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Abstract

We study the problem of estimating the parameters of an Ornstein-Uhlenbeck
(OU) process that is the coarse-grained limit of a multiscale system of OU pro-
cesses, given data from the multiscale system. We consider both the averaging and
homogenization cases and both drift and diffusion coefficients. By restricting our-
selves to the OU system, we are able to substantially improve the results in [26, 23]
and provide some intuition of what to expect in the general case.

Keywords : multiscale diffusions, Ornstein-Uhlenbeck process, parameter estimation,
maximum likelihood, subsampling.

1 Introduction
A necessary step in statistical modelling is to fit the chosen model to the data by infer-
ring the value of the unknown parameters. In the case of stochastic differential equa-
tions (SDE), this is a well studied problem [7, 17, 27]. However, quite often, there is a
mismatch between model and data. The actual system the data comes from is often of
multiscale nature whilst the SDE we are fitting is only an approximation of its behavior
at a certain scale. This phenomenon has been observed in many applications, ranging
from econometrics [1, 2, 21] to chemical engineering [5] and molecular dynamics [26].
In this paper, we study how this inconsistency between the coarse-grained model that
we fit and the microscopic dynamics from which the data is generated affects the esti-
mation problem.

In this paper, we take the approach by minimizing the discrepancy between the
maximum likelihood estimators based on the multiscale and approximated systems,
with our focus on the drift and diffusion parameters of both averaging and homoge-
nization. There are existing literatures explored alternatives to achieve a certain part of
our goal. [3, 4] explored an approach to estimate the bias between the estimators based
∗Email: A.Papavasiliou@warwick.ac.uk
†Email: FZhang@imf.org
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the multiscale and approximated OU processes, as a function of the subsampling step
size and the scale factor. However, their approach is some what ad-hoc by limited to
scalar systems. [18] also discussed on achieving the strong convergence of the estima-
tors of the averaged multiscale OU system, and focused on the strong convergence of
the diffusion parameter.

This problem has also been discussed in [26, 23]. Our aim is to strengthen the
results in [26, 23]. To achieve this, we only consider the case where the multiscale
system is an Ornstein-Uhlenbeck process, where the averaging and homogenization
principles still hold. This allows us to prove a stronger mode of convergence for the
asymptotics.

To be more specific, we will consider multiscale systems of SDEs of the form

dx

dt
= a11x+ a12y +

√
q1
dU

dt
(1a)

dy

dt
=

1

ε
(a21x+ a22y) +

√
q2

ε

dV

dt
(1b)

or

dx

dt
=

1

ε
(a11x+ a12y) + (a13x+ a14y) +

√
q1
dU

dt
(2a)

dy

dt
=

1

ε2
(a21x+ a22y) +

√
q2

ε2
dV

dt
(2b)

We refer to equations (1) as the averaging problem, and to equations (2) as the ho-
mogenization problem. We assume that in both cases the averaging or homogenization
limits exist. In both cases, it will be of the form

dX

dt
= aX +

√
σ
dW

dt
, a < 0, σ > 0, (3)

for appropriate a and σ. Our goal will be to estimate a and σ, assuming that we
continuously observe x from (1) or (2). It is a well known result (see [7, 20]) that,
given X , the maximum likelihood estimators for a is

âT =

(∫ T

0

XdX

)(∫ T

0

X2dt

)−1

. (4)

If X is discretely observed, then the maximum likelihood estimator of σ is

σ̂δ =
1

T

N−1∑
n=0

(
X(n+1)δ −Xnδ

)2
(5)

which converges a.s. to σ as δ → 0, i.e. if X is observed continuously, then σ will
be known. Our approach will be to still use the estimators defined in (4) and (5), re-
placingX by its x approximation coming from the multiscale model and then studying
their asymptotic properties. In section 2, we discuss the averaging case, where the
data comes from equation (1a) while in section 3 we study the homogenization case
corresponding to equation (2a).

We shall discuss problems in scalars for simplicity of notation and writing. How-
ever, the conclusions can easily be extended to finite dimensions. We will use c to
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denote an arbitrary constant which can vary from occurrence to occurrence. Also, for
the sake of simplicity we will sometimes write xn (or yn, Xn) instead of x(nδ) (resp.
y(nδ), X(nδ)). Finally, note that the transpose of an arbitrary matrix A is denoted by
A∗.

2 Averaging
We consider the system of stochastic differential equations described by (1) (averaging
case), for the variables (x, y) ∈ X × Y . We may take X and Y as either R or T. Our
interest is in data generated by the projection onto the x coordinate of the system. We
will make the following

Assumptions 2.1. (i) U, V are independent Brownian motions;

(ii) q1, q2 are positive;

(iii) 0 < ε� 1;

(iv) a22 < 0 and a11 < a12a
−1
22 a21;

(v) x(0) and y(0) independent of U and V , E
(
x(0)2 + y(0)2

)
<∞.

In what follows, we will refer to the following equation as the averaged equation
for system (1):

dX

dt
= ãX +

√
q1
dU

dt
(6)

where:
ã = a11 − a12a

−1
22 a21 (7)

2.1 The Paths
In this section, we show that the projection of system (1) onto the x coordinate con-
verges in a strong sense to the solution X of the averaged equation (6). Our result
extends that of [25] (Theorem 17.1) where the state space X is restricted to T and the
averaged equation is deterministic. Assuming that the system is an OU process, the
domain can be extended to R and the averaged equation can be stochastic. We prove
the following lemma first:

Lemma 2.2. Suppose that (x, y) solves (1a) and Assumptions 2.1 are satisfied. Then,
for finite T > 0 and ε small,

E sup
0≤t≤T

(
x(t)2 + y(t)2

)
≈ O

(
log

(
1 +

T

ε

))
. (8)

Proof. Since U and V are independent, we can rewrite (1) in vector form as

dxt = axtdt+
√
qdWt (9)

where

x =

(
x
y

)
, a =

(
a11 a12
1
εa21

1
εa22

)
, q =

(
q1 0
0 q2

ε

)
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and W = (U, V ) is two-dimensional Brownian motion. Given the form of a, it is an
easy exercise to show that its eigenvalues will be of order O(1) and O( 1

ε ). Therefore,
we define the eigenvalue decomposition of a as

a = PDP−1 with D =

(
λ1 0
0 1

ελ2

)
.

Again, it is not hard to see that if (p1, p2) is an eigenvector, O(p1) = O(λ−1p2).
So, for the eigenvector corresponding to eigenvalue of order O(1), all elements of
the eigenvector will also be of order O(1) while for the eigenvector corresponding to
eigenvalue of order O(1/ε), we will have that p1 ∼ O(1) and p2 ∼ O(ε).

Now, let us define Σ = P−1q(P−1)∗. It follows that

Σ =

(
O(1) O(1)
O(1) O(1/ε)

)
We apply a linear transformation to the system of equations (9) so that the drift matrix
becomes diagonal. It follows form [12] that

E
(

sup
0≤t≤T

‖x(t)‖2
)
≤ C log (1 + maxi(|Dii|)T )

mini(|Dii/Σii|)
, i ∈ {1, 2}.

Since the diagonal elements ofD and Σ are of the same order and maxi |Dii| = O( 1
ε ),

we have

E
(

sup
0≤t≤T

‖x(t)‖2
)

= O (log(1 + T/ε)) .

