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Abstract

Influence diagrams provide a compact graphical representation of decision problems. Several algorithms
for the quick computation of their associated expected utilities have been developed. However, these often
rely on a full quantification of the uncertainties and values required for the calculation of these expected
utilities. Here we develop a symbolic way to evaluate influence diagrams, not requiring such a full numerical
specification, for the case when random variables and decisions are all discrete. Within this approach
expected utilities correspond to families of polynomials. This polynomial representation enables us to study
many important features of an influence diagram. First, we develop an efficient symbolic algorithm for the
propagation of expected utilities through the diagram and we provide an implementation of this algorithm
using a computer algebra system. Second, we characterize many of the standard manipulations of these
diagrams as transformations of polynomials. Third, we identify classes of influence diagrams which are
equivalent in the sense that they all share the same polynomial structure. Finally, we generalize the decision
analytic framework of the influence diagram by characterizing asymmetries as manipulations of the expected
utility polynomials.

Keywords: Asymmetric Decision Problems, Computer Algebra, Influence Diagrams, Lattices, Symbolic
Inference.

1. Introduction

Decision makers (DMs) are often required in critical situations to choose between a wide range of different
alternatives. They need to consider the mutual influence of quantifications of different types of uncertainties,
the relative values of competing objectives together with the consequences of the decisions they will make.
Empirical evidence has shown that, due to this complexity, DMs often struggle to act as rational expected
utility maximizers and instead tend to exhibit inconsistencies in their behaviour [1]. They can therefore
benefit from an intuitive framework which draws together these different uncertainties and values so as to
better understand and evaluate the full consequences of the assumptions they are making.

Influence diagrams (IDs) [2, 3] provide such a platform to frame and review the elements of a DM’s
decision problem. This has been successfully applied in a variety of domains (see for example [4, 5] for
a review). For example [6] catalogues over 250 documented practical application of IDs models. IDs are
directed acyclic graphs (DAGs) that can be thought of as Bayesian network (BN) augmented with decision
and value nodes. IDs not only provide a compact graphical representation of both the structure of a decision
problem and the relationships between its relevant uncertainties, but also offer a computational framework
for the fast evaluation of the expected utility scores of different policies. Several algorithms have now been
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defined to evaluate influence diagrams, i.e. identify an expected utility maximizing policy and its associated
score. These can work directly on the ID [7, 8], transform it into a decision tree [9], or convert the diagram
into some other graphical structure [10, 11]. There were severe computational issues related to the evaluation
of IDs, but there are now several promising methodologies designed to overcome these challenges as noted
in [4] and [12]. Many different pieces of software are also now available to build and automatically evaluate
large IDs [5].

Most of the above mentioned evaluation algorithms work numerically once a full probability and utility
elicitation is available to the DM. However, often in practice DMs are not confident about the precision
of these values. They also may simply not be ready to provide such quantifications because of time or
economic constraints. Here we address these challenges by developing a symbolic approach to the evaluation
of IDs which does not require a full elicitation of all the quantities needed to compute expected scores. The
symbolic definition of the ID’s probabilities and utilities provides an elegant and efficient embellishment of
the associated graphical representation of the problem, around which symbolic computations can then be
carried. This symbolic framework is especially useful for sensitivity analyses [13, 14, 15, 16], where, for
example, DMs can simply plug in different estimates of the parameters of their problem and observe how
these changes influence the outcome of the evaluation.

For simplicity, as in other discussions [17, 18, 19, 20] concerning BNs and decision circuits, we assume
in this paper that random variables and decisions are all discrete. Generalizing the work in [21], we make
heavy use of the fact that, within our symbolic approach, the expected utility of a specific policy is a
polynomial, whose unknown quantities are conditional probabilities, marginal utilities and criterion weights.
We develop a symbolic algorithm for the computation of this polynomial representation of an ID model, which
is specified through simple matrix operations. Because of the simplicity of its operations, our implementation
in the MapleTH 2 computer algebra system (reported in Appendix B) is able to compute these polynomials
instantaneously in our examples once the symbolic definition of the ID is given as input. In contrast
to standard software, which assumes an additive factorization between utility nodes, our code is able to
explicitly model multiplicative utility factorizations [22].

In larger real-world applications computer algebra systems can have difficulties handling the number
of unknown variables that need to be stored in the computer memory. When this happens computations
often become infeasible. However, by imposing certain conditions on the model - formally discussed in
[23] - computations can then be distributed in such a way that the ID represents solely the input/output
relationship between large-dimensional models. This can dramatically reduce complexity. A random node
of the ID will then correspond to the relevant outputs of a large statistical model and arrows connecting
any two nodes would imply that the outputs of one model are used as input for the other. When such
a representation is possible, computer algebra can then be employed even when addressing much larger
applications.

The new symbolic representation of decision problems we introduce here allows us to concisely express
a large amount of information that might not be apparent from an ID, with a potential for making compu-
tations much more efficient. Different types of extra information, often consisting of asymmetries of various
kinds, have been explicitly modelled in graphical extensions of the ID model [24, 25, 26, 27, 28, 29, 30]. A
significant proportion of these, although providing a framework for the evaluation of more general decision
problems, lose the intuitiveness and the simplicity associated with IDs. Within our symbolic approach we
are able to elegantly and concisely characterize asymmetric decision problems through manipulations of the
polynomials representing the ID’s expected utility.

