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Abstract

Gaussian random fields (GRFs) are important building blocks in hierarchical models for
spatial data, but there is no practically useful, principled approach for selecting the prior
on their hyperparameters. The prior is typically chosen in an ad-hoc manner, which lacks
theoretical justification, despite the fact that we know that the hyperparameters are not
consistently estimable from a single realization and that there is sensitivity to the choice of
the prior.

We first use the recent Penalised Complexity prior framework to construct a practically
useful, tunable, weakly informative joint prior on the range and the marginal variance for
Matérn GRFs with fixed smoothness. We then discuss how to extend this prior to a prior
for a non-stationary GRF with covariates in the covariance structure.
Keywords: Bayesian, Gaussian random fields, Spatial models, Priors, Range, Variance,
Penalised Complexity, Non-stationary

1 Introduction
Gaussian random fields (GRFs) are fundamental building blocks in spatial statistics and non-
parametric modelling. They provide a simple and powerful tool for modelling data with spatial
or temporal dependence, but the Gaussian assumption is in many cases too stringent and they
are embedded within a hierarchical structure as one of multiple components that controls the
behaviour of the observations. In this context, the behaviour of the GRF is usually controlled
through a few parameters such as range, marginal variance and smoothness, but, even though
GRFs are a standard modelling tool, the choice of prior distribution for the parameters remains
a challenge. The prior is difficult to choose: a well-chosen prior will stabilise the inference and
improve the predictive performance, whereas a poorly chosen prior can be catastrophic. Due
to the infinite-dimensional nature of GRFs, it is difficult to construct a good prior and in most
applications the prior is chosen in an ad-hoc fashion. In this paper we focus on Matérn GRFs
with fixed smoothness, but the methods we develop are more widely applicable.

The lack of practically useful, theoretically founded priors is troubling since there is a ridge
in the likelihood along which the value of the likelihood decreases slowly (Warnes and Ripley,
1987), and since the range and the marginal variance for the Matérn family of covariance functions
cannot be estimated consistently under in-fill asymptotics (Zhang, 2004). The behaviour of the
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Figure 1: Simulations with the exponential covariance function c(d) = σ2e−d/ρ for different
values of ρ = σ2 using the same underlying realization of independent standard Gaussian random
variables. The patterns of the values are almost the same, but the levels differ.

prior on the ridge will strongly affect the behaviour of the posterior on the ridge and no matter
how many points are observed in a bounded observation window, there is a limit to the amount
of information that can be learned about these parameters. For example, if a one-dimensional
GRF with an exponential covariance function is observed on [0, 1], it is only the ratio of the
range and the marginal variance that can be estimated consistently, and not the range and the
marginal variance separately (Ying, 1991). When we move along the ridge towards large values
of the range and the marginal variance, we change the distribution of the level of the points, but
the distribution of the spread around the level changes only slightly. Figure 1 shows how the
level moves, but the pattern of the points around the level remains stable for increasing values
of the range and the marginal variance.

In some sense, the lack of identifiability is alleviated by the fact that there is a connection
between what we can learn from observations and what can affect the predictive distributions,
and in this example it is the ratio of the range and the marginal variance that is the important
quantity for the asymptotic properties of the predictions (Stein, 1999). But even though there is a
place for intrinsic models in spatial statistics, a practitioner who observes the values in Figure 1a is
unlikely to believe that the ranges and marginal variances that can generate Figures 1b and 1c are
correct even if the spread is consistent with the observed pattern. In this problem the likelihood
by itself is not informative enough to properly control the sizes of the credible intervals, therefore,
the practitioner should be provided with a prior that allows control, in an interpretable way, of
how far the posterior is allowed to move along the ridge.

Despite this, to our knowledge, the only principled approach to prior selection for GRFs was
introduced by Berger et al. (2001), who derived reference priors for a GRF partially observed
with no noise. These priors fundamentally depend on the design of the experiment, which makes
them inappropriate as “blind” default priors or when data is being analysed in a sequential
fashion. This work has been extended by several authors (Paulo, 2005; Kazianka and Pilz, 2012;
Kazianka, 2013) – critically Oliveira (2007) allowed for Gaussian observation noise – however,
these papers have the same design dependence as the original work. Furthermore, the priors
are not applicable as default priors for hierarchical models because the assumption of Gaussian
observation noise is insufficient in many situations and there are currently no extensions of
spatial reference priors to other observation processes. In the more restricted case of a GRF with
a Gaussian covariance function van der Vaart and van Zanten (2009) showed that the inference
asymptotically behaves well with an inverse gamma distribution on range, but they provide no
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guidance on which hyperparameters should be selected for the prior.
In practice, the range is commonly given a uniform distribution on a bounded interval, a

log-uniform distribution on a bounded interval or an inverse gamma distribution with infinite
variance and the mean placed at an appropriate location. These priors have little theoretical
foundation and are ad-hoc choices based on the idea that they will allow reasonable ranges, but
Berger et al. (2001) noted that the posterior inference can be sensitive to the choice of cut-off
for the uniform prior, and it is necessary with careful sensitivity analysis. The bounded intervals
are necessary because improper prior distributions cannot be applied without great care as they
tend to lead to improper posterior distributions. From a Bayesian modelling perspective this
is an unsatisfactory situation because the prior is supposed to encode the user’s uncertainty
about the parameters and not be an ad-hoc choice made out of convenience without theoretical
justification.

We apply the recent Penalised Complexity (PC) prior framework developed by Simpson et al.
(2014) to construct a new, principled joint prior for the range and the marginal variance of a
Matérn GRF. The PC prior framework ignores the observation process entirely and focuses
instead on the geometry of the parameter space induced by the infinite-dimensional GRF. This
is more technically demanding than considering only the finite-dimensional observation, like for
the reference priors, but we are able to use the resulting prior for any spatial design and any
observation process. The second key difference between the reference priors and the PC prior
approach is that while the former is “non-informative” in a technical sense, PC priors are weakly
informative and, therefore, require specific information from the user. In particular, PC priors
need a point in the parameter space, considered a base model, and hyperparameters indicating
how strongly the user wishes to shrink towards the base model. Simpson et al. (2014) showed
that the resulting inference was quite robust against the specification of the hyperparameters.

The reference prior makes the posterior decay slowly along the ridge since predictions are not
heavily influenced by the near intrinsicness in the level, but the PC-prior is weakly informative
and allows the user to force the posterior to decay quicker along the ridge. When we incorporate
a prior belief that the marginal standard deviation is below a specific value, we cannot move
much past this value on the ridge without violating the prior belief. In this way it is possible
to obtain more realistic parameter estimates and smaller and more meaningful credible intervals
than with the reference priors. The reference priors are fully based on the likelihood and have
no options for controlling how far the spatial model is allowed to move towards near-intrinsic
models with large ranges and large variances even if they do not make sense for the application
at hand.

The drawbacks and insufficiencies of noninformative priors for spatial models have already
been commented by other authors and the arguments are well summarized by Palacios and Steel
(2006) who wrote:

Thus we need to think carefully about our priors and try to use as much information
as we have available in eliciting reasonable prior distributions. In this particular
context [Bayesian geostatistical models], we feel that this strategy is preferable to
relying on automatic noninformative priors like the reference prior (if such priors are
at all available; . . . ).

The prior for stationary GRFs provides a strong foundation for the development of priors for
non-stationary GRFs. The covariance structure of a GRF is only observed indirectly through
the values of the process and for locations without observations there is no information about
the covariances. Therefore, the estimated covariance structure can be highly model-dependent
and it would be useful and important to have an interpretable prior that provides understanding
about the a priori assumptions that we put into the non-stationary model. We extend the prior
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for the stationary GRF to a prior for a non-stationary GRF with covariates in the covariance
structure. The prior is motivated by the PC prior framework, but has ad-hoc components.

We start by deriving the new, joint PC prior for the range and the marginal variance for a
Matérn GRF with fixed smoothness parameter in Section 2. Then in Section 3 the frequentist
coverage is studied through a simulation study and compared with the coverage when using
the Jeffreys’ rule prior and ad-hoc uniform and log-uniform priors. In Section 4 we study the
behaviour of the joint posterior under the PC-prior and the Jeffreys’ rule prior and discuss the
difference in behaviour. Then the frequentist properties of spatial logistic regression are studied
in Section 5 to demonstrate the applicability of the PC prior for a non-Gaussian observation
process. In Section 6 we discuss how to extend the prior for the stationary model to a prior for
a non-stationary GRF. The paper ends with discussion and concluding remarks in Section 7.