Finally, since x =

(
x
y

)
, we get

E
(

sup
0≤t≤T

(
‖x(t)‖2 + ‖y(t)‖2

))
= O

(
log(1 +

T

ε
)

)
.

This completes the proof.

Theorem 2.3. Let Assumptions 2.1 hold for system (1). Suppose that x and X are
two solutions of (1a) and (6) respectively, corresponding to the same realization of the
U process and x(0) = X(0). Then, x converges to X in L2 (Ω, C([0, T ],X )). More
specifically,

E sup
0≤t≤T

(x(t)−X(t))2 ≤ c
(
ε2log

(
T

ε

)
+ εT

)
eT ,

when T is fixed finite, the above bound can be simplified to

E sup
0≤t≤T

(x(t)−X(t))2 = O(ε) .

Proof. For auxiliary equations used in the proof, please refer to the construction in
[25]. The generator of system (1) is

Lavg =
1

ε
L0 + L1,
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where

L0 = (a21x+ a22y)
∂

∂y
+

1

2
q2
∂2

∂y2

L1 = (a11x+ a12y)
∂

∂x
+

1

2
q1
∂2

∂x2

To prove that the L2 error between the solutions x(t) and X(t) is of order O(
√
ε), we

first need to find the function Φ(x, y) which solves the Poisson equation

−L0Φ = a11x+ a12y − ãx ,
∫
Y

Φρ(y;x)dy = 0; (10)

where ρ(y;x) is the invariant density of y in (1b) with x fixed. In this case, the partial
differential equation (10) is linear and can be solved explicitly

Φ(x, y) = Φ(y) = −(a12a
−1
22 )y. (11)

Applying Itô formula to Φ(x, y), we get

dΦ

dt
=

1

ε
L0Φ + L1Φ +

1√
ε

√
q2
∂

∂y
Φ
dVt
dt
,

and substituting into (1a) gives

dx

dt
= (ãx− L0Φ) +

√
q1
dUt
dt

= ãx− εdΦ

dt
+ εL1Φ +

√
ε
√
q2
∂

∂y
Φ
dVt
dt

+
√
q1
dUt
dt

. (12)

Define

θ(t) := (Φ(x(t), y(t))− Φ(x(0), y(0)))−
∫ t

0

(a11x(s) + a12y(s))
∂Φ

∂x
ds.

From (11), we see that Φ does not depend on x and thus

θ(t) = Φ(x(t), y(t))− Φ(x(0), y(0))

= −(a12a
−1
22 )(y(t)− y(0)). (13)

Now define

M(t) := −
∫ t

0

√
q2
∂

∂y
Φ(x(s), y(s))dVs

= −
∫ t

0

√
q2(a12a

−1
22 )dVs.

Itô isometry gives

EM2(t) = ct (14)

The solution of (1a) in the form of (12) is

x(t) = x(0) +

∫ t

0

ãx(s)ds+ εθ(t) +
√
εM(t) +

√
q1

∫ t

0

dUs .
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Also, from the averaged equation (6), we get

X(t) = X(0) +

∫ t

0

ãX(s)ds+
√
q1

∫ t

0

dUs .

Let e(t) = x(t)−X(t). By assumption, e(0) = 0 and

e(t) =

∫ t

0

ã (x(s)−X(s)) ds+ εθ(t) +
√
εM(t) . (15)

Then,

e2(t) ≤ 3

(
ã

∫ t

0

e(s)ds

)2

+ 3ε2θ2(t) + 3εM2(t) .

Apply Lemma 2.2 on (15), the Burkholder-Davis-Gundy inequality [25] and Hölder
inequality, we get

E
(

sup
0≤t≤T

e2(t)

)
≤ c

(∫ T

0

Ee2(s)ds+ ε2 log(
T

ε
) + εT

)

≤ c

(
ε2 log(

T

ε
) + εT +

∫ T

0

E sup
0≤u≤s

e2(u)ds

)
.

By Gronwall’s inequality [25], we deduce that

E
(

sup
0≤t≤T

(e(t))2

)
≤ c(ε2 log(

T

ε
) + εT )eT .

When T is fixed, we have

E
(

sup
0≤t≤T

(e(t))2

)
= O (ε) .

This completes the proof.

2.2 The Drift Estimator
Suppose that we want to estimate the drift of the process X described by (6) but we
only observe a solution {x(t)}t∈(0,T ) of (1a). According to the previous theorem, x is
a good approximation of X , so we replace X in the formula of the MLE (4) by x. In
the following theorem, we show that the error we will be making is insignificant, in a
sense to be made precise.

Theorem 2.4. Suppose that x is the projection to the x-coordinate of a solution of
system (1) satisfying Assumptions 2.1. Let âεT be the estimate we get by replacing X in
(4) by x, i.e.

âεT =

(∫ T

0

xdx

)(∫ T

0

x2dt

)−1

. (16)

Then,
lim
ε→0

lim
T→∞

E(âεT − ã)2 = 0 .
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Proof. We define

I1 =
1

T

∫ T

0

xdx and I2 =
1

T

∫ T

0

x2dt.

By ergodicity, which is guaranteed by Assumptions 2.1 (iii) and (iv)

lim
T→∞

I2 = E(x2) = C 6= 0 a.s.,

which is a non-zero constant. We expand dx using Itô formula [25] applied on Φ as in
(12):

I1 = J1 + J2 + J3 + J4 + J5

where

J1 =
1

T

∫ T

0

ãx2dt

J2 =
ε

T

∫ T

0

xdΦ

J3 =
ε

T

∫ T

0

L1Φxdt

J4 =

√
ε

T

∫ T

0

∂

∂y
Φ
√
q2xdVt

J5 =
1

T

√
q1

∫ T

0

xdUt

It is obvious that
J1 = ãI2.

Since Φ is linear in y, and by Itô isometry, we get

E
(
J2

4

)
=

cε

T
E

(
1

T

∫ T

0

x(t)dVt

)2

=
cε

T
E

(
1

T

∫ T

0

x2(t)dt

)

by ergodicity, we have
E
(
J2

4

)
=
cε

T
.

Similarly for J5,

E
(
J2

5

)
=

c

T
E

(
1

T

∫ T

0

x(t)dUt

)2

=
c

T

We know Φ is independent of x, so

J3 ≡ 0.
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Finally, using (11) and (1b) we break J2 further into

J2 = − 1

T

∫ T

0

(a12a
−1
22 )(a21x+ a22y)xdt− a12a

−1
22

√
εq2

T

∫ T

0

xdVt

Again, using Itô isometry and ergodicity, we bound the L2 norm of the second term by

E

(
a12a

−1
22

√
εq2

T

∫ T

0

xdVt

)2

≤ cε

T
.

By ergodicity, the first term converges in L2 as T →∞,

−a12a
−1
22

T

∫ T

0

(a21x+ a22y)xdt→ −a12Eρε
(
(a−1

22 a21x+ y)x
)
.

We write the expectation as

Eρε
(
(a−1

22 a21x+ y)x
)

= Eρε
(
Eρε

(
(a−1

22 a21x+ y)x|x
))

Clearly, the limit of ρε conditioned on x is a normal distribution with mean−a−1
22 a21x.

