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WHY BOTHER? 

 

Some simple examples: 

 

1) Gause’s experiment with paramecia: One of the standard 

models for population time series of the number of 

individuals, 

! 

N
t , is the Stochastic Ricker model: 

 

! 

logN
t+1 " logNt

= a + bN
t
+ #

t+1 
 

where 

! 

"
t
~ N(0,# 2

)  are independent random variables                 

corresponding to the ‘environmental’ variation.  

 

 

 



If we have the exact number of individuals at each time point, 

one can estimate the unknown parameters 

! 

(a,b," 2
)  using the 

standard method of the maximum likelihood. These are 

obtained by maximizing the likelihood function: 

 

! 

L(a,b," 2;N) = f (logNt+1 | logNt;a,b,"
2)

t=1

T#1

$
 

 

    This is pretty easy to write because we know that  

 

! 

f (logNt+1 | logNt;a,b,"
2) =

1

2#"
exp{

$1

2" 2
(logNt+1 $ logNt $ a $ bNt )

2} 

 

 

REALITY BITES! 

• Gause did not count all the individuals in the test tube.  

 

• He took a small portion of the medium and counted the number 

of individuals. He then multiplied the number to scale it to test 

tube.  

 

• This is an estimate (indeed a good one) of the number of 

individuals in the test tube. As such there is some sampling 

error associated with this estimated number of individuals.  

 

 

 

 

 



• Assuming that the individuals were distributed randomly 

throughout the medium, a reasonable sampling model is:  

 

! 

ˆ N 
t

| N
t

~ Poisson(N
t
) 

 

Thus, the observed time series is NOT 

! 

{N
1
,N

2
,...,N

T
} but 

! 

{ ˆ N 
1
, ˆ N 

2
,..., ˆ N 

T
}.  

 

The likelihood function, hence, should be written in terms of 

the joint distribution of 

! 

{ ˆ N 
1
, ˆ N 

2
,..., ˆ N 

T
}.  

 

 

 

 

Following standard probability rules, we can write the joint 

distribution as: 

 

! 

f ( ˆ N ;a,b," 2
) = f ( ˆ N | N) f (N;a,b," 2

)dN#  

 

• This integral is over a T dimensional (=20 for Gause’s data) 

space.  

• The integral has no analytic form.  

• We could try doing it numerically. But it has to be done for 

various values of the parameters 

! 

(a,b," 2
)  to maximize the 

function.  

 

Are there any takers for this task? Tomas, where are you when we 

need you?  



 
Such a situation is not unique to Gause’s data. In fact, these 

situations arise routinely when one tries to confront models with 

data.  

 

1) Compartmental models: The standard epidemiological models 

such as the SIR model is an example of a compartmental model. If 

we want to fit the SIR model to real data, there are two issues that 

arise. One, we cannot observe the number of individuals in the S or 

R stages. Second, most of times we only have the number of 

reported cases, may be every two weeks.  

The likelihood computation involves integrating over the 

unobserved values of the S and R stages and taking into account 

the sampling error in the reported cases.  

 

2) Latent variable models: Suppose we are modeling population 

time series using the stochastic Ricker model but we have multiple 

spatial locations (ignore the dispersal for the time being).  

! 

logN
s,t+1 " logNs,t = a

s
+ bN

s,t + #
s,t+1 

 



It is reasonable to assume that 

! 

'a
s
', the growth rate, is different at 

each spatial location. But, then we have too many parameters as 

compared to the data. This is especially true if we have large 

number of spatial locations but shorter time series at each location.  

 

A way to get around this difficult situation is by assuming that 

the growth rates in nearby locations are similar. For example, we 

assume that 

! 

a ~ MN(a1,V ) .  

 

On top of this, we also have the same kind of sampling 

variability issues to deal with. For example, the population 

abundances of insects are often estimated using pheromone traps 

or light traps. Similar to Gause’s data, these lead to Poisson 

sampling error.  