2 Penalised complexity prior

2.1 Background
The principle idea of the PC-prior framework is to think of a model component as a flexible
extension of the base model, which is chosen to be the simplest or least flexible state of the
model component. For example, a random effect is an extension of a random effect with zero
variance, i.e. no random effect. After selecting the base model, one derives a distance measure
from the base model to the models described by other parameter values. This distance from the
base model describes how much more flexible each model is than the base model and provides
a measure of complexity for the model component, and the prior is set directly on the distance
from the base model instead of on the parameters of the model. This provides a useful tool
for setting priors on parameters for which it is hard to have intuition. For example, correlation
parameters close the border values −1, 0 and 1, or the range in spatial models.

To put this idea into practice, it is necessary to decide which measure of complexity to use
and which prior to put on the resulting distance. We measure the extra complexity of each model
compared to the base model through the Kullback-Leibler divergence (KLD). The KLD of the
probability density f from the probability density g is defined by

DKL(f ||g) =

∫
χ

f(x) log

(
f(x)

g(x)

)
dx,

and expresses the information lost when g is used to approximate f . The asymmetry of the KLD
fits well with the choice of the base model as the favoured model, and we turn the KLD into a
uni-directional distance from the base model g to the model f through d(f ||g) =

√
2KLD(f ||g).

The remaining key point is which distribution to put on the derived distance and Simpson
et al. (2014) provide three principles for selecting the prior on the distance: Occam’s razor,
constant rate penalisation and user-defined scaling. Occam’s razor is achieved by constructing
a prior that penalises deviations from the base model and favours the base model until the data
provides evidence against it. This suggests that the prior density should have its peak at distance
0 and less and less density for higher distances. The constant rate penalisation is achieved by
making the prior on the distance, d, satisfy the relationship

π(d+ δ)

π(d)
= rδ, d, δ ≥ 0,

for a constant decay-rate 0 < r < 1. This means that the relative change in the prior when the
distance increases by δ does not depend on the current distance d, and leads to the exponential
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distribution
π(d) = λ exp(−λd).

After deciding on this distribution we apply the final principle of user-defined scaling to
determine the hyperparameter λ. We transform the distance back to an interpretable size Q(d)
and include prior information through

P(Q(d) > U) = α or P(Q(d) < L) = α,

where U or L is an upper or lower limit, respectively, and α is the probability in the upper or
lower tail of the prior distribution. By selecting U or L, and α the user combines prior belief
with a prior derived from the geometry of the parameter space.

We want to extend the approach outlined above to Gaussian Matérn fields with fixed smooth-
ness. These GRFs have the covariance function

C(d) = σ2 1

Γ(ν)2ν−1

(√
8νd

ρ

)ν
Kν

(√
8νd

ρ

)
,

where ρ is the spatial range, σ2 is the marginal variance and ν is a fixed smoothness. The first
thing we need to decide is what the base model should be; what type of model do we want to
shrink towards? It seems clear that we want to shrink towards zero standard deviation, or no
effect, but the GRF is controlled by two parameters and we need to describe how the range
behaves as the marginal variance goes to zero. We choose to shrink the range simultaneously to-
wards infinity with the goal of achieving shrinkage towards a constant random field with variance
zero.

The GRFs possess a technical difficulty not present for finite dimensional distributions. Imag-
ine that the spatial field is observed at all points in a bounded observation window, for example,
[0, 1]2, then the KLD between the distributions specified by two choices of parameters (ρ0, σ

2
0)

and (ρ1, σ
2
1) is in general infinite. This means that we must be careful in our prior construction

and understand which changes corresponds to infinite KLD. To facilitate the construction of
the prior, we select a parametrization of the spatial field that more accurately describes what
can be and what cannot be estimated from a bounded observation window. We introduce the
parameters κ =

√
8ν/ρ and

τ =
Γ(ν)

(4π)d/2Γ(ν + d/2)σ2κ2ν
.

These parameters arise from a slight re-parametrization of the SPDE in Lindgren et al. (2011),

(κ2 −∆)α/2(
√
τu(s)) =W(s), s ∈ Rd, (1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian and W is standard Gaussian white noise. If κ and τ

are chosen as above, this SPDE specifies a Matérn GRF with range ρ, marginal variance σ2 and
smoothness ν = α−d/2. In this parametrization τ can be consistently estimated from a bounded
observation window, whereas κ cannot. If κ is kept fixed and the value of τ changes, the KLD
is infinite, but if the value of τ is kept fixed and the value of κ changes, the KLD is finite. This
parametrization allows us to use a two-step procedure where we first set a prior on κ based on
the distribution of the GRF through the KLD and then set a prior on τ given the value of κ
through a consideration of finite-dimensional observations.
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2.2 Joint prior on range and marginal variance
We first construct a joint prior for κ and τ through the densities π(κ) and π(τ |κ), and then
transform the resulting joint prior to a joint prior on ρ and σ2. The prior on κ is constructed
using the limit of a re-scaled form of the KLD, but the details are technical and the derivation
is, therefore, given in Appendix A. The result is a description of how much more complex the
models with κ > 0 are compared to the intrinsic model κ = 0 for a fixed τ . If we ignore the
multiplicative constants, the resulting distance is

d(κ) = κd/2. (2)

The distance in Equation (2) expresses how far the distribution of the GRF is from the intrin-
sic GRF as a function of κ and solves the highly non-trivial problem of describing how much a
Matérn GRF varies as a function of range. Since ρ =

√
8ν/κ, the distance in Equation (2) implies

that the range can be made arbitrarily large without making large changes in the distribution if
the marginal variance increases in such a way that τ is kept constant. This increase in marginal
variance will be controlled by the prior for τ |κ, which will disallow unreasonably large marginal
variances and thus near-intrinsic models.

An exponential prior on the distance from the base model gives

π(κ) = λ1 exp(−λ1d(κ))

∣∣∣∣ d

dκ
d(κ)

∣∣∣∣
=
λ1d

2
κd/2−1 exp(−λ1κ

d/2), κ > 0, (3)

where λ1 is determined by controlling the a priori probability that the range is below a specific
limit,

P

(√
8ν

κ
< ρ0

)
= α1,

i.e.

λ1 = − log(α1)

(
ρ0√
8ν

)d/2
.

The calibration of the prior requires the selection of two values: the lower range, ρ0, and the
probability in the lower tail, α1.

The prior on τ cannot be derived from the distribution of the process on a bounded observa-
tion window since this parameter is completely determined by the values of the process on the
observation window. It would be meaningless to put a prior on τ if we observed all values in the
observation window, and we must instead choose a situation in which a prior is necessary. We
make the assumption that we are interested in observing finite-dimensional quantities from the
spatial field.

With κ fixed the joint distribution of a finite number of observations is a multivariate Gaussian
distribution of the form

π(u) ∝ exp
(
−τ

2
uTΣ−1u

)
,

where Σ is a fixed matrix. In this distribution τ acts as a precision parameter and we can use
the prior constructed by (Simpson et al., 2014),

π(τ) =
λ2

2
τ−3/2 exp(−λ2τ

−1/2), τ > 0, (4)
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where λ2 is determined by controlling the a priori probability that the marginal variance exceeds
a specific level,

P

(
C(ν)

τκ2ν
> σ2

0

∣∣∣∣κ) = α2, (5)

where
C(ν) =

Γ(ν)

Γ(ν + d/2)(4π)d/2

is the constant needed to make the left-hand side of the inequality equal to the marginal variance
of the GRF.

Since the calibration criterion in Equation (5) is conditional on the value of κ, it introduces
dependence between κ and τ in the joint prior. We write Equation (5) as

P

(
τ <

C(ν)

κ2νσ2
0

∣∣∣∣κ) = α2

and find

exp

(
−λ2

(
C(ν)

κ2νσ2
0

)−1/2
)

= α2,

λ2 =
λ3

κν
,

where λ3 absorbs the other constants in λ2. We insert this into Equation (4) and find the
conditional distribution

π(τ |κ) =
λ3τ
−3/2

κν
exp(−λ3κ

−ντ−1/2). (6)

This implies that the dependence between κ and τ is affected by the value of the smoothness ν.
The joint prior on κ and τ is found by combining Equation (3) and Equation (6), and is given

by

π(κ, τ) = π(κ)π(τ |κ)

=
λ1λ3d

2
τ−3/2κd/2−1−ν exp(−λ1κ

d/2 − λ3κ
−ντ−1/2).