Thus, we see that
lim
ε→0

Eρε
(
(a−1

22 a21x+ y)x
)

= 0.

Putting everything together, we see that

lim
ε→0

lim
T→∞

(I1 − ãI2) = 0 in L2

Since the denominator I2 of âεT converges almost surely, the result follows.

2.3 Asymptotic Normality for the Drift Estimator
We extend the proof of Theorem 2.4 to prove asymptotic normality for the estimator
âεT . We have seen that

âεT − ã =
J2 + J4 + J5

I2
.

We will show that
√
T
(
âεT − ã+ a12Eρε

(
x(a−1

22 a21x+ y)
))
→ N

(
0, σ2

ε

)
and compute the limit of σ2

ε as ε → 0. First we apply the Central Limit Theorem for
martingales to J4 and J5 (see [13]). We find that

√
TJ4 → N

(
0, σ(4)2

ε

)
as T →∞

where
σ(4)2

ε = εq2(a12a
−1
22 )2Eρεx2

and √
TJ5 → N

(
0, σ(5)2

ε

)
as T →∞

where
σ(5)2

ε = q1Eρεx2.

8

Paper No. 15-05, www.warwick.ac.uk/go/crism



We write J2 = J2,1 + J2,2 where

J2,1 = −a12a
−1
22

T

∫ T

0

(a21x
2 + a22xy)dt and J2,2 = −a12a

−1
22

√
εq2

T

∫ T

0

xdV.

Once again, we apply the Central Limit Theorem for martingales to J2,2 and we find
√
TJ2,2 → N

(
0, σ(2, 2)2

ε

)
as T →∞

where
σ(2, 2)2

ε = ε(a21a
−1
22 )2q2Eρεx2.

Finally, we apply the Central Limit Theorem for functionals of ergodic Markov Chains
to J2,1 (see [8]). We get

√
T
(
J2,1 + a12Eρε

(
x(a−1

22 a21x+ y)
))
→ N

(
0, σ(2, 1)2

ε

)
as T →∞, where

σ(2, 1)2
ε =

∫
X×Y

ξ2(x, y)ρε(x, y)dxdy+2

∫
X×Y

ξ(x, y)

∫ ∞
0

(P εt ξ)(x, y)dtρε(x, y)dxdy

with

ξ(x, y) = −
(
a12a

−1
22 a21x

2 + a12xy
)

+ E
(
a12a

−1
22 a21x

2 + a12xy
)

and
(P εt ξ)(x, y) = E (ξ(x(t), y(t))|x(0) = x, y(0) = y) .

Putting everything together, we get that as T →∞,
√
T (J2 + J4 + J5)→ X2,1 +X2,2 +X4 +X5

in law, where Xi ∼ N (0, σ(i)2
ε) for i ∈ {{2, 1}, {2, 2}, 4, 5}. Finally, we note that

the denominator I2 converges almost surely as T →∞ to Eρε(x(t)2). It follows from
Slutsky’s theorem that as T →∞,

√
T
(
âεT − ã+ a12Eρε

(
x(a−1

22 a21x+ y)
))
→ Xε

in law, where

Xε =
X2,1 +X2,2 +X4 +X5

Eρε(x(t)2)
∼ N (0, σ2

ε ).

It remains to compute limε→0 σ
2
ε . We have already seen that σ(2, 2)2

ε ∼ O(ε) and
σ(4)2

ε ∼ O(ε). Thus, we need to compute

lim
ε→0

E(X2,1 +X5)2 = lim
ε→0

E
(
X2

2,1 + 2X2,1X5 +X2
5

)
.

First, we see that

lim
ε→0

E(X2
5 ) = q1 lim

ε→0
Eρεx2 = q1EX2 = − q

2
1

2ã
.

To compute limε→0 E(X2
2,1) first we set ỹ = a−1

22 a21x + y. Then, (x, ỹ) is also an
ergodic process with invariant distribution ρ̃ε that converges as ε → 0 to N (0, q12ã ) ⊗
N (0, q2

2a22
). Since ξ(x, y) = −a21xỹ, it follows that

lim
ε→0

Eρε(ξ(x, y)2) = a2
12

q1

2ã

q2

2a22
.
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In addition, as ε→ 0, the process ỹ decorrelates exponentially fast. Thus

lim
ε→0

(P εt ξ)(x, y) = a12E(X(t)|X(0) = x)E(ỹ) ≡ 0

for all t ≥ 0. As t → ∞, the process (x, ỹ) also converges exponentially fast to a
mean-zero Gaussian distribution and thus the integral with respect to t is finite. We
conclude that the second term of σ(2, 1)2

ε disappears as ε→ 0 and thus

lim
ε→0

E(X2
2,1) = a2

12

q1q2

4ãa22
.

Finally, we show that
lim
ε→0

E(X2,1X5) = 0.

Clearly, X5 is independent of ỹ in the limit, since it only depends on x and U . So,

lim
ε→0

E(X2,1X5) = lim
ε→0

E (E(X2,1X5|x))

and
lim
ε→0

E (E(X2,1|x)) = 0

for the same reasons as above. Thus

σ2
ε =

4ã2

q2
1

(
− q

2
1

2ã
+ a2

12

q1q2

4ãa22

)
.

We have proved the following

Theorem 2.5. Suppose that x is the projection to the x-coordinate of a solution of
system (1) satisfying Assumptions 2.1. Let âεT be as in (16). Then,

√
T (âεT − ã)→ N (µε, σ

2
ε ),

where
µε → 0 and σ2

ε → −2ã+ a2
12

ãq2

a22q1
as ε→ 0.

Remark 2.6. Note that in the case where the data comes from the multiscale limit and
for ε → 0, the asymptotic variance of the drift MLE (blue lines in Figure 1) is larger
than that the asymptotic variance of the drift estimator where there is no misfit between
model and data (red lines in Figure 1).

2.4 The Diffusion Estimator
Suppose that we want to estimate the diffusion parameter of the process X described
by (6) but we only observe a solution {x(t)}t∈(0,T ) of (1a). As before, we replaceX in
the formula of the MLE (5) by x. In the following theorem, we show that the estimator
is still consistent in the limit.

Theorem 2.7. Suppose that x is the projection to the x-coordinate of a solution of
system (1) satisfying Assumptions 2.1. We set

q̂εδ =
1

T

N−1∑
n=0

(xn+1 − xn)
2 (17)

10
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Figure 1: Averaging: Asymptotic Normality of âεT

where xn = x(nδ) is the discretized x process, δ ≤ ε is the discretization step and
T = Nδ is fixed. Then, for every ε > 0

lim
δ→0

E(q̂εδ − q1)2 = 0 ,

more specifically,
E(q̂εδ − q1)2 = O(δ) .

Proof. We rewrite xn+1 − xn using discretized (1a),

xn+1 − xn =

∫ (n+1)δ

nδ

√
q1dUs + R̂

(n)
1 + R̂

(n)
2 (18)

where

R̂
(n)
1 = a11

∫ (n+1)δ

nδ

x(s)ds

R̂
(n)
2 = a12

∫ (n+1)δ

nδ

y(s)ds

We let ξn = 1√
δ

(
U(n+1)δ − Unδ

)
. We write

∫ (n+1)δ

nδ

√
q1dUs =

√
q1δξn.