 

 

 

 

 

 



Writing this model systematically: 

 

Hierarchy 1: 

! 

a ~ MN(a1,V )  

Hierarchy 2: 

! 

logN
t+1 | logN t

;a,b," 2 ~ MN(logN
t
+ a + bN

t
," 2

I)  

Hierarchy 3: 

! 

ˆ N 
t
| N

t
~ Poisson(N

t
)  

 

If we have 200 spatial locations and 10 time points, computation of 

the likelihood function would require 200x10 dimensional 

integration.  

 

Unfortunately for the scientists, such situations are ubiquitous. One 

of my students did a quick search on the web of science. In the last 

five years, he found out that there were nearly 4000 papers that 

used such models. These were papers only in the ecology related 

journals.  

 

Likelihood based statistical inference has a number of attractive 

properties but simplicity is clearly not one of them, especially for 

such hierarchical models.  

So what should we do? 



 

Statistical inference paradigms: A brief introduction 

 

1) The frequentist paradigm:  

 

• The parameters are considered ‘fixed but unknown’ quantities.  

• Given the data, we apply inductive inference to infer about the 

value of these unknown quantities.  

• The uncertainty of our knowledge is defined in terms of 

‘replicability’ of the inferential statements. If someone else 

conducts another experiment, applies the method, how 

different would the conclusions be? The quantities such as 

standard errors, confidence intervals quantify the replicability 

of the inferential statements.  

• The missing data, latent variables are considered random 

variables that need to be integrated over.  

 

2) The Bayesian paradigm:  

• All unknown quantities (parameters, missing data, latent 

variables etc.) are considered random variables.  



• The probability distribution for these unknown quantities 

quantifies the uncertainty of our knowledge about them. 

This is called the ‘prior distribution’. This is the belief that 

the researcher has about the plausibility of different values 

that 

! 

"  takes before any data are observed. For the 

notational simplicity, and for the time being, let us denote 

all unknown quantities by 

! 

" . We denote the prior 

distribution by 

! 

" (#) .  

• The data are denoted by 

! 

y . These data, in order to be 

informative about the unknown quantities 

! 

" , should be 

related to them in some fashion. It is assumed that the 

distribution of 

! 

y  depends on the value of 

! 

" . This is 

denoted by 

! 

f (y |") .  

• In the light of the data, how should we change our prior 

beliefs? The rule is simple: 

 

! 

" (# | y) =
f (y |#)" (#)

f (y |#)" (#)d#$  

This is called the ‘posterior distribution’ and is the conditional 



distribution of 

! 

"  given the data 

! 

y . This distribution quantifies 

the post-data belief about the parameter values. 

 

• The posterior distribution is guaranteed to have smaller 

variation than the prior distribution. Thus, observing the 

data decreases the uncertainty about the ‘unknown’ 

quantities.  

 

Of course, if we start with perfect certainty about the parameter 

values (GOD created this earth 6000 years ago with probability 

one), no amount of data (evidence) is going to change such prior 

beliefs. To change strongly held beliefs, one will need substantial 

amount of data (evidence).  

 

The posterior distribution, thus, quantifies the change in the belief 

and does not answer the questions: What do the data say about the 

unknown quantities? How replicable are the inferential statements?  

 

 

Saving grace? (pun intended) 

 



As the sample size increases, even the strongly held beliefs (except 

those with degenerate priors) are swamped by the data. Eventually, 

even the Bayesians learn!  

 

! 

" (# | y) ~ N( ˆ # MLE ,
1

n
I
$1

( ˆ # MLE ))
 

 

 

 

 

 

 
How would the Bayesian paradigm deal with hierarchical models?  

Hierarchical models 

Hierarchy 1: (Parameters) 

! 

" ~ # (")  

Hierarchy 2: (Missing data, latent variables, unobserved states, 

random effects etc.) 

! 

X |" ~ f (x |")  

Hierarchy 3: (Observed data) 

! 

Y | X ~ g(y | x)  



Compute the posterior distribution 

! 

" (#,x | y) =
g(y | x) f (x |#)" (#)

g(y | x) f (x |#)" (#)dxd#$
 

The problem is solved!  