The structure of the paper is as follows. Section 2 introduces a new class of IDs entertaining multiplicative
utility factorizations and discusses the polynomial structure of the associated expected utilities. Section
3 presents our new symbolic algorithm and Section 4 symbolically defines manipulations of the graphical
representation of an ID. In Section 5 we discover a lattice structure between IDs describing the same decision
problem, which can then be of use in sensitivity analyses and model choice. Section 6 deals with asymmetries
and formalizes their symbolic interpretation. We conclude with a discussion.

2Maple is a trademark of Waterloo Maple Inc.
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2. Representation of influence diagrams

In this section we assume the DM deals with a uniform (or symmetric) decision problem, consisting of the
class of problems that can be represented by an ID [31, 32]. We consider asymmetric decision problems in
Section 6. From the definition of the ID we deduce the structure of its conditional expected utility functions
and show that these are explicit polynomial functions whose arguments are derived from either the random
nodes or the utility nodes of the ID.

Let [n] = {1, . . . , n} and {Y1, . . . , Yn} be a partially ordered set according to an order � such that if
Yi � Yj , then i < j, for any i, j ∈ [n]. We assume that [n] is partitioned into D and V, both non-empty sets.
Also {Y1, . . . , Yn} results to be partitioned in {Yi : i ∈ D} and {Yi : i ∈ D}, called the sets of controlled (or
decision)3 and non-controlled (or random) variables, respectively. Furthermore we assume {Yi : i ∈ D} to
be totally ordered: this is an intrinsic requirement of any symmetric decision problem. The partial order �
satisfying the total order on {Yi : i ∈ D}, can be arbitrarily refined to a total order and the choice of the
total order does not affect the theory presented here.

For i ∈ [n], we assume that Yi takes values in Yi = {0, . . . , ri−1}, where ri ∈ Z≥1. For A ⊆ [n],
YA = (Yi)

T
i∈A takes values in YA = ×i∈AYi and Y i

A = (Yj)
T
j∈A,j<i. We denote with yA and yiA generic

instantiations of YA and Y i
A respectively.

Example 1. A few important examples of the notation above are: the vector Y[n] includes all the variables

in {Y1, . . . , Yn}, YD and YV are the vectors of controlled and random variables respectively, and Y n−1
[n] =

(Y1, . . . , Yn−2)T.

2.1. Multiplicative influence diagram

We consider here a class of IDs entertaining a factorization over its utility nodes known as multiplica-
tive [22, 32]. We consider an m-dimensional vector of utilities U = (U1, . . . , Um)T and for each i ∈ [m] we
consider Pi ⊆ [n] non empty (the elements of YPi

are the parents of Ui, as we see next). The i-th component
of U , Ui, is a utility function mapping a subspace YPi

of Y [n] into [0, 1].

Definition 1. A multiplicative influence diagram (MID) G consists of

� a DAG with vertex (or node) set V (G) = {Y1, . . . , Yn, U1, . . . , Um} and edge (or arc) set E(G) including
three types of edges:

1. for i ∈ [m], Ui has no children, its parent set is given by the elements of YPi
and an element

of Y[n] is parent of at most one element of U . For i, j ∈ [m], Ui succeeds Uj and i > j if there
exists a parent of Ui which succeeds all parents of Uj in the order � over {Y1, . . . , Yn}: formally,
if there is a k ∈ Pi such that for every l ∈ Pj , k > l;

2. for i ∈ D, the parent set of Yi, {Yj : j ∈ Πi ⊂ [i−1]}, consists of the variables, controlled and
non-controlled, that are known when Yi is controlled;

3. for i ∈ V, the parent set of Yi, {Yj : j ∈ Πi ⊂ [i−1]} is such that Yi ⊥⊥ Y i
V\ΠV

i
| YΠV

i
for all

instantiations of decisions preceding Yi. Here ΠV
i = Πi ∩V and conditional independence is with

respect to the probability law defined next;4

� for i ∈ V, a transition density function P (yi | yΠi
) = P (Yi = yi | YΠi

= yΠi
);5

3With controlled variable we mean a variable set by the DM to take a particular value.
4More succinctly this requirement can be written as Yi ⊥⊥ Y i

[n]
| YΠi

using the notion of generalized conditional independence

recently introduced in [33].
5Note that we allow transition densities to be conditional on controlled variables.
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Figure 1: An ID describing the available countermeasures after an accident at a nuclear power plant.

� a multiplicative factorization over U such that

U(y[n]) =
∑

I∈P0([m])

hnI−1
∏
i∈I

kiUi(yPi), (1)

where P0(·) denotes the power set without the empty set, nI is the number of elements in the set I,
ki ∈ (0, 1) is a criterion weight [32], Ui is a function of YPi only and h is the unique solution not
smaller than minus one to

1 + h =
∏
i∈[m]

(1 + hki). (2)

We concentrate our study on the popular class of multiplicative factorizations because this provides some
computational advantages over, for example, the multilinear one [22], whilst allowing for enough flexibility to
model the DM’s preferences in many real cases [34]. Also the famous class of additive factorizations [22, 35]
can be seen as special cases of the multiplicative class for h = 0, assuming 00 = 1. Thereof an ID whose
associated decision problem implies an additive utility factorization is called additive ID.

