of moderate dependence, the inverse weight for small di is close to (di − 1)[1 + 1
2 (di − 1)] [(c)

in previous slide].
The other two cases of inverse linear and quadratic weights occurred previously.

Exchangeable probit: estimating two parameters simultaneously
Some REs of the BCL estimates of the two parameters for four sets of weights, labeled (a)–(d) previously, with
different distributions of cluster sizes. The 3 settings for ρ represent weak, moderate and strong correlation. The
patterns are similar for different µ.

wt : (a) wi = 1 (b) (di − 1)−1 (c) interm (d) (di − 1)−1d−1

ρ mixture REµ REρ REµ REρ REµ REρ REµ REρ
0.2 0.5 for d = 3, 4 .949 .986 .998 .978 .995 .941 .990 .927

0.5 for d = 3, 5 .879 .969 .994 .956 .985 .853 .970 .818
0.5 for d = 3, 6 .830 .953 .988 .939 .974 .770 .948 .720
0.5 for d = 3, 7 .800 .939 .981 .927 .962 .700 .928 .641
0.5 for d = 3, 8 .780 .927 .974 .920 .951 .641 .909 .577

0.2 for d = 3 . . . 7 .859 .951 .990 .956 .981 .827 .963 .785
0.6 0.5 for d = 3,4 .921 .954 .988 .983 .997 .967 .995 .957

0.5 for d = 3, 5 .821 .895 .967 .971 .995 .929 .990 .907
0.5 for d = 3, 6 .751 .844 .942 .958 .993 .894 .985 .860
0.5 for d = 3, 7 .705 .806 .918 .943 .992 .863 .980 .820
0.5 for d = 3, 8 .676 .777 .895 .929 .991 .836 .976 .786

0.2 for d = 3 . . . 7 .791 .850 .953 .951 .993 .911 .987 .886
0.9 0.5 for d = 3, 4 .899 .940 .974 .985 .989 .980 .989 .974

0.5 for d = 3, 5 .781 .857 .939 .966 .985 .956 .985 .941
0.5 for d = 3, 6 .702 .791 .902 .944 .982 .933 .982 .910
0.5 for d = 3, 7 .651 .743 .867 .919 .979 .912 .979 .882
0.5 for d = 3, 8 .617 .709 .836 .895 .976 .893 .976 .859

0.2 for d = 3 . . . 7 .747 .804 .919 .936 .979 .934 .979 .918

Exchangeable probit: representative of a model where BCL is needed for computational reasons

1. The REs of the BCL estimates decrease with larger cluster sizes and more variability in cluster sizes.

2. wi = 1 weights not good, esp. for univariate parameter.

3. Best wi depends on parameter and strength of dependence.

(i) Weak dependence: wi = 1/(di − 1) best for µ, wi = 1 best for ρ, wi = 1/(di − 1) best overall.
(ii) Moderate dep: wi = 1/[(di − 1)(1 + 0.5(di − 1))] best for µ, wi = 1/(di − 1) best for ρ, wi = 1/(di − 1)

or wi = 1/[(di − 1)(1 + 0.5(di − 1))] best.
(iii) Strong dependence: wi = 1/[(di − 1)di] best for µ, wi = 1/(di − 1) best for ρ, wi = 1/[(di − 1)(1 +

0.5(di − 1))] best overall.
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Longitudinal data
AR(1) normal

In order to see some patterns, we study the AR(1) model Yi = (Yi1, . . . , Yid)′ ∼ N(µ1d, η
2R(ρ)) where R =

R(ρ) = (ρ|j−k|)1≤j,k≤d and −1 < ρ < 1. Some analytic results are possible for the estimation of one of the
parameters assuming the other two to be known.

Let L0 denote the log-likelihood, L1 denote the BCL with all pairs, L2 denote the BCL with only adjacent
pairs, and L3 denote the BCL with adjacent pairs but assuming the first and the last observations to be adjacent.
A justification is that, by adding the (1, d) bivariate margin to the adjacent bivariate margins, the resulting BCL
becomes twice the log-likelihood at the boundary case of independence (ρ = 0), so that maybe it can be expected
to do best under weak dependence.

Patterns of the relative efficiency (RE) functions

1. For estimation of µ, generally best is BCL with adjacent pairs including (1, d).

2. For estimation of η2, for most (d, ρ) pairs, best is BCL with adjacent pairs including (1, d). But RE goes to
0 as ρ → ±1.

3. The smallest REs for µ̂2 or µ̂3 [adjacent pairs] are bounded below by 0.877, but that for η̂2
1 [all pairs] can

get much smaller for larger |ρ| and d. In a minimax sense, it is better to use all adjacent bivariate margins
(plus (1, d) margin for small d) than to use all bivariate margins.