 

BUT, BUT, BUT … 

1) The integral in the denominator is even higher dimensional 

than for the likelihood computation! We have added 

dimensions corresponding to 

! 

" .  

2) If we want to compute marginal posterior distribution of 

! 

" , 

we will need to compute  

 

! 

" (# | y) = " (#,x | y)$ dx  

It seems that the Bayesian paradigm leads to even harder problem 

than the computation of the likelihood function. But there is a very 

clever solution to this problem. (Bayesians are technically smart, 

just misguided) 

 

 



Markov Chain Monte Carlo (MCMC) method:  

 

• Metropolis et al. (1954?, Journal of Chemical Physics) and 

Hastings (1970, Biometrika) are the two breakthrough 

papers in the development of MCMC. These papers 

provide a computationally simple method to generate 

random numbers from the posterior distribution 

! 

" (#,x | y) =
g(y | x) f (x |#)" (#)

g(y | x) f (x |#)" (#)dxd#$  

 without computing the integral in the denominator!  

 

• Given random numbers 

! 

("
i
,x

i
),i =1,2,....,B, under this 

distribution, we can easily obtain the random numbers from 

! 

" (# | y), by simply dropping the ‘x’ component and 

considering 

! 

"
i
,i =1,2,....,B .  

• Given these random numbers, we can compute mean, 

variance, quantiles and any such relevant information about 

the posterior beliefs about the parameters.  

 

 



Thus, it may seem that we have achieved the holy grail of making 

inferential statements about the unknown parameters in the 

hierarchical models without ever having to integrate!  

 

Unfortunately, for those who like to do ‘evidence based science’ as 

against ‘belief based science’, while appreciating the cleverness 

and technical beauty of this solution, it still remains an 

unsatisfactory solution. Can we trick this Bayesian solution to give 

likelihood-based inference?  

 

The method

    number_____________________

            expiration___________________

just $199.95 (plus shipping and handling)



We call it:  data cloning

 
Imaginary sequence of experiments: 

We will describe the case where there are no random effects. The 

paper has a proof that is general.  

Experimenter 1: First person to do the experiment, obtains data 

! 

y . 

He puts his prior 

! 

" (#)and conducts the Bayesian inference. The 

posterior is given by  

 

! 

" (1)(# | y) =
f (y |#)" (#)

f (y |#)" (#)d#$ . 



Experimenter 2: Second person does the same experiment, and by 

golly, he obtains exactly the same data 

! 

y  as the first experimenter 

(it can happen). Being a good scientist, he uses 

! 

" (1)(# | y)  as his 

prior and conducts the Bayesian inference. The posterior is 

! 

" (2)
(# | y) =

f (y |#)" (1)
(# | y)

f (y |#)" (1)
(# | y)d#$

               =
f (y |#) f (y |#)" (#)

f (y |#) f (y |#)" (#)d#$

                =
{ f (y |#)}

2" (#)

{ f (y |#)}
2" (#)d#$

 

Continuing in this fashion … 

Experimenter K: K-th researcher does the same experiment, and by 

golly, he obtains exactly the same data 

! 

y  as the first experimenter 

(it can happen). Being a good scientist, he uses 

! 

" (K#1)($ | y)  as his 

prior and conducts the Bayesian inference. The posterior is given 

by   

! 

" (K )
(# | y) =

f (y |#)" (K$1)
(# | y)

f (y |#)" (K$1)
(# | y)d#%

                =
{ f (y |#)}

K" (#)

{ f (y |#)}
K" (#)d#%

 



Now let us see what happens this posterior as K increases. Let 

! 

ˆ "  

denote the MLE, that is,  

! 

f (y | ˆ " ) > f (y |") for all " # ˆ "  

It is easy to see that:  

1) 

! 

" (K )
(# | y)

" (K )
( ˆ # | y)

=
{ f (y |#)}

K

{ f (y | ˆ # )}K
" (#)

" ( ˆ # )
$ 0 if # % ˆ #  

2) 

! 