There is a one-to-one correspondence between κ and τ , and ρ and σ2,[
ρ
σ2

]
=

[ √
8ν
κ

C(ν)
κ2ντ

]
,

which can be exploited to transform the joint prior for κ and τ to the joint prior for ρ and σ2,

π(ρ, σ2) =

[
dλ4

2
ρ−1−d/2 exp

(
−λ4ρ

−d/2
)] [λ5

2
σ−1 exp (−λ5σ)

]
, (7)

where λ4 and λ5 are selected according to the a priori statements

P(ρ < ρ0) = α4 and P(σ2 > σ2
0) = α5,

which give

λ4 = −ρd/20 log(α4) and λ5 = − log(α5)

σ0
.
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Table 1: The four different priors used in the study of frequentist coverage. The Jeffreys’ rule
prior uses the spatial design of the problem through U = ( ∂∂ρΣ)Σ−1, where Σ is the correlation
matrix of the observations (See Berger et al. (2001)).

Prior Expression Parameters

PriorPC π1(ρ, σ) = λ1λ2ρ
−2 exp

(
−λ1ρ

−1 − λ2σ
) ρ, σ > 0

Hyperparameters:
αρ, ρ0, ασ, σ0

PriorJe π2(ρ, σ) = σ−1

(
tr(U2)− 1

n
tr(U)2

)1/2 ρ, σ > 0
Hyperparameters:
None

PriorUn1 π3(ρ, σ) ∝ σ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B

PriorUn2 π4(ρ, σ) ∝ σ−1 · ρ−1
ρ ∈ [A,B], σ > 0
Hyperparameters:
A, B

3 Frequentist coverage
The series of papers on reference priors for GRFs starting with Berger et al. (2001) evaluated the
priors by studying frequentist properties of the resulting Bayesian inference. If a prior is intended
as a default prior, it should lead to good frequentist properties such as a frequentist coverage of
the equal-tailed 100(1−α)% Bayesian credible intervals that is close to the nominal 100(1−α)%.
We replicate their simulation study with one key difference: we do not include covariates and
measurement noise. The reference priors are not proper distributions and the goal of the series of
papers was to derive them for different situations such as a spatial field combined with covariates,
and a spatial field combined with covariates and Gaussian measurement noise. However, in this
paper we construct a prior for the GRF component itself and we are not constructing a prior for
the GRF together with covariates or together with covariates and Gaussian measurement noise.
This is possible because the PC-prior is a proper distribution and can be applied to a spatial
field together with covariates and arbitrary observation processes without worrying about the
properness of the posterior.

The study uses an isotropic GRF, u, with an exponential covariance function c(d) = exp(−2d/ρ0)
observed at the locations shown in Figure 2. The observation locations were randomly selected
within the domain [0, 1]2 and are distributed in an irregular pattern. The study is performed for
two values of the nominal range: a short range, ρ0 = 0.1, and a long range, ρ0 = 1. We generate
multiple realizations and for each realization we assume that the field is observed directly and
fit the model

yi = u(si), i = 1, 2, . . . , 25,

where u is a GRF with an exponential covariance function with parameters ρ and σ2. We apply
four different priors: the PC-prior (PriorPC), the Jeffreys’ rule prior (PriorJe), a uniform prior
on range on a bounded interval combined with the Jeffreys’ prior for variance (PriorUn1) and
a uniform prior on the log-range on a bounded interval combined with the Jeffreys’ prior for
variance (PriorUn2). The full expressions for the priors are given in Table 1.

For each choice of prior and hyperparameters we generate 1000 observation vectors y =
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Figure 2: Spatial design for the simulation study of frequentist coverage.
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Table 2: Frequentist coverage of 95% credible intervals for range and marginal variance when
the range ρ0 = 0.1 using PriorPC, where the average lengths of the credible intervals are shown
in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625
0.025 0.768 [0.25] 0.749 [0.24] 0.760 [0.20] 0.693 [0.17]
0.1 0.965 [0.35] 0.976 [0.29] 0.961 [0.27] 0.937 [0.21]
0.4 0.990 [0.45] 0.989 [0.41] 0.993 [0.33] 0.987 [0.25]
1.6 0.717 [0.98] 0.692 [0.82] 0.756 [0.54] 0.807 [0.34]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625
0.025 0.941 [1.5] 0.952 [1.4] 0.957 [1.3] 0.918 [0.97]
0.1 0.953 [1.6] 0.966 [1.5] 0.944 [1.4] 0.927 [0.98]
0.4 0.953 [2.0] 0.952 [1.8] 0.960 [1.5] 0.943 [1.1]
1.6 0.904 [3.9] 0.906 [3.2] 0.939 [2.2] 0.972 [1.3]

(y1, y2, . . . , y25) and estimate the equal-tailed 95% credible interval for each observation by run-
ning an MCMC-chain. The number of times the true value is contained within the estimated
credible interval is divided by 1000 and given as the estimate of the frequentist coverage. We
tried MCMC chains of length 25000 with 5000 iterations burn-in and MCMC chains of length
125000 with 25000 burn-in. The results for PriorPC, PriorUn1 and Prior2 were stable, but the
chains for PriorJe showed in some cases notoriously high autocorrelation and unstable results
and we re-ran with MCMC chains of length 1500000 with 300000 iterations as burn-in.

PriorJe has no hyperparameters, but PriorPC, PriorUn1 and PriorUn2 each has hyperpa-
rameters that need to be set before using the prior. For PriorUn1 and PriorUn2 it is hard to
give guidelines about which values should be selected since the main purpose of limiting the
prior distributions to a bounded interval is to avoid an improper posterior and the choice tends
to be ad-hoc. For PriorPC, on the other hand, there is a calibration criterion to help choos-
ing the hyperparameters, which helps give an idea about which prior assumptions the chosen
hyperparameters are expressing.

For PriorPC we make a decision about the scales of the range and the marginal variance.
The prior is set through four hyperparameters that describe our prior beliefs about the spatial
field. We use

P(ρ < ρ0) = 0.05

for ρ0 = 0.025ρT, ρ0 = 0.1ρT, ρ0 = 0.4ρT and ρ0 = 1.6ρT, where ρT is the true range. This
covers a prior where ρ0 is much smaller than the true range, two priors where ρ0 is smaller than
the true range, but not far away, and one prior where ρ0 is higher than the true range. For the
marginal variance we use

P(σ2 > σ2
0) = 0.05,

for σ0 = 0.625, σ0 = 2.5, σ0 = 10 and σ0 = 40. We follow the same logic as for range and cover
too small and too large σ0 and two reasonable values. For PriorUn1 and PriorUn2, we set the
lower and upper limits for the nominal range according to the values A = 0.05, A = 0.005 and
A = 0.0005, and B = 2, B = 20 and B = 200. Some of the values are intentionally extreme to
see the effect of misspecification.
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Table 3: Frequentist coverage of 95% credible intervals for range and marginal variance when
the true range ρ0 = 0.1 using PriorUn1, where the average lengths of the credible intervals are
shown in brackets.

(a) Range

A\B 2 20 200
5 · 10−2 0.901 [0.95] 0.901 [8.6] 0.847 [122]
5 · 10−3 0.935 [0.92] 0.918 [7.7] 0.887 [110]
5 · 10−4 0.948 [0.93] 0.929 [7.9] 0.893 [110]

(b) Marginal variance

A\B 2 20 200
5 · 10−2 0.952 [3.5] 0.941 [29] 0.895 [460]
5 · 10−3 0.945 [3.3] 0.937 [27] 0.907 [410]
5 · 10−4 0.953 [3.3] 0.925 [27] 0.921 [412]

Table 4: Frequentist coverage of 95% credible intervals for range and marginal variance when
the true range ρ0 = 0.1 using PriorUn2, where the average lengths of the credible intervals are
shown in brackets.

(a) Range

A\B 2 20 200
5 · 10−2 0.986 [0.47] 0.979 [0.84] 0.988 [1.1]
5 · 10−3 0.976 [0.44] 0.950 [0.81] 0.966 [1.0]
5 · 10−4 0.932 [0.40] 0.945 [0.70] 0.944 [1.3]

(b) Marginal variance

A\B 2 20 200
5 · 10−2 0.949 [2.0] 0.962 [2.9] 0.965 [3.6]
5 · 10−3 0.968 [1.8] 0.960 [2.6] 0.959 [3.2]
5 · 10−4 0.948 [1.7] 0.960 [2.4] 0.949 [3.7]
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Table 5: Frequentist coverage of 95% credible intervals for range and marginal variance when the
true range ρ0 = 1 using PriorPC, where the average lengths of the credible intervals are shown
in brackets.