Item 1 in Definition 1 extends the total order over {Y1, . . . , Yn} to V (G). For i ∈ [m], let ji be the
highest index of Pi and J = {j1, . . . , jm}. The MapleTH function CompJ in Appendix B receives as input
the number m and the parent set of Ui, for all i ∈ [m], and computes the set J for a given MID. The
totally ordered sequence of V (G) is called decision sequence (DS) of the MID G and is indicated as
S := (Y1, . . . , Yj1 , U1, Yj1+1, . . . , Yjm , Um). Differently from other authors [e.g. 31, 36], we do not introduce
utility nodes only at the end of the DS. This enables us to base the choice of optimal decisions, through the
algorithm given below, only on the values of the relevant attributes.

Example 2. Figure 1 presents an MID with vertex set {Y1, . . . , Y6, U1, . . . , U3} describing a gross simpli-
fication of the possible countermeasures after an accident at a nuclear power plant. For this MID, n = 6,
m = 3, D = {1, 4} and V = {2, 3, 5, 6}. Therefore, there are two controlled variables Y1 and Y4: the first
consisting of the possibility of closing down the power plant, the second of evacuating the nearby population.
Before controlling Y4, the variables Y1, Y2 and Y3 are observed since Π4 = [3]. We adopt the convention by
which decision variables and random variables are respectively framed with squares and circles. There are
four random nodes: Y2 and Y3 measure the amount of dispersion of the contaminant in the atmosphere and
to the ground respectively, Y5 estimates the human intake of radiation and Y6 ranks the level of stress in the
population. This DAG implies that Y5 ⊥⊥ Y2 | Y3 for every y1 ∈ Y1 and y4 ∈ Y4. The variable Y5 has parent
set {Yi : i ∈ Π5} where Π5 = {3, 4} and ΠV

5 = {3}. All variables are binary and take values in the spaces
Yi = {1, 0}, i ∈ [6]. When Yi is associated to a decision node, 1 and 0 correspond to, respectively, proceed
and not proceed. If Yi is associated to a random node, then 1 and 0 correspond respectively to high and
low. The MID in Figure 1 is completed by three utility nodes, U1, U2 and U3. The set P3 is equal to {4, 6}
and therefore Y4 and Y6 are the arguments of the utility function U3. Lastly, the DS associated to the MID
is (Y1, Y2, Y3, U1, Y4, Y5, U2, Y6, U3) and j1 = 3, j2 = 5, j3 = 6: thus J = {3, 5, 6}.

2.2. The evaluation of multiplicative influence diagrams

To evaluate an MID is to identify a sequence of optimal decisions maximizing the expected utility function
(i.e. the expectation of equation (1)). However, only MIDs whose topology is such that, for any index j ∈ D,
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the only variables that are known at the time the DM makes a decision Yj have an index lower than j can
be directly evaluated using ‘extensive form’standard calculations [37]. This is because the evaluation will
output optimal decisions as functions of observed quantities only [32].

Definition 2. An MID G is said to be in extensive form if Yi is a parent of Yj , j ∈ D, for all i < j.

We mainly study MIDs in extensive form and in Section 4 consider manipulations of non extensive MIDs.
Without loss of generality we assume that every vertex Yi of the MID has at least one child. Random and
controlled vertices with no children could be simply deleted from the graph without changing the outcome
of the evaluation [see e.g. 31].

Example 3. The MID in Figure 1 is in extensive form since Π4 = {1, 2, 3}. If either the edge (Y2, Y4) or
(Y3, Y4) were deleted then the MID would not be in extensive form. The only vertices with no children are
utility nodes.

A simple way to evaluate an MID in extensive form is through a backward inductive algorithm over
the vertices of the DAG [31]. Here we introduce a computationally efficient new version of this algorithm,
including at each step only the strictly necessary utility nodes. The identification of the optimal policy is
based on the computation of the functions Ūi(yBi

), i ∈ [n], we formally introduce in Proposition 1, where

Bi =


⋃
k≥i
k∈V

Πk

⋃⋃
j≥i
j∈J

Pj

 \ {i, . . . , n},
is the set including the indices of the variables that appear as arguments of Ūi. It should be noted that Bi
includes only indices smaller than i that are either in the parent set of a random variable Yk, k > i, or in a
set Pj such that uj succeeds Yi in the DS of the MID.

Example 4. We compute here the sets B5 and B4 associated with the MID in Figure 1. The set B5 = {3, 4}
sinceB5 = {Π6∪Π5∪P3∪P2}\{5, 6}, where Π6 = {4, 5}, Π5 = {3, 4}, P3 = {4, 6} and P2 = {5}. Furthermore
B4 = {3} since it can be noted that B4 = B5 \ {4}.

