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Abstract Symbolic inference algorithms in Bayesian networks have now
been applied in a variety of domains. These often require the computa-
tion of the derivatives of polynomials representing probabilities in such
graphical models. In this paper we formalise a symbolic approach for
staged trees, a model class making it possible to visualise asymmetric
model constraints. We are able to show that the probability parametrisa-
tion associated to trees has several advantages over the one associated to
Bayesian networks. We then continue to compute certain derivatives of
staged trees’ polynomials and show their probabilistic interpretation. We
are able to determine that these polynomials can be straightforwardly
deduced by compiling a tree into an arithmetic circuit.

1 Introduction

The notion of probabilistic graphical models has been successfully established
[10]. In particular, Bayesian networks (BNs) [13] have proved to provide an
intuitive qualitative framework, based on various conditional independence con-
straints [8], as well as a computationally efficient inferential tool [11].

Probabilistic inference in BNs has been characterised in the literature not
only using numerical approaches but also symbolic methods, where probabilities
are treated as unknown quantities [5,7]. Symbolic approaches like these provide
a natural framework around which to perform various sensitivity analyses. It
has only recently been recognised that a variety of such probabilistic queries can
be answered by computing derivatives of polynomials representing the model’s
probabilities [7]. In [7] it is further shown that the computational burden of
calculating these polynomials can be reduced through an arithmetic circuit (AC)
representation.

Symbolic methods have proved useful in BNs (e.g. [5]), although these tech-
niques do come with a considerable computational cost. In this paper we study
a different class of models called staged trees [18,19] where such difficulties are
eased. We demonstrate that the interpolating polynomial [7,15] associated to a
staged tree can be straightforwardly deduced by simply looking at the structure
of the underlying graph. This is because the parametrisation associated to these
models is more intuitive than the one of BNs.

It has been shown that in fact discrete BNs are a special case of the class of
staged tree models [2,18,19]. The latter have the advantage over BNs of being
able to explicitly represent asymmetric (conditional independence) constraints
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and relations between functions of random variables, explicitly modelling in-
formation which is only present in the probability structure of a BN model.
Importantly, polynomials arising from this more general class of models have an
interesting algebraic structure which is not necessarily homogeneous and multi-
linear as in the BN case. We are able to demonstrate that a probabilistic semantic
can be attributed to the partial derivatives of interpolating polynomials. In ad-
dition, these can also be used to represent various causal assumptions under the
Pearlean causal paradigm [14]. Typically, because of the wide variety of possible
hypotheses they embody, staged trees are necessarily models over much smaller
state spaces than BNs. Since this is the main computational issue for symbolic
approaches associated with BNs, it follows that trees can be very practical for
investigating inferential queries.

The polynomials of staged trees can be computed by compiling them into
ACs just as for BNs. As noted in [12], the presence of asymmetries simply entails
setting equal to zero some terms in the polynomial associated with a model with
no such asymmetries. Therefore, the AC of a staged tree has often a substantially
smaller number of leaves. Together with the point above this means that, when
using a symbolic approach for our model class, computations and inferential
challenges are therefore eased.

2 Staged Tree Models

In this paper, as in [17,19], we focus on graphical models represented by trees. We
examine event trees T = (V, E), directed rooted trees where each inner vertex
v € V has at least two children. In this context, the sample space of the model
corresponds to the set of root-to-leaf paths in the graph and each directed path,
which is a sequence of edges r = (e | e € E(r)), for E(r) C E, has a meaning in
the modelling context. To every edge e € E we associate a primitive probability
f(e) € (0,1) such that on each floret F(v) = (v, E(v)), where E(v) C E is the
set of edges emanating from v € V, the primitive probabilities sum to unity.
The probability of an atom is then simply the product of primitive probabilities
along the edges of its path: 7(r) = [[.c g 0(€). After [6,19] we define:

Definition 1. Let 6, = (6(e) | e € E(v)) be the vector of primitive probabilities
associated to the floret F(v), v € V, in a tree T = (V, E). A staged tree is an
event tree as above where, for some v,w € V, the floret probabilities are identified
0, = 0y. Then, w,v € V are in the same stage.