(a) Range

ρ0\σ0 40 10 2.5 0.625
0.025 0.950 [12] 0.945 [7.1] 0.906 [3.2] 0.821 [1.4]
0.1 0.977 [15] 0.966 [8.2] 0.962 [3.6] 0.866 [1.5]
0.4 0.965 [26] 0.981 [13] 0.992 [5.1] 0.988 [1.8]
1.6 0.159 [74] 0.349 [31] 0.700 [11] 0.954 [3.3]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625
0.025 0.944 [11] 0.956 [6.2] 0.933 [2.8] 0.797 [1.1]
0.1 0.957 [13] 0.966 [7.2] 0.954 [3.1] 0.865 [1.2]
0.4 0.943 [23] 0.957 [11] 0.987 [4.4] 0.972 [1.5]
1.6 0.441 [68] 0.534 [29] 0.797 [9.1] 0.984 [2.5]

Table 6: Frequentist coverage of 95% credible intervals for range and marginal variance when the
true range ρ0 = 1 using PriorUn1, where the average lengths of the credible intervals are shown
in brackets.

(a) Range

A\B 2 20 200
5 · 10−2 0.995 [1.5] 0.831 [18] 0.593 [188]
5 · 10−3 0.996 [1.5] 0.818 [18] 0.539 [188]
5 · 10−4 0.994 [1.5] 0.844 [18] 0.537 [188]

(b) Marginal variance

A\B 2 20 200
5 · 10−2 0.979 [2.0] 0.857 [20] 0.614 [208]
5 · 10−3 0.979 [2.0] 0.821 [20] 0.585 [205]
5 · 10−4 0.969 [2.0] 0.828 [20] 0.561 [206]
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Table 7: Frequentist coverage of 95% credible intervals for range and marginal variance when the
true range ρ0 = 1 using PriorUn2, where the average lengths of the credible intervals are shown
in brackets.

(a) Range

A\B 2 20 200
5 · 10−2 0.980 [1.5] 0.959 [12] 0.933 [69]
5 · 10−3 0.974 [1.5] 0.954 [12] 0.954 [67]
5 · 10−4 0.964 [1.5] 0.953 [13] 0.956 [68]

(b) Marginal variance

A\B 2 20 200
5 · 10−2 0.955 [1.8] 0.952 [12] 0.945 [61]
5 · 10−3 0.962 [1.8] 0.943 [12] 0.941 [60]
5 · 10−4 0.939 [1.8] 0.946 [12] 0.953 [60]

The results for PriorPC, PriorUn1 and PriorUn2 are shown in Tables 2 and 5, Tables 3 and 6,
and Tables 4 and 7, respectively. The results for PriorJe was 97.0% coverage with average length
of the credible intervals of 0.86 for range and 96.0% coverage and average length of the credible
intervals of 2.7 for marginal variance for ρ0 = 0.1, and 95.4% coverage with average length of
the credible intervals of 445 for range and 94.4% coverage with average length of the credible
intervals of 355 for variance for ρ0 = 1. It is clear from the tables that for PriorPC, PriorUn1
and PriorUn2 the coverage and the length of the credible intervals are dependent on the choice
of hyperparameters. This is not surprising since there are few observation and there is a ridge
in the likelihood where the behaviour is strongly dependent on the the prior. The length of the
credible intervals are, in general, more well-behaved for ρ0 = 0.1 than for ρ0 = 1 because there
is more information available about range when the range is short compared to the domain size.

For PriorUn1 the coverage and the length of the credible intervals is strongly dependent on
the upper limit in the prior. The prior has the undesirable property of including stronger and
stronger prior belief in high ranges when the upper limit is increased. One might argue that the
upper limit would never be selected as extreme as in the example, but it verifies the observation
of Berger et al. (2001) that the inference is sensitive to the hyperparameters for this prior. For
PriorUn2 the coverage is good in both the short range and long range situation, but the lengths
of the credible intervals are sensitive to the upper limit of the prior. The new PriorPC exhibit
sensitivity in the coverage and the lengths of the credible intervals, but for this prior it is caused
by explicitly including information that conflicts with the true value, whereas for PriorUn1 and
PriorUn2 it is not immediately clear what information is included through the different choices
of hyperparameters.

The coverage of PriorJe is good, but the credible intervals seem excessively long and the prior
is more computationally expensive than the other priors. PriorJe is only computationally feasible
for low amounts of points since there is a cubic increase in complexity as a function of the number
of observations. The average length of the credible intervals for ρ0 = 1 for marginal variance
is 355, which imply unreasonably high standard deviations. The high standard deviations do
not seem consistent with an observation with values contained between −3 and 3. We study the
credible intervals for PriorPC and PriorJe closer for a specific realization in the next section to
gain intuition about why this happen.

With respect to computation time and easy of use versus coverage and length of credible
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Figure 3: One realization of a GRF with the covariance function c(d) = exp(−2d) at 25 selected
locations.

intervals PriorUn2 and PriorPC appear to be the best choices. If coverage is the only concern,
PriorUn2 performs the best, but if one also wants to control the length of the credible intervals
by disallowing unreasonably high variances, PriorPC offers the most interpretable alternative.
Based on one of the realizations in this simulation study we are unlikely to believe that the
spatial field could have a standard deviation greater than 4, and by encoding this information
in PriorPC we can limit the upper limits of the credible intervals both for range and marginal
variance.

4 Behaviour of the joint posterior
The sensitivity of the length of the credible intervals to the prior and the extreme length of the
credible intervals seen for the Jeffreys’ rule prior are not entirely surprising due to the ridge in
the likelihood, but they are troubling. In the previous section we only looked at properties of
the marginal credible intervals, but these do not tell the entire story because there is strong
dependence between range and marginal variance in the joint posterior distribution. We study
this dependence by studying the posterior distribution for the realization shown in Figure 3. The
true range used to simulate the realization is 1. We draw samples from the joint posterior using
the PC-prior with parameters αρ = 0.05, ρ0 = 0.1, ασ = 0.05 and σ0 = 10, and we draw samples
from the joint posterior using the Jeffreys’ rule prior.

Figure 4 shows that the upper tails of the posteriors when the Jeffreys’ rule prior is used are
heavier than the upper tails of the posteriors when the PC-prior is used. The lower endpoints
of the credible intervals are similar for both priors, but there is a large difference in the upper
limits because the likelihood decays slowly along the ridge and the behaviour of the prior on
the ridge is important for the behaviour of the posterior. The marginal posterior distributions
do not show the full story about the inference on range and marginal variance because the two
parameters are strongly dependent in the posterior distribution. The PC-prior for range has a
heavy upper tail for range and the upper tail of the posterior of range is controlled through the
prior on marginal variances. The large difference in the marginal posterior for the nominal range
in Figure 4a can be explained by the behaviour of the joint posterior.

Figure 5 shows the strong posterior dependence between nominal range and standard de-
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Figure 4: Marginal posteriors of the logarithm of range and the logarithm of marginal standard
deviation. The dashed lines shows the posterior and the credible intervals when the PC-prior
is used and the solid line shows the posterior and the credible intervals when the Jeffreys’ rule
prior is used.
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Figure 5: Samples from the joint posterior of range and marginal standard deviation. The red
circles are samples using the PC-prior and the black circles are samples using the Jeffreys’ rule
prior.

viation in the tail of the distribution. The extreme tail of the Jeffreys’ rule prior corresponds
to movement far along the ridge in the likelihood. Stein (1999) showed that the ratio of range
and marginal variance is the important quantity for asymptotic predictions with the exponential
covariance function, which means that long tails are not a major concern for predictions, but for
interpretability of range and marginal variance this heavy tail presents a problem. The values of
all the observations in Figure 3 lie in the range −1 to 3 and it is unlikely that the true standard
deviation should be on the order of 20. After conditioning on data the effect of using a near in-
trinsic GRF with simultaneously large values for range and marginal variance is almost the same
as a GRF with meaningful values for range and marginal variance. Intrinsic models have a place
in statistics, but the results show that the Jeffreys’ rule prior has the, potentially, undesirable
behaviour of favouring intrinsic GRFs with large marginal standard deviations and ranges. The
PC prior offers a way to introduce prior belief about the marginal standard deviations, and thus
a way to avoid the intrinsic GRFs and keep the standard deviation at reasonable (according to
prior belief) values.

5 Example: Spatial logistic regression
What makes the PC prior more practically useful than the reference prior, beyond the computa-
tional benefits and interpretability, is that the prior is applicable in any hierarchical model and
does not have to be re-derived each time a component is removed or added, or the observation
process is changed. We consider a simple spatial logistic regression example to demonstrate the
applicability of the PC prior beyond direct observations or Gaussian measurement noise.