Proposition 1. The optimal decision associated to an MID yields expected utility Ū1(yB1
), where, for

i ∈ [n], Ūi(yBi) is defined as

Ūi(yBi
) =

{
ŪD
i (yBi

), if i ∈ D,
ŪV
i (yBi

), if i ∈ V

where, for i = n,

ŪD
n (yBn) = max

Yn

kmUm(yPm), ŪV
n (yBn) =

∫
Yn

kmUm(yPm)fn(yn | yΠn)dyn, (3)

and, for i ∈ [n− 1], if i ∈ J and supposing i ∈ Pl,

ŪD
i (yBi

) = max
Yi

(
hklUl(yPl

)Ūi+1(yBi+1
) + klUl(yPl

) + Ūi+1(yBi+1
)
)
, (4)

ŪV
i (yBi

) =

∫
Yi

(
hklUl(yPl

)Ūi+1(yBi+1
) + klUl(yPl

) + Ūi+1(yBi+1
)
)
fi(yi | yΠi

)dyi, (5)

whilst, if i 6∈ J,

ŪD
i (yBi

) = max
Yi

Ūi+1(yBi+1
), ŪV

i (yBi
) =

∫
Yi

Ūi+1(yBi+1
)fi(yi | yΠi

)dyi. (6)
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The proof of this theorem is in Appendix A.1. Equation (3) consists of a marginalization/maximization over
Yn since Yn is a parent of Um by construction.

We now arrange the conditional expected utilities in a vector as follows.

Definition 3. We define the expected utility vector Ūi, i ∈ [n], as

Ūi = (Ūi(yBi
))T

yBi
∈YBi

. (7)

2.3. Polynomial structure of expected utility

Generalizing the work in [18] and [21], we introduce a symbolic representation of both the probabilities
and the utilities of an MID. For i ∈ V, j ∈ [m], y ∈ Yi, π ∈ YΠi and σ ∈ YPj , we define the parameters

piyπ = P (Yi = y | YΠ(i) = π), ψjσ = Uj(σ).

The first index of piyπ and ψjσ refers to the random variable and utility vertex respectively. The second
index of piyπ relates to the state of the variable, whilst the third one to the parents’ instantiation. The
second index of ψjσ corresponds to the instantiation of the arguments of the utility function Uj . We take
the indices within π and σ to be ordered from left to right in decreasing order, so that e.g. p6101 for the
diagram of Figure 1 corresponds to P (Y6 = 1 | Y5 = 0, Y4 = 1). The probability and utility vectors are
given by pi = (piyπ)T

y∈Yi,π∈YΠi
and ψj = (ψjπ)T

π∈YPj
, respectively. Parameters are listed within pi and ψj

according to a reverse lexicographic order over their indices [see e.g. 38].

Example 5. The symbolic parametrization of the MID in Figure 1 is summarized in Table 1. This is
completed by the definition of the criterion weights ki and h as in equations (1)-(2). In Appendix B we
report the symbolic definition of this MID using our MapleTH code.

Because probabilities sum to one, for each i and π one of the parameters piyπ can be written as one minus
the sum of the others. Another constraint is induced by equation (2) on the criterion weights. However
in the following, unless otherwise indicated, we suppose that all the parameters are unconstrained. Any
unmodelled constraint can be added subsequently when investigating the geometric features of the optimal
decision.

In the above parametrization, Ūi consists of a vector of polynomials with unknown quantities pijπ, ψjσ,
ki and h, whose characteristics are specified in Theorem 1.

Theorem 1. For an MID G and i ∈ [n], let ci =
∏
j∈Bi

rj, Ul be the first utility node following Yi in the
DS of G and, for l ≤ j ≤ m, wij be the number of random nodes between Yi and Uj (including Yi) in the
DS of G. Then Ūi is a vector of dimension ci whose entries are polynomials including, for a = l, . . . ,m and
b = l, . . . , a, riba monomials miba of degree diba, where

riba =

(
a− l
b− l

) ja∏
j=i

rj , diba = (b− l) + 2(b− l + 1) + wia, miba = hb−lm′iba, (8)

with m′iba a square-free monomial of degree 2(b− l + 1) + wia.

The proof of Theorem 1 is given in Appendix A.2. We say that equation (8) defines the structure of the
polynomials of the conditional expected utility Ūi. Specifically, the structure of a polynomial consists of its
number of monomials and the number of monomials having a certain degree. In Section 5 we show that
the entries of the conditional expected utility vectors of several different MIDs share the same polynomial
structure. Since additive utility factorizations can be seen as special cases of multiplicative ones by setting
h = 0, it follows that the conditional expected utility polynomials of an additive ID are square-free.

Corollary 1. In the notation of Theorem 1, the conditional expected utility Ūi, i ∈ [n], of an additive ID
G is a vector of dimension ci whose entries are square free polynomials of degree wim + 2 including, for
a = l, . . . ,m, ria monomials of degree wia + 2, where ria =

∏ja
j=i rj.
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p2 = (p211, p201, p210, p200)T

p3 = (p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000)T

p5 = (p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000)T

p6 = (p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000)T

ψ1 = (ψ11, ψ10)T, ψ2 = (ψ21, ψ20)T, ψ3 = (ψ311, ψ301, ψ310, ψ300)T

Table 1: Parameterization associated to the MID in Figure 1.

Proof. This follows directly from Theorem 1, since an additive factorization can be derived by setting
nI − 1, the exponent of h in Equation (1), equal to zero. This corresponds to fixing b = l in Theorem 1.