We can write the estimator as

q̂εδ = q1
1

N

N−1∑
n=0

ξ2
n + 2

√
q1

N
√
δ

N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 ) +

1

Nδ

N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2 (19)
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Hence, we can expand the error as

E (q̂εδ − q1)
2 ≤ CE

(
1

N

N−1∑
n=0

ξ2
n − 1

)2

(20a)

+ C
q1

N2δ
E

(
N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)2

(20b)

+ C
1

N2δ2
E

(
N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)2

(20c)

It is straightforward for line (20a),

E

(
1

N

N−1∑
n=0

ξ2
n − 1

)2

= cδ .

By Assumptions 2.1(v), and Hölder inequality, we have,

E(R̂
(n)
1 )2 = a2

11E

(∫ (n+1)δ

nδ

x(s)ds

)2

(21)

≤ ca2
11δ

∫ (n+1)δ

nδ

Ex(s)2ds

≤ cδ2 .

It is similar for E(R̂
(n)
2 )2,

E(R̂
(n)
2 )2 = a2

12E

(∫ (n+1)δ

nδ

y(s)ds

)2

(22)

≤ ca2
12δ

∫ (n+1)δ

nδ

Ey(s)2ds

≤ cδ2 .

Since R̂(n)
1 and R̂(n)

2 are Gaussian random variables, we have E(R̂
(n)
1 +R̂

(n)
2 )4 = Cδ4,

so line (20c) is of order O(δ2). For line (20b), we need to get the correlation between
R̂

(n)
i for i ∈ {1, 2} and ξn. We write system (2) in integrated form,

x(s) = xn + a11

∫ s

nδ

x(u)du+ a12

∫ s

nδ

y(u)du+
√
q1

∫ s

nδ

dUu (23)

y(s) = yn +
a21

ε

∫ s

nδ

x(u)du+
a22

ε

∫ s

nδ

y(u)du+

√
q2

ε

∫ s

nδ

dVu (24)

12
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We substitute (23) and (24) into R̂(n)
1 and R̂(n)

2 respectively,

R̂
(n)
1 + R̂

(n)
2 =

∫ (n+1)δ

nδ

a11x(s) + a12y(s)ds

= a11xnδ + a12ynδ

+

(
a2

11 +
1

ε
a12a21

)∫ (n+1)δ

nδ

∫ s

nδ

x(u)duds

+

(
a11a12 +

1

ε
a12a22

)∫ (n+1)δ

nδ

∫ s

nδ

y(u)duds

+ a11
√
q1

∫ (n+1)δ

nδ

∫ s

nδ

dUuds

+ a12

√
q2

ε

∫ (n+1)δ

nδ

∫ s

nδ

dVuds

Using this expansion, we find,

E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )
)

= E (ξn(a11xnδ + a12ynδ)) (25a)

+ E

(
ξn

((
a2

11 +
1

ε
a12a21

)∫ (n+1)δ

nδ

∫ s

nδ

x(u)duds

))
(25b)

+ E

(
ξn

(
a11a12 +

1

ε
a12a22

)∫ (n+1)δ

nδ

∫ s

nδ

y(u)duds

)
(25c)

+ E

(
ξn

(
a11
√
q1

∫ (n+1)δ

nδ

∫ s

nδ

dUuds

))
(25d)

+ E

(
ξn

(
a12

√
q2

ε

∫ (n+1)δ

nδ

∫ s

nδ

dVuds

))
(25e)

By the definition of ξn, line (25a) is zero. By substituting (23) and (24) into lines (25b)
and (25c) respectively and iteratively, we know they are of ordersO(δ2). By definition
of ξn, we know that line (25d) is of order O(δ

3
2 ). By independence between U and V ,

line (25e) is zero. Therefore,

E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )
)

= O(δ
3
2 ) .

Thus,
E
(
ξ2
n(R̂

(n)
1 + R̂

(n)
2 )2

)
= O(δ3) .

When m < n, we have,

E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )ξm(R̂

(m)
1 + R̂

(m)
2 )

)
= E

(
E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )ξm(R̂

(m)
1 + R̂

(m)
2 )|Fnδ

))
= E

(
ξm(R̂

(m)
1 + R̂

(m)
2 )E

(
ξn(R̂

(n)
1 + R̂

(n)
2 )|Fnδ

))
= E

(
ξm(R̂

(m)
1 + R̂

(m)
2 )

)
E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )
)

= O(δ3) .
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When m > n, the same result holds. Thus we have that line (20b) is of order O(δ2).
Therefore, we have for equation (20),

E (q̂εδ − q1)
2

= O(δ) .

This completes the proof.

2.5 Asymptotic Normality for the Diffusion Estimator
To examine the asymptotic normality of the diffusion estimator, we use the decompo-
sition of q̂εδ in the proof of Theorem 2.7,

δ−
1
2 (q̂εδ − q1) = δ−

1
2 q1(

1

N

N−1∑
n=0

ξ2
n − I) (26a)

+ 2δ−
1
2

√
q1

N
√
δ

N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 ) (26b)

+ δ−
1
2

1

Nδ

N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2 (26c)

Since

lim
δ→0

δ−
1
2 q1(

1

N

N−1∑
n=0

ξ2
n − I) = lim

N→∞
q1√
T

1√
N

N−1∑
n=0

(ξ2
n − I)

It follows from Central Limit Theorem for sum of multivariate i.i.d random variables,
as δ → 0,

lim
δ→0

δ−
1
2 q1(

1

N

N−1∑
n=0

ξ2
n − I)

D→ N (0, 2
q2
1

T
)

We have shown that E
(
ξn(R̂

(n)
1 + R̂

(n)
2 )
)

= O(δ
3
2 ), so line (26b) has mean

E

(
δ−

1
2

√
q1

N
√
δ

N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)
= O(δ

1
2 ) .

Using E

(
N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)2

= O(δ), we find the second moment of (26b),

E

(
δ−

1
2

√
q1

N
√
δ

N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 )

)2

= O(δ) .

Thus when δ is small,

δ−
1
2

√
q1

N
√
δ

N−1∑
n=0

ξn(R̂
(n)
1 + R̂

(n)
2 ) ∼ N (O(δ

1
2 ),O(δ)) .

Finally, for line (26c), using (21) and (22), we have

E

(
δ−

1
2

1

Nδ

N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)
= O(δ

1
2 ) ,
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Figure 2: Averaging: Asymptotic Normality of q̂εδ

and,

E

(
δ−

1
2

1

Nδ

N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2

)2

= O(δ) .

Thus,

δ−
1
2

1

Nδ

N−1∑
n=0

(R̂
(n)
1 + R̂

(n)
2 )2 ∼ N (O(δ

1
2 ),O(δ)) .

Putting all terms together, we have

δ−
1
2 (q̂εδ − q1)

D→ N (0,
2q2

1

T
) . (27)

We have proved the following,

Theorem 2.8. Under the conditions of Theorem 2.7 and with the same notation, it
holds that

δ−
1
2 (q̂εδ − q1)

D→ N (0,
2q2

1

T
) as δ → 0 .

In Figure 2, we show an example of the distributions of the errors of the diffusion
estimator as δ → 0.