We select the 25 locations in Figure 2 and generate realizations from the model

yi|pi ∼ Binomial(20, pi), i = 1, 2, . . . , 25,

where
probit(pi) = u(si),
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Table 8: Frequentist coverage of the 95% credible intervals for range and marginal variance when
the true range is 0.1 and true marginal variance is 1, where the average length of the credible
intervals are given in brackets, for the spatial logistic regression example.

(a) Range

ρ0\σ0 40 10 2.5 0.625
0.025 0.804 [0.29] 0.790 [0.24] 0.774 [0.22] 0.726 [0.19]
0.1 0.974 [0.41] 0.986 [0.37] 0.974 [0.33] 0.956 [0.24]
0.4 0.996 [0.61] 0.982 [0.57] 0.996 [0.43] 0.992 [0.30]
1.6 0.648 [1.4] 0.604 [1.2] 0.722 [0.67] 0.762 [0.44]

(b) Marginal variance

ρ0\σ0 40 10 2.5 0.625
0.025 0.942 [2.0] 0.946 [1.9] 0.948 [1.7] 0.912 [1.2]
0.1 0.920 [2.3] 0.942 [2.0] 0.964 [1.8] 0.922 [1.2]
0.4 0.952 [2.7] 0.962 [2.4] 0.968 [1.9] 0.928 [1.2]
1.6 0.904 [5.3] 0.936 [4.1] 0.966 [2.7] 0.982 [1.5]

where u is a GRF with the exponential covariance function with parameters ρ = 0.1 and σ = 1.
For each realization the parameters ρ and σ2 are assumed unknown and must be estimated.
The posterior of the parameters is estimated with an MCMC chain and the equal-tailed 95%
credible intervals are estimated from the samples of the MCMC-chain after burn-in. We repeat
the procedure above 500 times and report the number of times the true value is contained in the
credible interval and the average length of the credible interval.

The experiment is repeated for 64 different settings of the prior: the hyperparameter ρ0 varies
over ρ0 = 0.0025, 0.01, 0.04, 0.16 and the hyperparameter σ0 varies over σ0 = 40, 10, 2.5, 0.625.
This covers a broad range of values from too small to too large. The values in Table 8 are similar
to the values in Table 2 except that the credible intervals are slightly longer. The longer credible
intervals are reasonable since the binomial likelihood gives less information about the spatial
field than direct observation of the spatial field. The coverage for marginal variance is good even
for grossly miscalibrated priors, but the coverage for range is sensitive to bad calibration for
range and the coverage is somewhat higher than nominal for the well-calibrated priors. This is
a feature also seen in the directly observed case in Section 3.

6 Priors on non-stationarity
The development of practically useful, interpretable priors for stationary GRFs is important and
useful, but the need for such priors is even stronger for non-stationary GRFs. The covariance
structure estimated with a non-stationary GRF can be strongly dependent on the a priori as-
sumptions on the non-stationarity. It can be difficult to understand the implications of the a
priori assumptions that we put into non-stationary models because it is difficult to understand
how the distribution of a GRF varies as a function of the parameters. The two main challenges
are to construct a prior, which accounts for the highly non-trivial geometry of the parameter
space, and to calibrate the prior in an interpretable way. Therefore, the PC prior framework is
an appealing starting point with properties that fit well for developing such a prior.

There exists different models for non-stationary data and they incorporate non-stationarity in
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different ways. For example, in the deformation method (Sampson and Guttorp, 1992; Schmidt
and O’Hagan, 2003; Damian et al., 2001, 2003) a stationary GRF is made non-stationary through
a spatial deformation, in the process convolution method (Haas, 1990b,a; Paciorek and Schervish,
2006) a spatially varying kernel function is convolved with Gaussian white noise, and in the
stochastic partial differential equation (SPDE) approach (Bolin and Lindgren, 2011; Fuglstad
et al., 2015a,b) a non-stationary GRF is specified through an SPDE with spatially varying
coefficients. Each of these types of models has had extensions to covariates in the covariance
structure (Schmidt et al., 2011; Neto et al., 2014; Ingebrigtsen et al., 2014a,b).

Ideally, we would derive a prior that could deal with any type of non-stationarity and be
applicable for any model for non-stationarity, but, in practice, this is not feasible. For the
purpose of this discussion the starting point is the sub-class of the SPDE models (Lindgren
et al., 2011) consisting of the model discussed in Ingebrigtsen et al. (2014a). This model uses
covariates, and thus needs fewer parameters and is less computationally expensive than a model
with a more flexible covariance structure. The model is an extension of the stationary SPDE in
Equation (1) with a slightly different parametrization and coefficients that vary spatially,

[κ(s)2 −∆](τ(s)u(s)) =W(s), D ⊂ Rd, (8)

with Neumann boundary conditions. We have fixed α = 2 to get a practically feasible model,
but with a spatially varying range it is unlikely to pose a large practical limitation to fix the
smoothness ν = 1.

We make the assumption that the priors on the correlation structure and the marginal vari-
ances can be set independently in an analogous way to the stationary GRF. This means we
must solve two challenges: covariates must be included separately in the correlation structure
and in the marginal variances, and practically useful, interpretable priors must be developed
for the covariates in the correlation structure and for the covariates in the marginal variances.
Thus setting priors on non-stationarity is not only a question about which prior to set after the
parametrization is decided, but a question of how to parametrize the non-stationarity and how
to set priors on the parameters in the parametrization.

6.1 Parametrizing the non-stationarity
Ingebrigtsen et al. (2014a) expands log(κ(·)) and log(τ(·)) in Equation (1) into low-dimensional
bases, but experience numerical problems and prior sensitivity to the priors for the weights in the
basis expansions. Ingebrigtsen et al. (2014b) attempt to solve this by setting the hyperparameters
of the priors based on the properties of the spatially varying local ranges and marginal variances.
The procedure improves the calibration step of the prior specification compared to Ingebrigtsen
et al. (2014a), but does not solve the inherent problem that κ(·) affects both the correlation
structure and the marginal variances of the spatial field. We aim to improve their procedure by
first improving the parametrization of the non-stationarity, and then setting and calibrating the
prior using the improved parametrization.

The model used by Ingebrigtsen et al. (2014a) introduces spatial variation in the covariance
structure by varying the coefficients of the SPDE, but there exists another way to introduce
non-stationarity. Instead of varying the coefficients of the SPDE, one can vary the geometry of
the space in a similar way as the deformation method. If E is the Euclidean space R2, the simple
SPDE

(1−∆E)u(s) =
√

4πWE(s), s ∈ E, (9)

generates a stationary Matérn GRF with range ρ =
√

8, marginal variance σ2 = 1 and smoothness
ν = 1. Instead of introducing spatially varying coefficients, we introduce spatially varying
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distances in the space on which the SPDE is defined. We take a two-dimensional manifold
E = R2 and give the space geometric structure according to the metric tensor g(s) = R(s)−2I2,
where R(·) is a strictly positive scalar function. This means that distances are locally scaled by
a factor R(s)−1, or more specifically,

dσ2 =
[
ds1 ds2

]
g(s)

[
ds1

ds2

]
= R(s)−2(ds2

1 + ds2
2), (10)

where dσ is the line element, and s1 and s2 are the two coordinates of E = R2.
The line element in two-dimensional Euclidean space

√
ds2

1 + ds2
2 is everywhere scaled ac-

cording to the function R(·), and Equation (10) describes the non-stationary through a spatially
varying geometry, which results in a curved two-dimensional manifold that must be embedded
dimension higher than 2 to exist in Euclidean space. The SPDE is not stationary on this space
and does not lead to constant marginal variance because the curvature of the space is non-
constant unless R(·) is a constant function, but there will be less interaction between R(·) and
the marginal variance than κ(·) and the marginal variance. And for a slowly varying R(·) the
variation in marginal variances is small.

The above construction gives geometric intuition about what type of non-stationarity the
equation can generate, but it is not directly useful for implementation. We can relate the Laplace-
Beltrami operator in E to the usual Laplacian in R2 through

∆E =
1√

det(g)
∇R2 · (

√
det(g)g−1∇R2) = R(s)2∆R2 ,

and the Gaussian standard white noise in E to the Gaussian standard white noise in R2 through

WE(s) = det(g)1/4WR2(s) = R(s)−1WR2(s).

Thus the equivalent SPDE in R2 can be written as

R(s)−2
[
1−R(s)2∆R2

]
u(s) = R(s)−1

√
4πWR2(s), s ∈ R2

where the first factor is needed because the volume elements of the spaces differ, dVE =√
det(g)dVR2 . We use the SPDE

(R(s)−2 −∆R2)u(s) =
√

4πR(s)−1WR2 , s ∈ R2, (11)

in Euclidean space, but can interpret the SPDE through the implied metric tensor. The SPDE
is similar to setting κ(·) = R(·)−1 in Equation (8), but has an extra factor on the right-hand side
of the equation to reduce the variability of the marginal variances.