Example 6. For the MID of Figure 1 the polynomial structure of the entries of Ū5 can be constructed as
follows. From B5 = {3, 4} it follows that c5 = 4. Thus, Ū5 is a column vector of dimension 4. From U2 ≡ Ul
it follows that

r522 = 2, r523 = 4, r533 = 4, d522 = 3, d523 = 4, d533 = 7,

using the fact that w52 = 1 and w53 = 2. All monomials are square-free because the index b of riba in
Theorem 1 is either equal to l or l + 1. Each entry of Ū5 is a square free polynomial of degree seven
consisting of ten monomials: two of degree 3, four of degree 4 and four of degree 7. The entry Ū5(y3, y4)
with y3, y4 = 0, 1, of this conditional expected utility can be written as Ū5(y3, y4) = Ū l5(y3, y4) + Ūml5 (y3, y4)
where

Ū l5(y3, y4) = k2(ψ21p51y4y3
+ ψ20p50y4y3

) +
∑
y5=0,1

k3(ψ31y4
p61y5y4

+ ψ30y4
p60y5y4

)p5y5y4y3
, (9)

Ūml5 (y3, y4) = hk2k3((ψ31y4
p610y4

+ ψ30y4
p600y4

)ψ20p50y4y3
+ (ψ31y4

p611y4
+ ψ30y4

p601y4
)ψ21p51y4y3

), (10)

An algorithm for computing the polynomials in Theorem 1 is presented in Section 3.
So far we have assumed that the DM has not provided any numerical specification of the uncertainties

and the values involved in the decision problem. This occurs for example if the system is defined through
sample distributions of data from different experiments, where probabilities are only known with uncertainty.
But in practice sometimes the DM is able to elicit the numerical values of some parameters. These can then
be simply substituted to the corresponding probability and utility parameters in the system of polynomials
constructed in Theorem 1 employing e.g. a computer algebra system. In such a case the degree of the
polynomials and possibly their number of monomials can decrease dramatically. We present in Section 3 a
plausible numerical specification of the probabilities associated with the MID in Figure 1.

3. The symbolic algorithm

Computing the polynomials in Theorem 1 is a well known NP-hard problem [39]. Here we develop an
algorithm based on three operations which exploit the polynomial structure of expected utilities and use
only linear algebra calculus. The MapleTH code for their implementation is in Appendix B6. Differently
from other probabilistic symbolic algorithms [e.g. 13, that computes every possible monomial associated to
a model’s parametrization and then drops the unnecessary ones], our algorithm sequentially computes only
monomials that are part of the MID’s expected utilities.

6Note that some of the inputs in our MapleTH functions are different from the ones reported here. Such inputs are chosen
to illustrate the procedure as concisely as possible.
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Algorithm 3.1: EUDuplicationPsi(Ūi+1,ψj , Bi+1, Pj , r, ci+1, bj)

for k ← i downto 1

do



if k ∈ {{Bi+1 ∪ Pj} \ {Bi+1 ∩ Pj}}

then



sk =
∏j
l=k+1 1{l∈{Bi+1∪Pj}}(rl)

if k ∈ Bi+1

then

{
ψj =

(
ψsk,1j · · · ψsk,1j︸ ︷︷ ︸

rk times

· · · ψ
sk,cj/sk
j · · · ψ

sk,cj/sk
j︸ ︷︷ ︸

rk times

)
else if k ∈ Pj

then

{
Ūi+1 =

(
Ū sk,1
i+1 · · · Ū sk,1

i+1︸ ︷︷ ︸
rk times

· · · Ū
sk,ci/sk
i+1 · · · Ū

sk,ci/sk
i+1︸ ︷︷ ︸

rk times

)
return (Ūi+1,ψj)

3.1. A new algebra for MIDs

We need to introduce two simple procedures, EUDuplicationPsi and EUDuplicationP, entailing a change
of dimension of probability, utility and conditional expected utility vectors. These are required in order to
multiply parameters associated to compatible instantiations only. For conciseness, we detail here only
EUDuplicationPsi and refer to Appendix B for the code of both procedures.

The steps of EUDuplicationPsi are shown in Algorithm 3.1. For a vector ψ, let ψs,t be the subvector
of ψ including the entries from s · (t − 1) + 1 to s · t, for suitable s, t ∈ Z≥1. For i ∈ [n − 1] and j ∈ [m]
the procedure takes 7 elements as input: a conditional expected utility Ūi+1; the utility vector associated
to the utility node preceding Yi+1, ψj ; their dimensions, ci+1 and bj ; the sets Bi+1 and Pj ; the dimensions
of all the probability vectors of the MID r = (r1, . . . , rn)T.

For all indices smaller than i and not in Bi+1 ∩ Pj , Algorithm 3.1 computes a positive integer number
sk equal to the product of the dimension of the probability vectors with index bigger than k belonging
to Bi+1 ∪ Pj . The index k is either in Bi+1 or in Pj . When k ∈ Bi+1, each block of sk rows of ψj is
consecutively duplicated rk − 1 times.

The first of the three operations we introduce is EUMultiSum, which computes a weighted multilinear sum
between a utility vector and a conditional expected utility. In the algorithm of Section 3.3, an EUMultiSum
operation is associated to every utility vertex of the MID. Let P = {P1, . . . , Pm}.

Definition 4 (EUMultiSum). For i ∈ [n], let Ūi+1 be a conditional expected utility vector and ψj the
utility vector of node Uj , j ∈ [m], succeeding Yi in the DS. The EUMultiSum, +EU , between Ūi+1 and ψj
is defined as

1. Ū ′i+1,ψ
′
j ←−EUDuplicationPsi(Ūi+1, ψj , Bi+1, Pj , r, ci+1, bj);

2. h · kj · (Ū ′i+1 ◦ ψ′j) + kj · ψ′j + Ū ′i+1, where ◦ and · denote respectively the Schur (or element by
element) and the scalar products.