AR(1) binary probit
AR(1) probit model without covariates has 2 parameters: Yj = I(Zj ≤ µ), j = 1, . . . , d, (Z1, . . . , Zd)′ ∼
N(0,R(ρ)), R(ρ) = (ρ|j−k|)1≤j,k≤d. With data (yi1, . . . , yid)′, i = 1, . . . , n, consider weighted BCL :

LBCL =
d−1∑
`=1

w`

d−∑̀
j=1

Lj,j+`

where the weight of the (j, k) bivariate margin depends on the lag ` = k − j, and

Ljk =
1∑

s=0

1∑
t=0

n
(jk)
st log pjk(s, t;µ, ρ),

pjk(s, t;µ, ρ) = Pr(Yj = s, Yk = t;µ, ρ). Intuitively, we want to mainly use bivariate margins with lag 1 in order
to reduce the amount of computation for larger d.
From actual efficiency calculations, choice of w1 = wd−1 = 1 and other w` = 0 is good.

As a preliminary analysis on the choice of weights, for small values of d, we did a regression analysis of
log Pr(Y1 = y1, . . . , Yd = yd;µ, ρ) on log Pr(Yj = yj , Yk = yk;µ, ρ) (all 1 ≤ j ≤ k ≤ d) with ‘data’ collected from
inputs with different (y1, . . . , yd, µ, ρ).
For d = 3, 4, 5, 6, the pattern is as follows:

(i) the largest regression coefficients were for the adjacent pairs log Pr(Y1 = y1, Y2 = y2) and log Pr(Yd−1 =
yd−1, Yd = yd),

(ii) the second largest coefficients were for the adjacent pairs log Pr(Y2 = y2, Y3 = y3), . . . , log Pr(Yd−2 =
yd−2, Yd−1 = yd−1)

(iii) third largest coefficient was for log Pr(Y1 = y1, Yd = yd). The regression R2 did not change much when
other non-adjacent pairs were deleted. When log of univariate marginal probabilities log Pr(Yj = yj) were
included, the additional regression coefficients were close to zero.
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Table 4: AR(1) probit
d µ ρ w1, . . . , wd−1 RE(µ̂w) RE(ρ̂w)
3 −0.52 0.5 1.0,1.0 0.996 0.965
3 −0.52 0.5 1.0,0.0 0.912 0.946
3 −0.52 0.5 0.0,1.0 0.877 0.357
3 −0.52 0.5 1.0,0.8 0.990 0.983
4 −0.52 0.5 1.0,1.0,1.0 0.991 0.922
4 −0.52 0.5 1.0,0.0,0.0 0.899 0.925
4 −0.52 0.5 1.0,0.0,1.0 0.993 0.933
4 −0.52 0.5 0.0,1.0,0.0 0.987 0.436
4 −0.52 0.5 0.0,0.0,1.0 0.764 0.124
4 −0.52 0.5 1.0,1.0,0.0 0.945 0.952
4 −0.52 0.5 1.0,0.5,0.0 0.930 0.986
5 −0.52 0.5 1.0,1.0,1.0,1.0 0.988 0.887
5 −0.52 0.5 1.0,0.0,0.0,0.0 0.897 0.914
5 −0.52 0.5 1.0,0.0,0.0,1.0 0.991 0.919
5 −0.52 0.5 0.0,1.0,0.0,0.0 0.911 0.474
5 −0.52 0.5 0.0,0.0,1.0,0.0 0.933 0.169
5 −0.52 0.5 1.0,1.0,0.0,0.0 0.912 0.948
5 −0.52 0.5 1.0,0.0,1.0,0.0 0.956 0.920
5 −0.52 0.5 1.0,1.0,1.0,0.0 0.957 0.907
5 −0.52 0.5 1.0,1.0,0.0,1.0 0.971 0.941
5 −0.52 0.5 1.0,0.0,1.0,1.0 0.991 0.889
5 −0.52 0.5 1.0,0.5,0.0,0.0 0.908 0.981
6 −0.52 0.5 1.0,1.0,1.0,1.0,1.0 0.985 0.863
6 −0.52 0.5 1.0,0.0,0.0,0.0,0.0 0.900 0.908
6 −0.52 0.5 1.0,0.0,0.0,0.0,1.0 0.990 0.911
6 −0.52 0.5 1.0,1.0,0.0,0.0,0.0 0.900 0.947

Single time series with a latent AR(1) process, consider the AR stochastic volatilty ARSV(1) model:

Yt = σtεt, log σ2
t = α + ρ log σ2

t−1 + Vt

with −1 < ρ < 1, where εt are iid N(0,1) and Vt are iid N(0, σ2
V ), {εt} and {Vt} are mutually independent, α is a

constant. ξ = α/(1− ρ), ω = σv/
√

1− ρ2 are the mean and SD of log σ2
t .