For example, the space [0, 9]× [0, 3] with the Euclidean distance metric can be visualized as
a rectangle, which exists in R2, or as a half cylinder with radius 3/π and height 9, which exists
in R3, but if the space is given the spatially varying metric tensor according to the local range
function

R(s1, s2) =


1 0 ≤ s1 < 3, 0 ≤ s2 ≤ π,
(s1 − 2) 3 ≤ s1 < 6, 0 ≤ s2 ≤ π,
4 6 ≤ s1 ≤ 9, 0 ≤ s2 ≤ π,

(12)

the space cannot be embedded in R2. With this metric tensor, the space is no longer flat, but it
can be embedded in R3 as the deformed cylinder shown in Figure 6. Thus, solving Equation (11)
with the spatially varying coefficient is the same as solving Equation (9) on the deformed space.
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Figure 6: Half cylinder deformed according to the spatially varying metric tensor. The lines
formed a regular grid on the half cylinder before deformation.

This means that unlike the deformation method, a spatially varying R(·) does not correspond to
a deformation of R2 to R2, but rather from R2 to a higher-dimensional space.

However, the SPDE does not completely describe a deformation since solving the “stationary”
SPDE on a curved space leads to changes in the marginal variances, but if R(·) does not vary too
much, the marginal variances are close to 1. We can, therefore, introduce a separate function S(·)
that controls the marginal variances of the process and limit the SPDE to a region of interest,
D, with Neumann boundary conditions,

(R(s)−2 −∆R2)

(
u(s)√
S(s)

)
=
√

4πR(s)−1WR2(s), s ∈ R2.

This introduces boundary effects as was discussed in the paper by Lindgren et al. (2011), but we
will not discuss the effects of the boundary in this paper.

This SPDE is different than the SPDE in Equation (8) beyond a re-parametrization, and
allows for greater separation of the parameters that affect correlation structure and the parame-
ters that affect marginal variances than the SPDE in Equation (8). This demonstrates that even
though two SPDEs are similar and able to capture similar types of behaviour, one can be more
useful for setting priors. The SPDE derived based on the metric tensor allows for separate priors
for correlation structure and marginal variances through expansions of log(R(·)) and log(S(·))
into bases.

6.2 Setting priors on the non-stationarity
A stationary GRF described through a range ρ and a marginal variance σ2 will constitute the
base model when we work with non-stationarity. We want to shrink the non-stationary GRF
towards the stationary GRF that has the PC prior developed in Section 2 for the range and the
marginal variance. Denote the parameters that describe the departure from the base model by θ,
where θ = 0 corresponds to the stationary GRF. Following the idea of the PC prior framework,
we want to give the “distance” from stationarity a prior conditional on the current stationary
model π(θ|ρ, σ2). The construction will be based on the ideas of the PC prior framework, but
will not be based on a distance calculated from a formal measure of complexity, and the prior
will be an ad-hoc prior that is motivated by theoretical principles.
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We parametrize the local distance factor, R(·), and the approximate marginal variances, S(·),
through

log(R(s)) = log

(
ρ√
8

)
+

n1∑
i=1

θ1,if1,i(s), s ∈ D,

log(S(s)) = log(σ2) +

n2∑
i=1

θ2,if2,i(s), s ∈ D,
(13)

where {f1,i} is a set of basis functions for the local range centred such that 〈f1,i, 1〉D = 0, for
i = 1, 2, . . . , n1, and {f2,i} is a set of basis functions for the marginal variances centred such
that 〈f2,i, 1〉D = 0 for i = 1, 2, . . . , n2. We collect the parameters in vectors θ1 = (θ1,1, . . . , θ1,n1)
and θ2 = (θ2,1, . . . , θ2,n2) such that θ1 controls the local ranges and θ2 controls the marginal
variances.

A simple way to account for different scales and dependencies among the basis functions is
to give the non-stationary effect in the correlation structure and the non-stationary effect in the
marginal variances independent g-priors (Zellner, 1986) with g = 1,

θ1 ∼ N (0, τ−1
1 S−1

1 ) and θ2 ∼ N (0, τ−1
2 S−1

2 )

where S1 is the Gramian,

S1,i,j = 〈f1,i, f1,j〉D , for i, j = 1, 2, . . . , n1,

and S2 is the Gramian,

S2,i,j = 〈f2,i, f2,j〉D , for i, j = 1, 2, . . . , n2.

In this set-up the Gramians account for the structures of the basis functions and the strengths of
the effects are reduced to two precisions parameters τ1 and τ2. We choose to give the precision
parameters the PC prior for precision parameters for Gaussian distributions developed by Simp-
son et al. (2014), which is designed to shrink towards the base model of zero effect. Because of
our a priori ansatz of a priori independence between the correlation structure and the marginal
variances, we set independent priors

π(τ1) =
λ1

2
τ
−3/2
1 exp

(
−λτ−1/2

1

)
andπ(τ2) =

λ2

2
τ
−3/2
2 exp

(
−λ2τ

−1/2
2

)
.

In this way we have implicitly described the effect in the correlation structure and the effect
in the marginal variances through an ad-hoc distance and shrunk the effects towards the base
model, which is stationarity.

We calibrate the priors based on the a priori relative variations they allow for the local range
and for the marginal variance through the a priori statements,

Prob
(

max
s∈D

∣∣∣∣log

(
R(s)

ρ/
√

8

)∣∣∣∣ > C1

)
= α1,

Prob
(

max
s∈D

∣∣∣∣log

(
S(s)

σ2

)∣∣∣∣ > C2

)
= α2.

These statements are only based on the relative differences in the local range and the marginal
variance from a stationary model, and we can see from Equation (13) that the relative differences
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do not depend on the parameters of the stationary model. This means that the prior on the
non-stationary GRF separates as

π(ρ, σ2,θ) = π(ρ)π(σ2)π(θ|ρ, σ2)

= π(ρ)π(σ2)π(θ1,θ2)

= π(ρ)π(σ2)π(θ1)π(θ2),

where the first equality uses the conditional prior constructed, the second equality uses that the
calibration does not introduce dependence with the parameters for the stationary part of the
GRF, and the last equality uses that the priors on the spatially varying part of the local range
and the marginal variance are independent.

The above conditions control the probability that the relative differences from the stationary
model in the local range and the marginal variance exceed pre-specified levels, and allow the
user to control the priors based on beliefs about the variability expected in the local range and
the marginal variance. The calibration is slightly different than the one used by Ingebrigtsen
et al. (2014b). The approach derived is fundamentally ad-hoc, but makes several theoretical
improvements over the approach in Ingebrigtsen et al. (2014b) due to the new form of the SPDE
that reduces the interaction between the correlation structure and the marginal variances in the
prior specification, and due to the use of priors on the effects that follow the PC prior framework
principle of shrinking towards the base model.

7 Discussion
In this paper we have presented an answer to an important, open question in Bayesian spatial
statistics that previously had no satisfactory answer: which prior should we put on the range and
the marginal variance for a Matérn GRF? The range and the marginal variance have seemingly
clear interpretations and ideally one would hope that it were possible to infer them from a single
observation of the spatial field, but in reality there are no consistent estimators of the range and
the marginal variance under in-fill asymptotics and the posterior distributions do not contract
even for a complete observation of the process in a bounded observation window. There is a
ridge in the likelihood where the posterior distribution of the parameters always will be affected
by the prior on the parameters.

For Matérn GRFs objectivity, through noninformative priors such as the reference priors, is
not necessarily the correct answer because it can lead to posterior inference that is not sensible.
For in-sample predictions, the near-intrinsic models do not negatively affect predictions and it is
possible to use the reference priors if they are applicable for the model. However, if the purpose
is to infer the range and the marginal variance, to do out-of-sample predictions, or to generate
new scenarios from the model using the posterior distribution of the parameters as the prior
distribution, the objective approach can lead to meaningless answers that are not compatible
with subjective beliefs about the model. The three GRFs in Figure 1 are similar if they are used
to predict the unobserved values within the interval [0, 1], but they are highly different if we
want to understand the process that generated the data or use this process to generate new data
using the parameter posterior.

In practice, we are likely to have subjective knowledge making high marginal variances unrea-
sonable even when the value of the range is high. With the PC-prior developed in this paper this
knowledge can be combined with the geometry of the parameter space through two statements
of prior belief about the spatial field. In this way it is possible to not just encode the informa-
tion about geometry contained in the likelihood, but also prior belief about the range and the
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marginal variance. For example, it is possible to encode prior belief that the marginal standard
deviations are unlikely to exceed a specific upper limit. This information disallows the near-
intrinsic models far along the ridge of the likelihood and lead to shorter and more meaningful
credible intervals than an objective prior such as the reference prior.