The second operation, EUMarginalization is applied to any random vertex of the MID.

Definition 5 (EUMarginalization). For i ∈ V, let Ūi+1 be a conditional expected utility vector and pi
a probability vector. The EUMarginalization, ΣEU , between Ūi+1 and pi is defined as

1. Ū ′i+1,p
′
i ←−EUDuplicationP(Ūi+1, pi, Πi, P , r, Bi+1, J);
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k1 = 0.2, h = 2.6, ψ311 = 0, p5101 = 0.9
k2 = 0.3, ψ20 = 1, ψ300 = 1, p5110 = 0.2, p6100 = 0.3
k3 = 0.5, ψ21 = 0, ψ310 = 0.4, p5100 = 0.6

Table 2: Numerical specification of a subset of the unknown variables associated to the MID of Figure 1.

2. I ′i × (Ū ′i+1 ◦ p′i), where × is the standard matrix product and I ′i is a matrix with ci+1si/ri ∈ Z≥1
7

rows and ci+1si columns defined as

I ′i =
( (

1 0 · · · 0
) (

0 1 · · · 0
)
· · ·

(
0 0 · · · 1

) )T
where 1 and 0 denote row vectors of dimension ri with all entries equal to one and zero respectively
and si =

∏
k∈{Πi\Bi+1} rk.

The last operation is a maximization of Ūi+1 over the space Yi, i ∈ D, for any element of YΠ(i).

Definition 6 (EUMaximization). For i ∈ D, let Ūi+1 be a conditional expected utility vector. An
EUMaximization over Yi, maxEUYi

, is defined by the following steps:

1. set y∗i (π) = arg maxYi
Ūi+1, for π ∈ YΠ(i);

2. I∗i × Ūi+1, where I∗i is a matrix with ci+1/ri ∈ Z≥1 rows and ci+1 columns defined as

I∗i =
( (

ey∗i (1) 0 · · · 0
) (

0 ey∗i (2) · · · 0
)
· · ·

(
0 0 · · · ey∗i (ci+1/ri)

) )T
where ey∗i (π), π ∈ [ci+1/ri], is a row vector of dimension ri whose entries are all zero but the one in
position y∗i (π), which is equal to one.

The first item in Definition 6 is critical for EUMaximization. It is not the scope of this paper to present a
methodology to identify such expected utility maximizing decisions. We simply assume that these can be
found. However we note that, within our symbolic approach, polynomial optimization and semi-algebraic
methods can be used to determine such optimal decisions [40]. Once these are identified, EUMaximization
drops the polynomials associated with the non optimal course of action. Alternatively, we can think of the
evaluation of the MID as the computation of the expected utility polynomial of a specific policy. This is
for example all that can be done whenever decision rules have been committed to a priori. In this case,
EUMaximization deletes the decisions that are not adopted within the given policy. The MapleTH function
EUMaximization in Appendix B calls a subfunction Maximize, which randomly picks optimal decisions.

Example 7. To illustrate the working of EUMaximization assume for the MID in Figure 1 that a DM has
provided the specifications summarized in Table 2 together with the qualitative beliefs p5111 = p6011 and
p6010 = p6001. These in general cannot be implemented in a non-symbolic approach to decision making
problems. By plugging in these numerical values and constraints into equations (9) and (10), the DM
would choose to evacuate for combination of parameters denoted by the coloured regions of Figure 2. The
geometric structure of these regions often gives insights about the maximization process. Assuming Y3 = 1,
if the DM believes that ψ301, p5111, p6001 ∈ [0, 1/2], then Figure 2a shows that evacuation will be the optimal
choice. Conversely, when Y3 = 0, such a range for the indeterminates would not uniquely identify an optimal
course of action. We can however envisage the algorithm to work over the two sub-regions of Figure 2b
separately. The algorithm would then output different optimal courses of action for different combinations
of the unknown parameters. We plan to develop a systematic methodology to address these issues in later
work.

7This is so since ci+1 = riai+1, for an ai+1 ∈ Z≥1.
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(a) Optimal regions in the case Y3 = 1. (b) Optimal regions in the case Y3 = 0.

Figure 2: Regions determining the combinations of parameters leading to an optimal decision of evacuating
(coloured regions) and not evacuating (white regions) for the evaluation of the diagram in Figure 1 given
the partial numeric specification in Table 2.

3.2. Polynomial interpretation of the operations

Each of the above three operations changes the conditional expected utility vectors and their entries in
a specific way formalized in Proposition 2.

Proposition 2. For i ∈ [n−1], let Ūi+1 be a conditional expected utility vector whose entries have the
polynomial structure of equation (8) and let Uj be the vertex preceding Yi+1 in the DS. Then in the notation
of Theorem 1

� maxEUYi
Ūi+1 has dimension ci+1/ri ∈ Z≥1 and its entries do not change polynomial structure;

� Ūi+1 +EU ψj has dimension ci+1s
U
i , where sUi =

∏
k∈{Pj\Bi+1} rk, and each of its entries consists of

r(i+1)ba monomials of degree d(i+1)ba, r(i+1)ba monomials of degree d(i+1)ba + 3 and one monomial of
degree 2;

� Ūi+1ΣEUpi has dimension ci+1si/ri, where si =
∏
k∈{Πi\Bi+1} rk, and each of its entries consists of

rir(i+1)ba monomials of degree d(i+1)ba + 1.