Setting floret probabilities equal can be thought of as representing conditional
independence information. If vertices are linked to random variables [19,20] their
edges are associated with a projection of the model’s sample space. Two vertices
are thus in the same stage if they have the same (conditional) distribution over
their edges. When drawing a tree, vertices in the same stage are assigned the
same colour in order to have a visual counterpart for that information.

Staged trees are flexible representations for many discrete models. They are
capable of representing all conditional independence hypotheses within discrete
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BNs, whilst at the same time being more flexible in expressing modifications of
these, as we will see below. In particular, the graphical complexity is made up
for by the extra expressiveness of these models [19]. In this paper, although the
associated Chain Event Graph (CEG) is more convenient for displaying inform-
ation in a staged tree model, we will stick to the latter graphs when representing
their algebraic features.

Ezample 1. For the purposes of this short paper, we consider the following sim-
plification of a real system described in [19]. A binary model is designed to ex-
plain a possible unfolding of the following events in a cell culture: a cell finds itself
in a benign or hostile environment, the level of activity within this might be high
or low, and if the environment is hostile then a cell might either survive or die.

We can model this narrative using a BN on three variables: the state of
the environment is represented by Y, taking values in Yo = {hostile, benign},
cell activity is measured by Y as Y; = {high,low} and viability via Y2 with
Yo = {die, survive}. Then Y = (Yo, Yy, Ys) is the model space.

If we argue that a high or low level of activity is independent of the environ-
ment being hostile or benign and that whether or not a cell dies does not depend
on its activity, then our model corresponds to the collider BN in (1), stating that
Y() A Y1 and YO J_ Y1 ‘ YQ.

Yo—Yo<—Y (1)

Observe that this graphical representation, though storing all conditional
independence constraints between the Y; variables, does not inform us about all
of the assumptions above. It forces us to retain information which is meaningless
in our context, as for instance the atom w = (benign, high, die) € Y which has
probability zero. The representation of (1) in terms of a staged tree Tpn in
Fig. 1, where each root-to-leaf path represents one w € Y, is therefore large. As
the number of variables gets larger, the percentage of information not described
through the graph can increase dramatically.

The apparent symmetries in this representation are typical for event trees
induced by BNs: all paths are of the same length and the stage structure (col-
ouring) depends on the distance of a vertex from the root. Keeping in mind the
assumptions made in our model, for example that there is no cell damage in a
benign environment, we notice that the lower part of the tree in Fig. 1 does not
contain any valuable information. There is even more redundancy if we add an
extra level of complexity to the model, for instance by assessing the constitution
of a surviving cell—which is meaningless if a unit has died. Thus, the model at
hand is a context specific BN rather than a BN (see e.g. [19]), and there is a
strong case for using a staged tree model.

We call the state space of our improved graphical model

X7 = {w; = (hostile, high, die),...,ws = (benign, low)},

which is the set of all meaningful unfoldings of events. It is canonically identified
with the set of root-to-leaf paths of an event tree 7 = (V, E),

Ry = {r1 = (eo1,€11,€31),72 = (€01, €11, €32),...,78 = (€02,€22)},
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Figure 1. A staged tree Tpn representa- Figure 2. An asymmetric staged tree T
tion of the BN in (1) of Ex. 1. representing the context specific informa-
tion of the BN in (1) of Ex. 1.

where we reduce the vertex set of Tgnx to V' = {vg, v1,...,v10} and the edges are
E = {eo1, €02, .-, €42}, with e;j corresponding to the jth edge emanating from
vy, for fitting ¢ and j.

Following this approach, we obtain the staged tree 7 in Fig. 2. This new rep-
resentation is far more expressive than the BN itself and less cluttered than the
BN'’s tree Tgn, whilst conveying the same information: the colouring expresses
the given conditional independence assumptions that can also be read from the
BN. For instance, by colouring the edges in E(v1) and E(v9) in the same manner,
we visualise equality of the probability labels

O(e11) = O(e21) or P(Y7 = high|Yy = hostile) = P(Y; = high|Y; = benign), @
O(e12) = B(ea2) or P(Y: = low|Yy = hostile) = P(Y; = low|Yy = benign).
The same procedure is applied on the edges of v7, vg and wvs, v1g. a

Having understood the advantages of a staged tree over a BN, we now present
a symbolic approach to calculate probabilities in this type of models. Following
concepts introduced in [15] in the context of designed experiments, we define:

Definition 2. Let T = (V, E) be a staged tree with primitive probabilities 0(e),
e € E, and set of root-to-leaf paths Ry. We call A(e) ={r € Ry | e € E(r)} an
edge-centred event, and set A.(r), for e € E, to be an indicator of r € A(e). We

call
cr(0,A) = Zﬂ'g(r)H)\e(r) = Z H)\e(r)ﬁ(e)
reERT e€E(r) r€ERT e€cE(r)

the interpolating polynomial of 7T .