The PC prior is weakly informative and like all subjective priors there is a danger that putting
prior mass in the wrong place can negatively affect the inference. The calibration of the PC-prior
will by design affect the posterior distribution, but since the prior is not just an ad-hoc choice,
the hyperparameters of the prior have a clearly defined meaning through information that could
potentially be elicited from experts. The study of frequentist properties showed that there were
negative consequences of being one order wrong in the prior specification, but the examples only
had 25 observations and in realistical settings there will be more information available than this,
and with more observations, the sensitivity to the prior specification is likely to be less severe.
Further, it is when the true range is long compared to the domain size that the likelihood is
insufficient for getting physically meaningful estimates and that it is most important to limit the
behaviour of the posterior through an interpretable prior.

The greatest benefits of the PC-prior over the reference priors are that there is no dependence
on the sampling design, it works with any observation process and can be used in hierarchical
models, it is easy to implement, and it is computationally cheap. The benefits over the ad-hoc
priors is that it has theoretical justification, and that the hyperparameters are interpretable and
connected to prior belief about the scale that the parameters are on. This makes the PC prior
useful in practice as opposed to the impractical reference priors, while at the same time having
the theoretically justification that is lacked by the practical, but ad-hoc priors.

The PC prior is extended to a prior for a non-stationary GRF based on an SPDE model using
ideas from the PC prior framework, but the extension has ad-hoc elements and is specialized to a
GRF that can de-couple the parameters controlling the correlation structure and the parameters
controlling the marginal variances. It would be desirable to derive a distance from stationarity
to non-stationarity by using the KLD in a similar way as for the stationary GRF and not be
restricted to a specific non-stationary GRF, but this is difficult because certain properties of the
covariance structure of GRFs are identifiable under in-fill asymptotics while others are not.

For SPDE models, a seemingly desirable way to be independent of the parametrization would
be to restrict oneself to the approximation of the model used for computations. In computa-
tions, one uses a finite-dimensional approximation of the GRF derived through a finite element
approximation on a triangulation of the domain. The multivariate Gaussian distribution of the
values at the nodes in the triangulation completely describes the distribution of the approxima-
tion of the spatial field and we can compute the distances between non-stationary spatial fields
by computing the KLDs between multivariate Gaussian distributions.

However, if we do this, a change in κ(·) can be handled, but a change in τ(·) makes the KLD
diverge to infinity as the mesh is refined. Thus, we can use the KLD to construct a prior for
the parameters in κ(·), but there is still work left in understanding how the KLD behaves as a
function of parameters in τ(·) when the mesh is refined. If one can understand more about the
identifiability of τ(·) as the mesh is refined, one can use this knowledge to re-scale the KLD in a
meaningful way, and separate out the constants and the asymptotic behaviour as a function of
τ(·), but this remains an unsolved challenge.

For stationary GRFs, the paper makes significant progress by finding sensible priors for
Matérn GRFs through a practically useful, weakly informative joint prior on range and marginal
variance. The important remaining question is shared with the other priors derived with the PC
prior framework, namely, how easy is it for a user to set the hyperparameters? The hyperpa-
rameters have a clear connection to understandable quantities, but the users are still required to
gain intuition about setting priors based on the probability of exceeding or being below a chosen
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value. This is a question we expect to gain experience with when the new prior is implemented
within the INLA package (Rue et al., 2009). For non-stationary GRFs the paper makes progress
by providing a motivated, but ad-hoc construction of a prior. However, a construction fully based
on the PC prior framework remains future work.
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A The theoretical details for the derivation of the prior for
κ

If we consider the distribution of a Matérn GRF, parametrized through κ =
√

8ν/ρ and

τ =
Γ(ν)

(4π)d/2Γ(ν + d/2)σ2κ2ν
,

where ρ is the range, σ2 is the marginal variance, and ν is the smoothness, on a bounded
observation window, the KLD between the distributions for two choices of parameters κ, κ0 > 0
is always finite and it is possible to use the KLD to describe how different the distributions are.
The distributions are not absolutely continuous with respect to a Lebesgue measure and we need
to describe the KLD in terms of measures. The KLD of the probability measure Q from the
probability measure P is defined by

DKL(P ||Q) =

∫
χ

log

(
dP

dQ

)
dP, (14)

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q, and expresses the infor-
mation lost when Q is used to approximate P .

We base the constructions in this section on spectral densities and not directly on covariance
functions. Fix τ and ν and consider the Matérn GRF uκ for different values of κ. Lindgren et al.
(2011) showed that this GRF can be expressed as a solution of the stochastic partial differential
equation (SPDE)

(κ2 −∆)α/2(
√
τuκ(s)) =W(s), s ∈ Rd, (15)

where α = ν + d/2 and W is standard Gaussian white noise. The SPDE can be used to show
that the spectral density of uκ is given by

fκ(w) =

(
1

2π

)d
1

τ(κ2 +wTw)α
. (16)

The continuous spectrum in Equation (16) is difficult to use directly and we make an inter-
mediate step through a periodic approximation of the GRF. Restrict SPDE (15) to the domain
D = [−L/2, L/2]d and apply periodic boundary conditions. This leads to an approximation ũκ
of uκ that can be written as

ũκ(s) =
∑
k∈Zd

zkei〈2πk/L,s〉,

where {zk} are independent Gaussian random variables with variances given by

λk(κ) =
1

τ(κ2 + ||2πk/L||2)α
Var[〈W, ei〈2πk/L,s〉〉D]

〈ei〈2πk/L,s〉, ei〈2πk/L,s〉〉2D

=
1

τ(κ2 + ||2πk/L||2)α
Ld

L2d

=
1

Ld
1

τ(κ2 + ||2πk/L||2)α
. (17)

Paper No. 15-03, www.warwick.ac.uk/go/crism



Interpretable Priors for Hyperparameters for GRFs 26

Using this approximation we calculate the KLD between ũκ and ũκ0 (based on Bogachev
(1998, Thm. 6.4.6)),

2KLD(κ||κ0) =
∑
k∈Zd

[
λk(κ0)

λk(κ)
− 1− log

λk(κ0)

λk(κ)

]

=
∑
k∈Zd

[
(κ2

0 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α
− 1− log

(κ2
0 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α

]
, (18)

which is a simple expression involving only the spectral densities of the processes. If we add
scaling with step-size, it becomes a Riemann sum, and we can write

2

(
2π

L

)d
KLD(κ||κ0)

=
∑
k∈Zd

(
2π

L

)d [
(κ2

0 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α
− 1− log

(κ2
0 + ||2πk/L||2)α

(κ2 + ||2πk/L||2)α

]

=

∫
Rd

[
fκ(w)

fκ0
(w)
− 1− log

fκ(w)

fκ0
(w)

]
dw + E(L, κ0),

where E(L, κ0) is the error in the Riemann sum.
Since we want the base model κ0 = 0, which corresponds to infinite range, we need to be

careful about how the error E(L, κ0) behaves as κ0 → 0. If L is fixed, the zero frequency gives
an infinite term in the summand. Thus the rate at which L tends to infinity must be related to
the rate at which κ0 tends to zero. If the summand for k = 0 tends to zero, the Riemann sum
converges and E(L, κ0)→ 0. The zero-frequency term(

2π

L

)d [(
κ2

0

κ2

)α
− 1− α log

κ2
0

κ2

]
,

converges to zero if L = o(κ−1
0 ). We apply this relationship between L and κ0 and introduce the

scaled KLD

˜KLD(κ||0) = lim
κ0→0

(
2π

L

)d
KLD(κ||κ0)

=
1

2

∫
Rd

[
(wTw)α

(κ2 +wTw)α
− 1− log

(wTw)α

(κ2 +wTw)α

]
dw.

We perform the change variables w = κy and find

˜KLD(κ||0) =
1

2

∫
Rd

[
(yTy)α

(1 + yTy)α
− 1− log

(yTy)α

(1 + yTy)α

]
κddy

= κd ˜KLD(1||0)

∝ κd, (19)

if ˜KLD(1||0) exists.
However, ˜KLD(1||0) does not exist for all dimensions d. Perform a change of coordinates to

n-dimensional spherical coordinates to find

˜KLD(1||0) = Cd

∫ ∞
0

[(
r2

1 + r2

)α
− 1− log

(
r2

1 + r2

)α]
rd−1dr, (20)
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where Cd is a constant that varies with dimension. There are two issues: the behaviour for small
r and the behaviour for large r. For d = 1,

˜KLD(1||0) ≤ −C1α

∫ ∞
0

log
r2

1 + r2
dr = παC1,

and we can conclude that the behaviour around 0 is not a problem for any d ≥ 1. The behaviour
for large r can be studied through an expansion in (1 + r2)−1. The integrand in Equation (20)
behaves as

α2

2

1

(1 + r2)2
+O

(
1

(1 + r2)3

)
.