This result directly follows from the definition of the above three operations whose effect on the polynomials
associated to the diagram in Figure 1 is illustrated below.

3.3. A fast algorithm for MIDs’ evaluations

The algorithm for the evaluation of MIDs is given in Algorithm 3.2. This receives as input the DS
of the MID, S say, the sets J, V and D, and the vectors p = (p1, . . . ,pn)T, ψ = (ψ1, . . . ,ψm)T and
k = (k1, . . . , km, h)T. This corresponds to a symbolic version of the backward induction procedure over
the elements of the DS explicated in Proposition 1. At each inductive step, a utility vertex is considered
together with the variable that precedes it in the DS.

In line (1) the conditional expected utility Ūn+1 is initialized to (0). Lines (2) and (3) index a reverse
loop over the indices of both the variables and the utility vertices respectively (starting from n and m). If
the current index corresponds to a variable preceding a utility vertex in the DS (line 4), then the algorithm
jumps to lines (5)-(7). Otherwise it jumps to lines (8)-(10). In the former case, the algorithm computes,
depending on whether or not the variable is controlled (line 5), either an EUMaximization over Yk (line
6) or an EUMarginalization (line 7) with pk, jointly to an EUMultiSum with ψl. In the other case,
EUMaximization and EUMarginalization operations are performed without EUMultiSum. The MapleTH

function SymbolicExpectedUtility in Appendix B is an implementation of Algorithm 3.2.
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Algorithm 3.2: SymbolicExpectedUtility(J, S,p,ψ,k,V,D)

Ūn+1 = (0) (1)

for k ← n downto 1 (2)

do



for l← m downto 1 (3)

do



if k = jl (4)

then


if k ∈ D (5)

then
{
Ūk = maxEUYk

(Ūk+1 +EU ψl) (6)

else
{
Ūk = pk ΣEU (Ūk+1 +EU ψl) (7)

else if k ∈ D (8)

then
{
Ūk = maxEUYk

Ūk+1 (9)

else
{
Ūk = pk ΣEUYk

Ūk+1 (10)

return (Ū1) (11)

Example 8. For the MID in Figure 1 the SymbolicExpectedUtility function first considers the random
vertex Y6 which precedes the utility vertex U3 and therefore first calls the EUMultiSum function. For this
MID

P3 = {4, 6}, sU6 = 4, Π6 = {4, 5}, s6 = 2.

Thus, first Ū7 is replicated four times (since sU6 = 4) through the function EUDuplicationPsi and

Ū7 +EU ψ3 =
(
k3ψ11 k3ψ01 k3ψ10 k3ψ00

)T
. (11)

Then, the right hand side (rhs) of equation (11) is duplicated via EUDuplicationP (since s6 = 2) and

Ū6 = I ′6 × Ū t
6 ◦ p6 = (k3ψ31jp61ij + k3ψ30jp60ij)

T
i,j=0,1 , (12)

where Ū t
6 is equal to the duplicated version of the right hand side of equation (11). The vector Ū6 has

dimension four and its entries include two monomials of degree 3. Since the random vertex Y5 is the unique
parent of U2 the SymbolicExpectedUtility function follows the same steps as before. EUMultiSum is first
called which gives as output

Ū t
5 , Ū6 +EU ψ2 = h · k2 · Ū6 ◦

(
ψ21 ψ20 ψ21 ψ20

)T
+ Ū6 + k2 ·

(
ψ21 ψ20 ψ21 ψ20

)T
(13)

The polynomial Ū t
6 is the sum of two monomials of degree 3 inherited from Ū6, of two monomials of degree 6

(from the first term on the rhs of equation (13)) and one monomial of degree 2 (from the last term on the rhs
of equation (13)). Its dimension is equal to four since c6 = 4 and sU (5) = 0 (that is, no EUDuplicationPsi is
required). Thus, EUMultiSum manipulates the conditional expected utility vector according to Proposition 2.

Then the EUMarginalization function computes Ū5 = I ′5 ×
((

Ū t
5 Ū t

5

)T ◦ p5

)
. Each entry of Ū5 has

twice the number of monomials of the entries of Ū t
5 and each monomial of Ū5 has degree d+1, where d is the

degree of each monomial of Ū t
5 (whose entries are homogeneous polynomials). These vectors also have the

same dimension since s5 = 2 and r5 = 2. Thus, this EUMarginalization changes the conditional expected
utility vector according to Proposition 2. The polynomial in a generic entry of Ū5 was shown in equations
(9)-(10).

The algorithm then considers the controlled variable Y4. Since 4 6∈ J, Y4 is not the argument of a utility
function with the highest index and therefore the algorithm calls the EUMaximization function. Suppose
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the optimal decisions are identified to be Y4 = 1 when Y3 = 1 and Y4 = 0 when Y3 = 0. The evaluation
would then suggest that the population is evacuated whenever a high level of deposition is observed and
that people are not evacuated if the deposition is low. Thus, the function returns Ū4 = I∗4 × Ū5, where I∗4 is
a 2× 4 matrix with ones in positions (1, 1) and (2, 4) and zeros otherwise. Proposition 2 is respected since
the entries of Ū4 have the same polynomial structure of those of Ū5 and Ū4 has dimension 2.