3 Homogenization
We now consider the fast/slow system of stochastic differential equations described by
(2), for the variables (x, y) ∈ X × Y . We may take X and Y as either in R or T.
Our interest remains in data generated by the projection onto the x coordinate of the
system.

Assumptions 3.1.
We assume that
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(i) U, V are independent Brownian motions;

(ii) q1, q2 are positive;

(iii) 0 < ε� 1;

(iv) the system’s drift matrix (
1
εa11 + a13

1
εa12 + a14

1
ε2 a21

1
ε2 a22

)
only have negative real eigenvalues when ε is sufficiently small;

(v) a21 6= 0;

(vi) x(0) and y(0) are independent of U and V , (x(0), y(0)) is under the invariant
measure of system (1), and E

(
x2(0) + y2(0)

)
<∞.

Remark 3.2. In assumption 3.1(iv), we have assumed the whole system (2) to be
ergodic when ε is sufficiently small. This condition can be decomposed to a22 and
a13− a14a

−1
22 a21 are negative real numbers; and a11− a12a

−1
22 a21 = 0, which ensures

the fast scale term in (2a) vanishes.

Remark 3.3. Assumption 3.1(v) is necessary in our setup, however, the result could
still hold when a21 is zero, an example is discussed by Papavasiliou in [10] for diffusion
estimates.

Under assumptions 3.1, the solution (x, y) of (2) is ergodic. In addition, x con-
verges as ε→ 0 to the solution of the homogenized equation

dX

dt
= ãX +

√
q̃
dW

dt
(28)

where
ã = a13 − a14a

−1
22 a21 (29)

and
q̃ = q1 + a2

12a
−2
22 q2 (30)

The convergence of the homogenizing systems is different from that of the averag-
ing systems. For each given time series of observations, the paths of the slow process
converge to the paths of the corresponding homogenized equation. However, we will
see that in the limit ε→ 0, the likelihood of the drift or diffusion parameter is different
depending on whether we observe a path of the slow process generated by (2a) or the
homogenized process (28) (see also [23, 25, 26]).

3.1 The Paths
The following theorem extends Theorem 18.1 in [25], which gives weak convergence
of paths on T. By limiting ourselves to the OU process, we extend the domain to R
and prove a stronger mode of convergence.

Lemma 3.4. Suppose that (x, y) solves (2a) and Assumptions 3.1 are satisfied. Then,
for fixed finite T > 0 and small ε,

E sup
0≤t≤T

(
x2(t) + y2(t)

)
= O

(
log(1 +

T

ε2
)

)
. (31)
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Proof. We look at the system of SDEs as,

dxt = axtdt+
√
qdWt (32)

where,

x =

(
x
y

)
, a =

(
1
εa11 + a13

1
εa12 + a14

1
ε2 a21

1
ε2 a22

)
and q =

(
q1 0
0 1

ε2 q2

)
.

We try to characterize the magnitude of the eigenvalues of a. To find the eigenval-
ues, we require

det(a− λI) = 0 .

By solving this system and using existing results regarding the eigenvalues of a per-
turbed matrix of ã (see [14][p. 137, Theorem 2]), we find that the eigenvalues will be
of order O(1) and O(1/ε2). Therefore, we can decompose a as

a = PDP−1 with D =

(
D1 0
0 1

ε2D2

)
where D is the diagonal matrix, for which D1 ∈ R and D2 ∈ R are diagonal entries
of order O(1). Following exactly the same approach as in lemma 2.2, we get the
result.

Theorem 3.5. Let Assumptions 3.1 hold for system (2). Suppose that x and X are
solutions of (2a) and (28) respectively. (x, y) corresponds to the realization (U, V ) of
Brownian motion, while X corresponds to the realization

W. = q̃−
1
2

(√
q1U − a12a

−1
22

√
q2V

)
(33)

and x(0) = X(0). Then x converges to X in L2. More specifically,

E sup
0≤t≤T

(x(t)−X(t))2 ≤ c
(
ε2 log(

T

ε
) + ε2T

)
eT ,

when T is fixed finite, the above bound can be simplified to

E sup
0≤t≤T

(x(t)−X(t))2 = O(ε2 log(ε)).

Proof. We rewrite (2b) as

(a−1
22 a21x(t) + y(t))dt = ε2a−1

22 dy(t)− εa−1
22

√
q2dVt . (34)

We also rewrite (2a) as

dx(t) =
1

ε
a12(a−1

22 a21x(t) + y(t))dt+ a14(a−1
22 a21x(t) + y(t))dt

+(a13 − a14a
−1
22 a21)x(t)dt+

√
q1dUt

=

(
1

ε
a12 + a14

)
(a−1

22 a21x(t) + y(t))dt (35)

+ãx(t)dt+
√
q1dUt .
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Replacing (a−1
22 a21x(t) + y(t))dt in (35) by the right-hand-side of (34), we get

dx(t) = ε(a12 + εa14)a−1
22 dy(t)− a12a

−1
22

√
q2dVt − εa14a

−1
22

√
q2dVt

+ãx(t)dt+
√
q1dUt

= ãx(t)dt+ ε(a12 + εa14)a−1
22 dy(t) (36)

+
√
q̃dWt − εa14a

−1
22

√
q2dVt .

Thus

x(t) = x(0) +

∫ t

0

ãx(s)ds+
√
q̃Wt (37)

+ε(a12 + εa14)a−1
22 (y(t)− y(0))− εa14a

−1
22

√
q2Vt .

Recall that the homogenized equation (28) is

X(t) = X(0) +

∫ t

0

ãX(s)ds+
√
q̃Wt . (38)

Let e(t) = x(t) − X(t). Subtracting the previous equation from (37) and using the
assumption X(0) = x(0), we find that

e(t) = ã

∫ t

0

e(s)ds (39)

+ε
(
(a12 + εa14)a−1

22 (y(t)− y(0))− a14a
−1
22

√
q2Vt

)
.

Applying Lemma 3.4, we find an ε-independent constant C, such that

E
(

sup
0≤t≤T

y2(t)

)
≤ C log(

T

ε
) .

By Cauchy-Schwarz,

E
(

sup
0≤t≤T

e2(t)

)
≤ c

(∫ T

0

Ee2(s)ds+ ε2 log(
T

ε
) + ε2T

)
. (40)

By the integrated version of the Gronwall inequality [25], we deduce that

E
(

sup
0≤t≤T

e2(t)

)
≤ c

(
ε2 log(

T

ε
) + ε2T

)
eT . (41)

When T is finite, we have

E
(

sup
0≤t≤T

e2(t)

)
= O

(
ε2 log(ε)

)
.

This completes the proof.

3.2 The Drift Estimator
As in the averaging case, a natural idea for estimating the drift of the homogenized
equation is to use the maximum likelihood estimator (4), replacingX by the solution x
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of (2a). However, in the case of homogenization we do not get asymptotically consis-
tent estimates. To achieve this, we must subsample the data: we choose ∆ (time step for
observations) according to the value of the scale parameter ε and solve the estimation
problem for discretely observed diffusions (see [23, 25, 26]). The maximum likelihood
estimator for the drift of a homogenized equation converges after proper subsampling.
We let the observation time interval ∆ and the number of observations N both depend
on the scaling parameter ε, by setting ∆ = εα and N = ε−γ . We find the error is
optimized in the L2 sense when α = 1/2. We will show that âN,ε converges to ã only
if ∆
ε2 →∞, in a sense to be made precise later.