This means that we can find an 0 < r0 <∞ such that∫ ∞
0

[(
r2

1 + r2

)α
− 1− log

(
r2

1 + r2

)α]
rd−1dr

≤ Const +

∫ ∞
r0

[
α2

2

1

(1 + r2)2
+

C

(1 + r2)3

]
dr,

where C ≥ 0 is a constant. For d ≤ 3 both terms on the right hand side are finite and based on
this and the boundedness for d = 1, we can conclude that ˜KLD(1||0) is finite for d ≤ 3.

B Calculation of the Kullback-Leibler divergence for a one-
dimensional GRF with exponential covariance function

B.1 Goal
Let uκ be a stationary GRF with the exponential covariance function,

c(d) =
1

2κ
e−κd, (21)

where κ > 0. This way of writing the exponential covariance function differs from the traditional
parametrization using the range and the marginal variance, and is chosen because the KLD
between the distributions described by different values κ > 0 is finite. The parametrization
describes how to move in the parameter space while keeping the KLD finite. The goal of this
appendix is to calculate the KLD between the distributions of uκ and uκ0 on the interval [0, L]

B.2 Discretization
The direct computations for the interval [0, L] are difficult. So we first consider the KLD for
the distributions of uκ and uκ0 at the observation points ti = i∆t, for i = 0, 1, . . . , N , where
∆t = L/N . The spatial field uκ can be described as a stationary solution of the stochastic
differential equation

duκ(t) = −κuκ(t)dt+ dW (t),

where W is a standard Wiener processes, and written explicitly as

uκ(t) =

∫ t

−∞
e−κ(t−s) dW (s).
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This expression shows that

uκ(ti+1)|uκ(ti) ∼ N (e−κ∆tuκ(ti), σ
2
κ),

where

σ2
κ = Var[uκ(t+ ∆t)|uκ(t)] =

∫ t+∆t

t

e−2κ(t+∆t−s) ds =
1− e−2κ∆t

2κ
.

This is an AR(1) process with initial condition uκ(t0) ∼ N (0, (2κ)−1), which means that
uκ = (uκ(t0), . . . , uκ(tN )) has a multivariate Gaussian distribution with mean 0 and precision
matrix

Qκ =
1

σ2
κ


1 −e−κ∆t

−e−κ∆t 1 + e−2κ∆t −e−κ∆t

. . . . . . . . .
−e−κ∆t 1 + e−2κ∆t −e−κ∆t

−e−κ∆t 1

 . (22)

B.3 Kullback-Leibler divergence
The vectors uκ0

and uκ have multivariate Gaussian distributions and the KLD from the distri-
bution described by κ0 to the distribution described by κ is

KLD(κ||κ0) =
1

2

[
tr(Qκ0Q

−1
κ )− (N + 1)− log

(
|Qκ0 |
|Qκ|

)]
.

We are interested in taking the limit ∆t → 0 to find the value corresponding to the KLD from
uκ0 to uκ. This is done in two steps: first we consider the trace and the N + 1 term, and then
we consider the log-determinant term.

B.3.1 Step 1

Let fκ = 1/σ2
κ, then the trace term can be written as

tr(Qκ0
Σκ)

= fκ0

[
2cκ(0) +

N−1∑
i=1

(1 + e−2κ0∆t)cκ(0)− 2

N∑
i=1

e−κ0∆tcκ(∆t)

]
= fκ0

[
2cκ(0) + (N − 1)(1 + e−2κ0∆t)cκ(0)− 2Ne−κ0∆tcκ(∆t)

]
.

We extract the first summand and parts of the last summand, and combine with 2 from the
N + 1 term, to find the limit

2fκ0 [cκ(0)− e−κ0∆tcκ(∆t)]− 2 = 2fκ0

1− e−(κ+κ0)∆t

2κ
− 2

=
κ+ κ0

κ

fκ0/∆t

fκ+κ0
/∆t

− 2

→ κ0 − κ
κ

.
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For the remaining summands and the remaining N − 1 from the N + 1 term, we can simplify the
expression as

S3(∆t)

= (N − 1)fκ0

[(
1 + e−2κ0∆t

)
cκ(0)− 2e−κ0∆tcκ(∆t)

]
− (N − 1)

= (N − 1)fκ0

[(
1 + e−2κ0∆t

) 1

2κ
− 2

e−(κ0+κ)∆t

2κ

]
− (N − 1)

= (N − 1)fκ0

1

2κ

[
1 + (1− 2κ0∆t+

4κ2
0(∆t)2

2
)

− 2(1− (κ0 + κ)∆t+
(κ0 + κ)2(∆t)2

2
) + o((∆t)2)

]
− (N − 1)

= (N − 1)fκ0

1

2κ

[
(−2κ0 + 2(κ0 + κ))∆t

+ (2κ2
0 − (κ0 + κ)2)(∆t)2 + o((∆t)2)

]
− (N − 1)

= (N − 1)fκ0

[
∆t+

2κ2
0 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]
− (N − 1)

=

(
L

∆t
− 1

)(
1

∆t
+ κ0 + o(1)

)[
∆t

+
2κ2

0 − (κ0 + κ)2

2κ
(∆t)2 + o((∆t)2)

]
−
(
L

∆t
− 1

)
,

and see that the products involving o(1) tend to zero

S3(∆t) = L

[
1

∆t
+

2κ2
0 − (κ0 + κ)2

2κ
− 1

∆t

]
+ Lκ0 − [1 + o(1)] + 1

= L
4κ2

0 − (κ0 + κ)2

2κ
+ Lκ0 + o(1)

= L

(
κ0 +

κ2
0

2κ
− κ0 −

κ

2

)
+ o(1).

Thus the limit is

tr(Qκ0
Σκ)− (N + 1)→ κ0

κ
− 1 + L

(
κ2

0

2κ
− κ

2

)
.

B.3.2 Step 2

The determinant of the matrix in Equation (22) can be found by summing rows upwards, and
we see that

|Q| = σ−2(N+1)(1− e−2κ∆t) = 2κσ−2N .

Note that in the limit κ → 0, f → ∆t so the determinant behaves asymptotically as κ. This
means that

log

(
|Qκ0

|
|Qκ|

)
= log

(
2κ0f

N
κ0

2κfNκ

)
= log

(κ0

κ

)
+N log

(
fκ0

fκ

)
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and we need to find the limit of the second part,

N log

(
fκ0

fκ

)
=

L

∆t

[
log

1

fκ
− log

1

fκ0

]
=

L

∆t

[
log

(
1

2κ

(
1− e−2κ∆t

))
− log

(
1

2κ0

(
1− e−2κ0∆t

))]
=

L

∆t

[
log
(
∆t− κ(∆t)2 + o((∆t)2)

)
− log

(
∆t− κ0(∆t)2 + o((∆t)2)

)]
=

L

∆t
[log (1− κ∆t+ o(∆t))− log (1− κ0∆t+ o(∆t))]

=
L

∆t
[−κ∆t+ κ0∆t+ o(∆t)]

Thus the limit is
log

(
|Qκ0

|
|Qκ|

)
→ log

(κ0

κ

)
+ L(κ0 − κ)

B.4 Full KLD
The combination of the limits from the two steps gives the full KLD,

KLD(κ||κ0) =
1

2

[
κ0

κ
− 1 + L

(
κ2

0

2κ
− κ

2

)
− log

(κ0

κ

)
− L(κ0 − κ)

]
=

1

2

[
κ0

κ
− 1− log

(κ0

κ

)
+ L

(
κ2

0

2κ
− κ0 +

κ

2

)]
. (23)

B.5 Comparison with the integral expression
The integral in Appendix A gives the expression

1

2

∫ ∞
−∞

((
κ2

0 + w2

κ2 + w2

)
− 1− log

(
κ2

0 + w2

κ+ w2

))
dw = π

(
κ2

0

2κ
− κ0 +

κ

2

)
.

If we divide by 2π, this is the same expression as the one that is multiplied with L in Equa-
tion (23). This is what we would expect because the integral is derived under the assumption
that L� 1/κ0 and “absorbs” the constant 2π/L.
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