Given observations y1, . . . , yn, the joint density is

fY1,...,Yn
(y1, . . . , yn) =

∫ { n∏
j=1

s−1
j fε(yj/sj)

}
fσ1,...,σn(s1, . . . , sn) ds1 · · · dsn.

fσ1,...,σn involves a density for the AR(1) process {log σ2
t }. The dimension of the integrand increases with n.

Bivariate and trivariate marginal densities can easily be computed via Gauss-Hermite quadrature.
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The ARSV is an alternative to ARCH/GARCH models for financial time series, but computationally it is
harder to work with.

Some significant autocorrelations in |yt| for 0.6 < ρ < 1 and σL(ρ) < σV < σU (ρ) (not too small/large), where
σL(ρ) is decreasing in ρ and σU (ρ) is increasing in ρ.

For financial time series data, often estimated ρ exceeds 0.9.
From Monte Carlo simulations, some results on relative efficiency of BCL compared with ML (simulated

likelihood in Ox) and with quasi-ML (quasi-likelihood is based on using MVN density for (log Y 2
1 , . . . , log Y 2

n ).
Have more efficient implementation of quasi-ML than Kalman filter.

Summaries for ρ = .7, ρ = .9, ρ = .95 are given in following tables.

Table ARSV1: ρ = 0.9, σV = 0.675, α = −0.821 (used in Fridman-Harris and Sandmann-Koopman etc).
ξ = α/(1− ρ), ω = σV /(1− ρ2)1/2. root MSE of parameter estimates for different methods. Efficiency is average
relative root MSE (over parameters) with respect to ML. 100 simulations, sample size 500. RE depends on
parametrization
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parameter ML/Ox BCL1 BCL2 BCLLB QML
σV .086 .21 .17 .18 .18
ρ .037 .089 .070 .062 .074
α .31 .74 .58 .52 .61
ξ .27 .32 .32 .32 .34
ω .17 .17 .18 .18 .19
avg eff 1 .62 .67 .69 .63

BCL1 based on margins (i, i + 1); BCL2 based on margins (i, i + 1) and (i, i + 2); BCLLB based on lower
bound 0.8 for ρ̂.
Best is TCL with (i, i + 1, i + 2) and (i, i + 1, i + 3).

Table ARSV2: ρ = 0.95, σV = 0.260, α = −0.368 (used in Fridman-Harris and Sandmann-Koopman etc).
ξ = α/(1− ρ), ω = σV /(1− ρ2)1/2. root MSE of parameter estimates for different methods. Efficiency is average
relative root MSE (over parameters) with respect to ML. 100 simulations, sample size 500.

parameter ML/Ox BCL1 BCL2 BCLLB QML
σV .060 .21 .17 .13 .22
ρ .042 .22 .17 .084 .21
α .31 1.6 1.2 .62 1.7
ξ .20 .25 .25 .25 .27
ω .14 .16 .16 .16 .20
avg eff 1 .47 .51 .63 .42

BCL: negative bias for α, ρ.
BCL efficiency gets worse as ρ gets closer to 1 (same also for QML) mainly due to distributions for ρ̂ and α̂ that
are very negatively skewed but clustered near their true values.

Table ARSV3: ρ = 0.7, σV = 1.8, α = 0.1 ξ = α/(1 − ρ), ω = σV /(1 − ρ2)1/2. root MSE of parameter
estimates for different methods. Efficiency is average relative root MSE (over parameters) with respect to ML.
100 simulations, sample size 500.

parameter ML/Ox BCL1 BCL2 QML
σV .29 .18 .14 .20
ρ .063 .062 .048 .065
α .071 .10 .10 .10
ξ .27 .32 .32 .31
ω .27 .16 .15 .18
avg eff 1 1.2 1.3 1.1

ML with negative bias for σV and ω for smaller ρ.

Conclusions
1. Composition likelihood methods are easier to implement than maximum likelihood when multivariate

density is difficult to compute; just need software with numerical optimization and low-dimensional integration.
2. Bivariate composite likelihood generally has good efficiency except sometimes when dependence is strong.

Worst case for multivariate discrete not as bad as worse case for multivariate continuous.
3. For clustered data with varying cluster size di, the optimal weight depends on the parameter and the

strength of association.
4. For clustered data, wi ∝ (di − 1)−1[1 + 1

2 (di − 1)]−1 is generally good.
5. For longitudinal data/time series, bivariate margins with lag 1 could be considered as a starting point.

Adding the (1, d) margin [adjacent with wraparound for indices] helps for small cluster size d. Adding (i, i + 2)
margins with lag 2 might also improve efficiency.
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