Theorem 3.6. Suppose that x is the projection to the x-coordinate of a solution of
system (2) satisfying Assumptions 3.1. Let âN,ε be the estimate we get by replacing X
in (4) by x, i.e.

âN,ε =

(
1

N∆

N−1∑
n=0

xn (xn+1 − xn)

)(
1

N∆

N−1∑
n=0

x2
n∆

)−1

(42)

Then,

E(âN,ε − ã)2 = O(∆ +
1

N∆
+

ε2

∆2
)

where ã as defined in (29). Consequently, if ∆ = εα, N = ε−γ , α ∈ (0, 1), γ > α,

lim
ε→0

E(âN,ε − ã)2 = 0 .

Furthermore, α = 1/2 and γ ≥ 3/2 optimize the error.

Before proving Theorem 3.6, we first find the magnitude of the increment of y over
a small time interval ∆. Solving equation (2b), we have

yn+1 − yn = (ea22
∆
ε2 − I)yn (43)

+
1

ε2

∫ (n+1)∆

n∆

ea22
(n+1)∆−s

ε2 x(s)ds

+
1

ε

∫ (n+1)∆

n∆

ea22
(n+1)∆−s

ε2
√
q2dVs .

By triangle inequality, we have

E(yn+1 − yn)2 ≤ (ea22
∆
ε2 − 1)Ey2

n

+ c(ea22
∆
ε2 − 1)

+
1

2
(e2a22

∆
ε2 )2q2

2 .

Since a22 is a negative constant,

E(yn+1 − yn)2 = O(e−
∆
ε2 − 1) .

By definition ∆ = εα, and the property that (e−
∆
ε2 − 1) = O( ∆

ε2 ) if ∆
ε2 is small, the

above equation can be rewritten as

E(yn+1 − yn)2 = O(εmax(α−2,0)) . (44)
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Proof. Define I1 and I2 as

I1 =
1

N∆

N−1∑
n=0

(xn+1 − xn)xn , I2 =
1

N∆

N−1∑
n=0

x2
n∆

By ergodic theorem, and since N = ε−γ , we have

lim
ε→0

I2 = E
(
x2
n

)
= C 6= 0

which is a non-zero constant. Hence instead of proving

E(âN,ε − ã)2 = O(∆2 +
1

N∆
+

ε2

∆2
) ,

we prove,

E(I1 − ãI2)2 = O(∆2 +
1

N∆
+

ε2

∆2
) .

We use the rearranged equation (36) of (2a) to decompose the error,

I1 − ãI2 = J1 + J2 + J3 + J4 . (45)

where

J1 =
1

N∆

N−1∑
n=0

(
ã

∫ (n+1)∆

n∆

x(s)ds− xn
)
xn

J2 =
1

N∆

N−1∑
n=0

(√
q̃

∫ (n+1)∆

n∆

xndWs

)

J3 =
ε

N∆

N−1∑
n=0

(a12 + εa14)a−1
22

∫ (n+1)∆

n∆

xndy(s)

J4 =
ε

N∆

N−1∑
n=0

a14a
−1
22

√
q2

∫ (n+1)∆

n∆

xndVs

By independence, Itô isometry and ergodicity, we immediately have

EJ2
2 = E

( √
q̃

N∆

N−1∑
n=0

∫ (n+1)∆

n∆

xndWs

)2

=
q̃

N2∆2
E

(
N−1∑
n=0

∫ (n+1)∆

n∆

xndWs

)2

≤ q̃

N2∆2
NE

(∫ (n+1)∆

n∆

dWs

)2

Ex2
n

≤ q̃

N2∆2
N∆Ex2

n

= O(
1

N∆
) ,
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and

EJ2
4 = E

(
εC

N∆

N−1∑
n=0

∫ (n+1)∆

n∆

xndVs

)2

=
ε2C

N2∆2
E

(
N−1∑
n=0

∫ (n+1)∆

n∆

xndVs

)2

≤ ε2C

N2∆2
NE

(∫ (n+1)∆

n∆

dVs

)2

E(x2
n)

≤ ε2C

N2∆2
N∆E(x2

n)

= O(
ε2

N∆
) .

By Hölder inequality, and (44), we have,

EJ2
3 = E

(
εC

N∆

N−1∑
n=0

∫ (n+1)∆

n∆

xndy

)2

= E

(
εC

N∆

N−1∑
n=0

xn(yn+1 − yn)

)2

≤ ε2

N2∆2
E

(
N−1∑
n=0

(yn+1 − yn)

)2

E(

N−1∑
n=0

xn)2

≤ ε2C

N2∆2
N(εmax(α−2,0))NEx2

n

= O(
ε2

∆2
) .

Finally, we find the squared error for J1. We use the integrated form of equation (36)
on time interval [n∆, s] to replace x(s)

EJ2
1 =

ã2

N2∆2
E

(
N−1∑
n=0

∫ (n+1)∆

n∆

(x(s)− xn)xnds

)2

(46)

=
ã2

N2∆2
E

(
N−1∑
n=0

(K
(n)
1 +K

(n)
2 +K

(n)
3 +K

(n)
4 )

)2

(47)

(48)
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where,

K
(n)
1 = ã

∫ (n+1)∆

n∆

∫ s

n∆

xnx(u)duds ,

K
(n)
2 = ε(a12 + εa14)a−1

22

∫ (n+1)∆

n∆

∫ s

n∆

xndy(u)ds ,

K
(n)
3 =

√
q̃

∫ (n+1)∆

n∆

∫ s

n∆

xndWuds ,

K
(n)
4 = εa14a

−1
22

√
q2

∫ (n+1)∆

n∆

∫ s

n∆

xndVuds .

We immediately see that

EJ2
1 =

ã2

N2∆2
E
N−1∑
n=0

(
4∑
i=1

K
(n)
i

)2

(49)

+
ã2

N2∆2
E
∑
m6=n
|
(

4∑
i=1

K
(n)
i

) 4∑
j=1

K
(m)
j

| (50)

Remark 3.7. Under the vector valued problem, we use the exact decomposition of
E‖J1‖2 by using (49) and (50). This is essential in order to obtain more optimized
subsampling rate for the drift estimator. For general Lp bound for the error, we can
apply Hölder’s inequality to decompose J1 as,

E‖J1‖p =
C

Np∆p
E‖

N−1∑
n=0

∫ (n+1)∆

n∆

(x(s)− xn)ds⊗ xn‖p

≤ C

Np−1∆p
E‖

N−1∑
n=0

∫ (n+1)∆

n∆

(x(s)− xn)ds‖pE‖xn‖p

which is used in [26]. Using this inequality will give an optimal subsampling rate of
α = 2/3, and achieves an over all L1 error of orderO(ε1/3). However, this magnitude
of overall error is not optimal in L2. We will show later that the optimal L2 error can
be achieved at the order of O(ε1/2), using the exact decomposition shown above.

By Cauchy-Schwarz inequality, we know for line (49),

E
N−1∑
n=0

(
4∑
i=1

K
(n)
i

)2

≤
N−1∑
n=0

4∑
i=1

E
(
K

(n)
i

)2

.