The interpolating polynomial is a sum of atomic probabilities with indicat-
ors for certain conditional events happening or not happening. Even though all
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these unknowns sum to one, in our symbolic approach we treat them just like
indeterminates. We will report in [9] some recent results that use interpolating
polynomials to characterise when two staged trees are statistically equivalent.

We now look at this model class from an algebraic point of view. As seen
in Ex. 1, the sample space of a BN with vertex set {Y7,...,Y,}, Y; € Y;, i =
1,...,n, gives rise to an event tree where each root-to-leaf path r € Ry is
associated to an atom w € Y; x ... x Y, and is hence of length n. By definition,
P(w) = mo(r) = [l,ep () 0(e) and therefore the interpolating polynomial of a
BN is a sum of monomials each of which is of degree 2n and so homogeneous.
Moreover, the stage structure of a BN tree as in Fig. 1 is such that no two vertices
along the same directed path are in the same stage, in fact stages exist only along
orthogonal cuts [20]. Thus in particular, the interpolating polynomial of a BN
is also multilinear, that is linear in all components. Note that, although in this
paper we consider Bayesian subjective probabilities only, other representations of
uncertainty in directed graphical models entertain similar multilinear structures
(see e.g. [1]).

Note that the indicators \¢(r) on the edges e € E(r) are associated to the
(conditional) event represented by e, having probability 6(e). This notation is
apparently redundant, but will turn out to be useful in Sect. 3. We observe that
this redundancy is one of the great advantages of a staged tree: whilst [7] needs to
compute conditional probabilities of all compatible parent structures of an event,
which is a rather obscure concept in a symbolic framework, and [5] computes the
product space of any indeterminates’ combination regardless of their meaning,
a tree visualisation of our model gives us the necessary structure immediately:
events can be simply read from the paths in the graph. Recently, [12] developed
an algorithm which automatically computes only the required monomials in BN
models. Although this makes computations more efficient the parametrisation
in [12] is still not as transparent as the one associated to trees.

Ezample 2. Recall the model analysed in Ex. 1. Ignoring the equalities implied
by the stage structure, the interpolating polynomial of a model represented by
the BN in (1) or the tree in Fig. 1 equals

ceN(8) = 601011031 + 001011032 + 6016012041 + 0016012042

3
+ 002021051 + 092022052 4 092022061 + 002022062, )

where we simplified our notation to 6;; = 6(e;;) for each 4, j. We also omitted for
ease of notation the indicator functions on all terms. This polynomial has been
simply read from the event tree by first multiplying over all primitive probabilit-
ies along one root-to-leaf path, and then summing over all of these paths. This is
a lot easier done using Fig. 1 than in (1), where we would have had to sum over
compatible parent configurations, which could have not been read directly from
a DAG. Observe that here, as outlined above, cpn is homogeneous of degree 3.
The number of terms equals the number of paths in the tree representation.

Conversely, the more adequate improved model without meaningless terms
or terms with probability zero has the interpolating polynomial

c(0) = 001011031 + 001011032 + 001012041 + 001612042 + 2021 + Oo2b22.  (4)
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Figure 3. The staged tree of a repeated coin toss with interpolating polynomial (7).

This is a lot easier to handle than cgy but still conveys exactly the same inform-
ation. When plugging in the conditional independence constraints as in (2), we
obtain the interpolating polynomial of the staged tree in Fig. 2 as:

er(0) = 001611631 + 001011032 + 001612031 + 001012032 + 0p2611 + 02012, ()
001 (011(031 + 032) + 012(031 + 032)) + Oo2(611 + 012), (6)

where we substituted 6;; = 6; and 03; = 645, for j = 1,2. This is now inhomo-
geneous but still multilinear, and it has total degree 3 with individual monomial
terms having degree 2 or 3. Notice that ¢y can be easily factorised in (6) by
simply following the structure of the underlying graph [9]. In [4], polynomials
of this type are called factored. This representation entails great computational
advantages since the compilation into an AC is almost instantaneous. Whilst for
BNs the factored representation might be difficult to obtain, it comes almost for
free in tree models.