" (K )
( ˆ # | y)

" (K )
( ˆ # | y)

=
{ f (y | ˆ # )}K

{ f (y | ˆ # )}K
" ( ˆ # )

" ( ˆ # )
=1  

Hence, as we increase K, the posterior distribution becomes 

degenerate at the MLE.  

 

In fact, more can be shown: 

• 

! 

E
" (K ) (# | y)$ ˆ #  

• 

! 

K *Var
" (K ) (# | y)$ I

%1
( ˆ # ) where 

! 

I( ˆ " )  is the Fisher information, 

inverse of it is the asymptotic variance of the MLE. 

 

 

 

 

 

 



Data cloning in a nutshell: 

1) Select some prior for the parameters. 

2) Clone the data K times. 

3) Apply MCMC to compute the posterior. 

4) The mean of the posterior is the MLE and variance of the 

posterior is the asymptotic variance of the MLE.  

5) We have managed to optimize the likelihood without ever 

evaluating the likelihood function or differentiating it. We 

have obtained the second derivative (Fisher information) 

without ever differentiating the function as well.  

6) This method is a generalization of the simulated annealing 

method to random effects case. Hence, it is a general 

optimization method and is not restricted to likelihood 

optimization.  



Example 1

Gompertz state space model of population growth:  a test case with

known likelihood function

! "":  log-population abundance (unobserved) at time 

# !" ":  estimated value of  (observed)

 ! $ % & '! & (" ")* "

 # $ ! & +" " "

( , + ," "
- -normal(0, ), normal(0, )! "

Likelihood function for the unknown parameters , , ,  is a! " ! "# #

multivariate normal distribution;  it can be decomposed (into a

product of univariate normals) with a set of recursion equations

known as the Kalman filter (see Dennis et al. 2006 Ecol. Monogr.)



Gompertz state-space model fitted to American Redstart time series 

(BBS):  ML, data cloning (three different sets of prior distributions). 

 

Parameters ML estimates Data cloning 1 Data cloning 2 Data cloning 3 

a  0.3929(0.5696) 0.3956(0.5509) 0.4136(0.4640) 0.4103(0.5876) 

c  0.7934(0.3099) 0.792(0.2999) 0.7821(0.2524) 0.7839(0.3202) 

!  0.3119(0.2784) 0.3132(0.2751) 0.3217(0.2262) 0.3207(0.2934) 

"  0.4811(0.1667) 0.4802(0.1562) 0.4768(0.1492) 0.4764(0.1816) 

 



Example 2:  Gause's Paramecia:  two species cultured separately

(& together in competition)

The iconic, mandatory “S-shaped growth curve” data, plotted in

every ecology textbook

Features of Gause's data

Gause's figure plots  at each time of three replicate cultures!means

(Original data in appendix to his book)

0.5 cc of well-stirred culture media  each unit of timesampled

Intrinsic stochastic process noise in the cultures as well as

sampling error

Some missing data (populations at 1 not sampled)! "



Ricker-Poisson state space model for Gause's data

!":  concentration of unobserved population

  (cells per 0.5 cc)

#":  sample concentration (cells per 0.5 cc)

":  time (days)

! $ ! %& ' (! ' ) *" "+, "+, "exp

     normal(0, )) -"
.!

 (a stochastic Ricker model)

# - !" "Poisson( )

The likelihood function for data arising from this model is not

available in closed form

Ricker and Ricker-Poisson models fitted to Gause’s Paramecium data, 

combined replicates. 

 

                                         P. aurelia                             P. caudatum                         

 Ricker Ricker- 

Poisson 

Ricker Ricker- 

Poisson 

a  0.686 

 

0.771 

(0.057) 

0.529 

 

0.581 

(0.064) 

b  
-0.0013 

 

-0.0014 

(0.0001) 

-0.0026 

 

-0.0029 

(0.0004) 

!  0.174 0.139 

(0.031) 

0.339 0.162 

(0.044) 



Population abundances of two  species, three replicate cultures each (solidParamecium

lines), from Gause (1934: Appendix I, Table 3), plotted with solution trajectories from

deterministic Ricker population growth model (dashed lines). Upper three time series:  P.

aurelia P. caudatum.  Lower three time series: .
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