Using first order iterated integrals, we have

E(K
(n)
1 )2 = E

(∫ (n+1)∆

n∆

∫ s

n∆

xnx(u)duds

)2

≤ C∆

∫ (n+1)∆

n∆

∫ s

n∆

x2(u)dudsx2
n

≤ C∆

∫ (n+1)∆

n∆

(s− n∆)2ds

= O(∆4) .
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Using (44), we have

E(K
(n)
2 ds)2 = E

(
εC

∫ (n+1)∆

n∆

∫ s

n∆

xndy(u)ds

)

≤ Cε2E

(∫ (n+1)∆

n∆

xn(y(s)− y(u))ds

)2

≤ Cε2∆E
∫ (n+1)∆

n∆

(y(s)− y(u))2dsx2
n

≤ Cε2∆E
∫ (n+1)∆

n∆

(e−
s−n∆

ε2 − 1)ds

= O
(
ε4(e−

∆
ε2 − 1)

)
.

For K(n)
3 , we have,

E(K
(n)
3 )2 = E

(∫ (n+1)∆

n∆

∫ s

n∆

√
q̃xndWuds

)2

≤ C∆

∫ (n+1)∆

n∆

(∫ s

n∆

dWu

)2

ds

≤ C∆

∫ (n+1)∆

n∆

(s− n∆)ds

= O(∆3) .

Since K(n)
4 is similar to K(n)

3 , we have

E(K
(n)
4 )2 = O(ε2∆3) .

Thus, for line (49), the order of the dominating terms are,

E
N−1∑
n=0

(
4∑
i=1

K
(n)
i

)2

= O(N∆4 +Nε4(e−
∆
ε2 − 1) +N∆3) .

For line (50),

E
∑
m6=n
|(

4∑
i=1

K
(n)
i )(

4∑
j=1

K
(m)
j )| ≤

∑
m6=n

E|
4∑
i=1

K
(n)
i |E|

4∑
j=1

K
(m)
j | .

We know,

E(K
(n)
1 ) = E|C

∫ (n+1)∆

n∆

∫ s

n∆

x(u)duds|

≤ CE

(∫ (n+1)∆

n∆

(s− n∆)ds

)
= O(∆2) .
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Similarly, we have

E|K(n)
2 | = εCE

(∫ (n+1)∆

n∆

(y(s)− yn)ds

)
= O(ε∆) .

Since the integral of Brownian motions is Gaussian

E|K(n)
3 | = CE(

∫ (n+1)∆

n∆

∫ s

n∆

dWuds)

= CE(

∫ (n+1)∆

n∆

(W (s)−W (n∆))ds)

= CE(

∫ (n+1)∆

n∆

W (s)ds−W (n∆)∆)

= 0 .

and

E|K(n)
4 | = CεE(

∫ (n+1)∆

n∆

∫ s

n∆

dVuds)

= CεE(

∫ (n+1)∆

n∆

V (s)ds− V (n∆)∆)

= 0 .

Thus,

E|
4∑
i=1

K
(n)
i | = O(∆2 + ε∆) ,

immediately we have for line (50),

E
∑
m6=n
|(

4∑
i=1

K
(n)
i )(

4∑
j=1

K
(m)
j )| = O(N2∆4 +N2ε2∆2) .

Putting all terms for J1 together, we keep the dominating terms, and by assumption
N∆→∞, and α < 2 since e−

∆
ε2 → 0,

EJ2
1 ≤ C

N2∆2
(N∆4 +Nε4(e−

∆
ε2 − 1) +N∆3)

+
C

N2∆2
(N2∆4 +N2ε2∆2)

= O(
∆2

N
+

ε4

N∆2
(e−

∆
ε2 − 1) +

∆

N
+ ∆2 + ε2)

= O(
ε4

N∆2
+ ∆2 + ε2) .
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Figure 3: Homogenization: L2 norm of (âN,ε − ã) for different ε and α

Therefore, putting Ji’s, i ∈ {1, 2, 3, 4}, together, we have,

E(I1 − ãI2)2 ≤
4∑
i=1

EJ2
i

= O(
ε4

N∆2
+ ∆2 + ε2)

+ O(
1

N∆
)

+ O(
ε2

∆2
)

+ O(
ε2

N∆
)

= O(∆2 +
1

N∆
+

ε2

∆2
)

We rewrite the above equation using ∆ = εα and N = ε−γ ,

E(I1 − ãI2)2 = O(ε2α + εγ−α + ε2−2α) .

It is immediately seen that α = 1
2 and γ ≥ 3/2 optimize the error, and α ∈ (0, 1), the

order of the error is
E(I1 − ãI2)2 = O(ε) .

This completes the proof.

In Figure 3, we show an example of the L2 error of the drift estimator with various
scaling parameter ε and subsampling rate α. We see that the error is minimized around
α = 1/2 as in Theorem 3.6.

3.3 The Diffusion Estimator
Just as in the case of the drift estimator, we define the diffusion estimator by the maxi-
mum likelihood estimator (5), where X is replaced by the discretized solution of (2a).

25

Paper No. 15-05, www.warwick.ac.uk/go/crism



More specifically, we define

q̃εN,∆ =
1

N∆

N−1∑
n=0

(xn+1 − xn)2 (51)

where xn = x(n∆) is the discrete observation of the process generated by (2a) and ∆
is the observation time interval.

Theorem 3.8. Suppose that x is the projection to the x-coordinate of a solution of
system (2) satisfying Assumptions 3.1. Let q̂ε be the estimate we get by replacing X in
(5) by x, i.e.

q̂ε =
1

T

N−1∑
n=0

(xn+1 − xn)2 .

Then

E(q̂ε − q̃)2 = O
(

∆ + ε2 +
ε4

∆2

)
where q̃ as defined in (30). Consequently, if ∆ = εα, fix T = N∆, and α ∈ (0, 2), then

lim
ε→0

E(q̂ε − q̃)2 = 0 .

Furthermore, α = 4/3 optimizes the error.

We first define

√
∆ηn =

∫ (n+1)∆

n∆

dWt .

Proof. We now prove Theorem 3.8. Using the integral form of equation (36),

xn+1 − xn =

∫ (n+1)∆

n∆

√
q̃dWs (52)

+ R̂1 + R̂2 + R̂3

where

R̂1 = ã

∫ (n+1)∆

n∆

x(s)ds

R̂2 = εa14a
−1
22

√
q2

∫ (n+1)∆

n∆

dVs

R̂3 = ε(a12 + εa14)a−1
22

∫ (n+1)∆

n∆

dy(s)

We rewrite line (52) as ∫ (n+1)∆

n∆

√
q̃dWs =

√
q̃∆ηn

where ηn are N (0, 1) random variables.
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For ∆ and ε sufficiently small, by Cauchy-Schwarz inequality

E

(
c

∫ (n+1)∆

n∆

x(s)ds

)2

≤ cE
∫ (n+1)∆

n∆

x2(s)ds

∫ (n+1)∆

n∆

ds

≤ c∆E
∫ (n+1)∆

n∆

x2(s)ds

≤ c∆2E

(
sup

n∆≤s≤(n+1)∆

x2(s)

)
= O(∆2)

Therefore,
E(R̂1)2 = O(∆2)

By Itô isometry
E(R̂2)2 = O(ε2∆)

Then we look at R̂3,

E(R̂3)2 = ε2CE(yn+1 − yn)2

By (44), we have
E(R̂3)2 = O(εmax(α,2)) (53)

We substitute (xn+1 − xn) into the estimator q̂ε in Theorem 3.8. We decompose
the estimator’s error as follows,

q̂ε − q̃ = q̃(
1

N

N−1∑
n=0

η2
n − 1)

+
1

T

N−1∑
n=0

3∑
i=1

(
R̂2
i

)
+

2

T

N−1∑
n=0

3∑
i=1

R̂i
√
q̃∆ηn

+
1

T

N−1∑
n=0

∑
i 6=j

R̂iR̂j


= R

Then we bound the mean squared error using Cauchy-Schwarz inequality.