We observe that the graphical simplicity of a staged tree model in comparison
to an uncoloured tree or a BN is also reflected algebraically: the polynomial in (5)
has fewer indeterminates than the one in (4) and a lot fewer than the polynomial
associated to a tree which is derived from a BN in (3). This is because in the
BN the redundancy of atoms gives rise to redundant terms. a

Observe that, although the interpolating polynomial of the staged tree in
Ex. 2 is multilinear, the concept of stages allows for enough flexibility to con-
struct models where this is not the case. Suppose we are interested in a situation
where we flip a coin and repeat this experiment only if the first outcome is heads.
This is depicted graphically by the coloured tree in Fig. 3. The interpolating
polynomial of this model is non-homogeneous and not multilinear:

cr (0,7, 0 N) = N07 + AN 07 + X7, (7)

for # + 7 = 1 and indicators A\ of ‘heads’ and X of ‘tails’. Again, this algebraic
structure and model type cannot, without significant obscuration, be expressed
in terms of a BN. If the polynomial is multilinear, we call our model square-free.
The focus of this paper lies on these.

By construction, Theorem 1 of [7] holds for a staged tree interpolating poly-
nomial:
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Lemma 1. For any event A represented by a set of root-to-leaf paths Ra in a
staged tree T, we know that

P(A) = Y m(r) = Y [A(r)ble) = er(8,Alr,),

rERA r€RA e€E(r)

where N\ g, indicates that A.(r) =1 for all e € E(r) with r € Ry, and else zero.

We are therefore able to symbolically compute the probability of any event
associated to a tree.

Ezxample 3. In the notation of Examples 1 and 2, suppose we are interested
in calculating the probability of death of a cell. This is captured by the event
A ={z € Xy | 3 = die}. Thus Ry = A(ez1) U A(eq1) = {r1,72} corresponds
to all root-to-leaf paths going through an edge labelled ‘die’ which translates in
summing all terms in (5) which include the label 83;. Therefore, again omitting
the X indicators, P(A) = ZrERA 7T9(7") = 091011031 + 091612031 . O

3 The Differential Approach

We are now able to provide a probabilistic semantic, just as [7] for BNs, to the
derivatives of polynomials associated to staged trees. For ease of notation we let
in this section A, = Ae(7).

Proposition 1. For equally coloured edges e € E and an event A represented
by the root-to-leaf paths Ry, the following results hold:

1 8CT(9?)\|RA)
CT(Q,/\‘RA) 8/\6

367‘(9, )\|RA)

P(A(e)|4) = oo ®

, P(A(e), 4) = 6(e)

where A(e) is an edge-centred event.

All the probabilities in (8) are equal to zero whenever e € E(r) for all r € Ry.
Notice that the derivatives of tree polynomials have the exact same interpreta-
tion of the ones of BNs as in [7]. Here we restricted our attention to square-free
staged trees but analogous results hold in the generic case: each monomial with
indeterminate A. and 6(e) of degree higher than one would need to be differen-
tiated a number of times equal to the degree of that indeterminate.

Proposition 2. In the notation of Prop. 1, we have that for e,ej,eq € E:

1 0?cr(0,\R,)

P(A(el)DA(eQ) | A) = CT(Q )‘|R ) 8)\6 aAe ) (9)
P(Afer) Alex). 4) = Blen)blen) G e (10)
P A@) = i )
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It is an easy exercise to deduce from Prop. 2 the probabilistic meaning of
higher order derivatives.

The above propositions demonstrate that the results of [7] are transferable
to the class of staged trees. In addition we are able to derive that in the staged
tree model class derivatives can be associated to causal propositions in the sense
of the Perlean concept of causal intervention on trees, as formalised in [21]. Note
that such a result does not hold in general for the polynomials describing BN
probabilities.

Proposition 3. Suppose the staged tree is believed to be causal as in [18]. Then
under the notation of Prop. 2,
- 8267'(9, )\|RA)

P(A ] Ale)) = 00N, (12)

s the probability of the event A when the system is forced to go through edge e.

Note that all the quantities in (8)—(12) can be used in sensitivity analysis, for
instance by investigating the changes in probability estimates when the system
is set to be in a certain scenario of interest.

Ezxample 4. We now compute a set of derivatives on the interpolating polynomial
¢ in (5) with respect to Az; and 631 to perform probabilistic inference over the
event A that a cell dies, as in Ex. 3. Thus, we consider the edge e = (vs,v7) and

1 807-(9,)\|RA) - 001011931+901912931

_ —1, 13
cr(0, N Ry) OXe 001011031 + 6001612031 (13)
Oer (6, X
9(6)W = 013(0016011 + 001612) = P(A), (14)
0?cr(0,\| R,
0;((@6)[}:) = 001011 + 0p1012. (15)

Observe that (13) is equal to unity since every path associated to the event
A must go through e. From the same argument follows that (14) is equal to
P(A). Eq. (15) is a simple consequence of Bayes’ theorem, which can be checked
algebraically. O

4 Trees as Circuits

The previous sections have introduced a comprehensive symbolic inferential tool-
box for trees, based on the computation of the interpolating polynomial and its
derivatives. In [7] it is shown that an efficient method to compute such polyno-
mials is by representing them as an AC. This is a DAG whose leaves are the
indeterminates and the inner nodes are labelled by multiplication and summa-
tion operations. The size of the circuit equals its number of edges.

ACGs of staged tree polynomials are smaller in size than the ones associated to
BNs for two reasons: first, a tree might have fewer root-to-leaf paths (as in Ex. 1);
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Figure 4. The arithmetic circuit of the model represented in Ex. 2, yielding (5).

second, there can be less indeterminates because unfoldings with probability zero
are not included in the model and coloured labels further decrease the number of
indeterminates. Therefore, in asymmetric settings we can expect computations
to be much faster for trees than for BNs.

A major problem in the compilation of BN polynomials consists in the iden-
tification of the AC of smallest size. This usually entails the computation of the
BN’s jointree and the application of more complex algorithms [7]. We note here
that in tree models this is straightforward since the interpolating polynomial is
naturally factored.

Ezxample 5. Recall the interpolating polynomial of the staged tree from Ex. 2. We
notice that (6) can be rewritten as ¢y (6) = o1 (011+612) (051+631)+002(011+012).

This gives us the AC in Fig. 4 where leaves with the same parent are labelled
by primitive probabilities from the same floret, and labels belonging to leaves in
the tree are first summed in the AC. It is easy to deduce that the AC associated
to the BN’s polynomial in (3) would be much larger than the one in Fig. 4. We
note also that, whilst all the ACs deriving from BNs in [7] are trees, ours is more
generally a DAG. This is a consequence of the more flexible stage structure of
generic staged trees than the one of trees depicting BNs. a

5 Discussion

Staged tree models, whilst representing a much larger model class than discrete
BNs, have proven to have a much more intuitive symbolic representation. We
have been able to show that in this framework polynomial derivatives have a
probabilistic semantic which is of use in sensitivity analysis. Our parametrisa-
tion further led to computational advantages because of the almost automatic
compilation into an AC.

Importantly, this paper relates the symbolic definition of discrete BNs to the
one of generic trees via the notion of an interpolating polynomial introduced in
Def. 2. We can therefore now start investigating classes of models that are defined
only symbolically, since the interpolating polynomial is able to capture all the
probabilistic information of the model. This can then lead to the definition of
new models that in general cannot be depicted by a graph.

In addition, the recognition that the probabilities associated to certain stat-
istical models have a polynomial form started a whole new area of research called
algebraic statistics [16]. We are now developing results which apply new exciting
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methodologies from this subject to staged tree models. We are also starting to
develop computer algebra methods to work with trees that exploit the symbolic
definition of the model we provided here and that will facilitate the use of such
models in practical applications. The examples we work with are of course larger
than those presented here (see [2,3]) and provide the framework for sensitivity
analyses in important areas of application.
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