E (q̂ε − q̃)2 ≤ Cq̃2E(
1

N

N−1∑
n=0

η2
n − 1)2 (54)

+ C
3∑
i=1

E

(
1

T

N−1∑
n=0

R̂2
i

)2

(55)

+ C
3∑
i=1

E

(
1

T

N−1∑
n=0

R̂i
√
q̃∆ηn

)2

(56)

+ C
∑
i 6=j

E

(
1

T

N−1∑
n=0

(
R̂i ⊗ R̂j

))2

(57)
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By law of large numbers, line (54) is of order O(∆).
In line (55), for i ∈ {1, 2}, we have

E

(
1

T

N−1∑
n=0

R̂2
i

)2

=
1

T 2
N
N−1∑
n=0

E(R̂2
i )

2.

Since E(R̂1)2 = O(∆2), we have

E

(
1

T

N−1∑
n=0

R̂2
1

)2

= O
(
N2(∆2)2

)
= O

(
∆2
)

;

since E(R̂2)2 = O(ε2∆), we have

E

(
1

T

N−1∑
n=0

R̂2
2

)2

= O
(
N2(∆ε2)2

)
= O(ε4).

It is different for E

(
1
T

N−1∑
n=0

R̂2
3

)2

, by (44), we have

E

(
1

T

N−1∑
n=0

R̂2
3

)2

=
Cε4

T 2
E

(
N−1∑
n=0

(yn+1 − yn)
2

)2

≤ Cε4N

N−1∑
n=0

E (yn+1 − yn)
4

= O
(
ε4+2 max(0,α−2)

∆2

)
= O

(
εmax(4,2α)

∆2

)
Adding up all terms for line (55), we have,

3∑
i=1

E

(
1

T

N−1∑
n=0

R̂2
i

)2

= O
(

∆2 + ε4 +
εmax(4,2α)

∆2

)
. (58)

In line (56), for i ∈ {1, 2}, we have

E

(
1

T

N−1∑
n=0

R̂i
√
q̃∆ηn

)2

≤ CN2∆E
(
R̂iηn

)2

= CNE(R̂i)
2

Since E(R̂1)2 = O(∆2), we have

E

(
1

T

N−1∑
n=0

R̂1

√
q̃∆ηn

)2

= O(N∆2) = O(∆);

since E(R̂2)2 = O(ε2∆), we have

E

(
1

T

N−1∑
n=0

R̂2

√
q̃∆ηn

)2

= O(Nε2∆) = O(ε2) .
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Again, it is different for E

(
1
T

N−1∑
n=0

R̂3

√
q̃∆ηn

)2

due to correlation between R̂(n)
3 and

ηn. Using the expression from (43) by only considering the dominating terms, we have

E

(
1

T

N−1∑
n=0

R̂3

√
q̃∆ηn

)2

= E

(
1

T

N−1∑
n=0

R̂2
3

(√
q̃∆ηn

)2
)

+ E

 1

T 2

∑
m 6=n

R̂
(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


By computing the order of the dominating terms and the martingale terms, when

m = n,

E

(
1

T

N−1∑
n=0

R̂2
3

(√
q̃∆ηn

)2
)

=
1

T

N−1∑
n=0

∆E
(
R̂2

3q̃η
2
n

)
=

1

T
E(R̂2

3η
2
n)

= O
(
εmax(α,2)

)
and when m < n,

E

 1

T 2

∑
m 6=n

R̂
(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


≤ CN2ε2E ((yn+1−, yn)(ym+1 − ym)

×
∫ (n+1)∆

n∆

dW ′s

∫ (m+1)∆

m∆

dWs

)

≤ CN2ε2E

(
(yn+1 − yn)

∫ (n+1)∆

n∆

dW ′s

× E

(
(ym+1 − ym)

∫ (m+1)∆

m∆

dWs|Fm∆

))
Using the expansion in (43), and using the dominating terms only,

E

(
(ym+1 − ym)

∫ (n+1)∆

n∆

dWs|Fm∆

)
= E

((
(e−

∆
ε2 − 1)ym

+
1

ε2

∫ (m+1)∆

m∆

e−
(m+1)∆−s

ε2 x(s)ds

+
1

ε

∫ (m+1)∆

m∆

e−
(m+1)∆−s

ε2 dVs

)∫ (m+1)∆

m∆

dWs|Fm∆

)
= O(ε(e−

∆
ε2 − 1))
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Therefore, when m < n, we have,

E

 1

T 2

∑
m 6=n

R̂
(m)
3 R̂

(n)
3

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


= O(

ε4

∆2
(e−

∆
ε2 − 1)2)

= O(ε4−2α+2 max(α−2,0))

= O(εmax(0,4−2α))

In the case m > n, the result is identical due to symmetry. Adding up all terms for line
(56),

5∑
i=1

E

(
1

T

N−1∑
n=0

R̂i
√
q̃∆ηn

)2

= O
(

∆ + ε2 + εmax(α,2) + ε2 max(0,2−α)
)

(59)

In line (57), we have

∑
i 6=j

E

(
N−1∑
n=0

R̂iR̂j

)2

≤ NE(Ri)
2E(Rj)

2

Substituting in the L2 norms of each R̂i, i ∈ {1, 2, 3}, we have for line (57),

∑
i 6=j

E

(
N−1∑
n=0

R̂iR̂j

)2

= O
(

∆2ε2 + ∆εmax(α,2) + ε2+max(α,2)
)

(60)

Aggregating bounds (58), (59) and (60) for equation lines from (54) to (57) respec-
tively, we have

E(q̂ε − q̃)2

= O(∆)

+ O
(

∆2 + ε4 +
εmax(4,2α)

∆2

)
+ O

(
∆ + ε2 + εmax(α,2) + ε2 max(0,2−α)

)
+

(
∆2ε2 + ∆εmax(α,2) + ε2+max(α,2)

)
It is clear that when α < 2,

E(q̂ε − q̃)2 = O(∆ + ε4−2α + ε2).

The error is minimized when α = 4/3, which is of order

E(q̂ε − q̃)2 = O
(
ε

4
3

)
.

It is easy to see when α > 2, the error explodes. This completes the proof.
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Figure 4: Homogenization: L2 norm of (q̂ε − q̃) for different ε and α

In Figure 4, we show an example of the L2 error of the diffusion parameter with
various scaling parameter ε and subsampling rate α. We see that the error is minimized
around α = 4/3 as in Theorem 3.8.
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