The SymbolicExpectedUtility function then applies in sequence the operations defined in Section 3.1.
For the MID in Figure 1 this sequentially computes the following quantities:

Ū t
3 = h · k1 · Ū4 ◦ψ1 + Ū4 + k1 ·ψ1, Ū3 = I

′

3 ×
((

Ū t
3 Ū t

3 Ū t
3 Ū t

3

)T ◦ p3

)
,

Ū2 = I
′

2 ×
(
Ū3 ◦ p2

)
, Ū1 =

(
1 0

)
× Ū2,

assuming the optimal initial decision is Y1 = 1.
Interestingly, using the new algebra we introduced in Section 3.1, the evaluation of an MID can be

written as a simple algebraic expression. For example, the evaluation of the MID in Figure 1 can be written
as

Ū1 = maxEUY1

(
p2 ΣEU

(
p3 ΣEU

(
ψ1 +EU maxEUY4

(
p5 ΣEU (ψ2 +EU (p6 ΣEUψ3))

))))

and this polynomial can be evaluated with SymbolicExpectedUtility.

4. Modifying the topology of the MID

Algorithm 3.2 works under the assumption that the MID is in extensive form. In practice it has been
recognized that typically a DM will build an MID so that variables and decisions are ordered in the way
they actually happen and this might not correspond to the order in which variables are observed. Thus,
MIDs often are not in extensive form. But it is always possible to transform an MID into one in extensive
form, although this might entail the loss of conditional independence structure. In Section 4.1 we consider
two of the most common operations that can do this: edge reversal and barren node elimination.

In practice DMs often also include in the MID variables that subsequently turn out not to be strictly
necessary for identifying an optimal policy. DMs are able to provide probabilistic judgements for conditional
probability tables associated to an MID with variables describing the way they understand the unfolding of
events. However their understanding usually includes variables that are redundant for the evaluation of the
MID. In Section 4.2 we describe the polynomial interpretation of a criterion introduced in [37] and [41] to
identify a subgraph of the original MID whose associated optimal decision rule is the same as the one of the
original MID.

4.1. Rules to transform an MID in extensive form

The two operations of arc reversal and barren node removal are often used in combination by first
reversing the direction of some edges of the MID and then removing vertices that, consequently to the
reversals, becomes barren, i.e. have no children [7].

Example 9. The MID in Figure 3a is a non-extensive variant of the MID in Figure 1 not including the edge
(Y2, Y4). The MID in Figure 3b is obtained by the reversal of the edge (Y2, Y3) and the MID in Figure 3c is
the network in extensive form obtained by deleting the barren node Y2.

Let Yi be a father of Yj and Yj a son of Yi if the edge set of the MID includes (Yi, Yj) and there is no
other path starting at Yi and terminating at Yj that connects them.

Proposition 3. The evaluation of an MID G provides the same optimal policy as the MID G′ obtained by
implementing any of the following manipulations:
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U1 Y3
oo

��

  

Y2
oo Y1

~~

oohh

Y4

��~~   
U2 Y5

//oo Y6
// U3

(a) A variant of the MID of Figure 1
without (Y2, Y4)

U1 Y3
oo

��

  

// Y2 Y1

~~

oohh

Y4

��~~   
U2 Y5

//oo Y6
// U3

(b) MID resulting from the reversal
of the arc (Y2, Y3) from the MID of
Figure 3a.

U1 Y3
oo

��

  

Y1

~~

hh

Y4

��~~   
U2 Y5

//oo Y6
// U3

(c) MID resulting from the removal
of the barren node Y2 from the MID
of Figure 3b and from the applica-
tion of the sufficiency theorem to the
MID of Figure 1

Figure 3: Example of a sequence of manipulations of a non extensive form MID.

� Arc Reversal: for i, j ∈ V, if Yi is the father of Yj in G reverse the arc (Yi, Yj) into (Yj , Yi) and
change the edge set as

E(G′) = E(G) \
{

(Yi, Yj)
}
∪
{

(Yj , Yi)
}
∪
{

(Yk, Yi),∀ k ∈ {Πj \ i}
}
∪
{

(Yk, Yj),∀ k ∈ Πi

}
,

� Barren Node Removal: for i ∈ V, remove the vertex Yi if this has no children and transform the
diagram according to the following rules:

V (G′) = V (G) \ {Yi}, E(G′) = E(G) \
{

(Yk, Yi) : for all k ∈ Πi

}
.

Arc reversal and barren node removal change the symbolic parametrization of the MID according to
Proposition 4. After an arc reversal, the diagram G′ includes the edge (Yj , Yi) where i < j. Algorithm 3.2,
and similarly the SymbolicExpectedUtility MapleTH function, works through a backward induction over
the indices of the variables and, by construction, always either marginalize or maximize a vertex before its
parents. It cannot therefore be applied straightforwardly to the diagram G′. We define here the adjusted
Algorithm 3.2 which takes into account the reversal of an arc by, roughly speaking, switching the order
in which the variables associated to the reversed edge are marginalized during the procedure. Specifically,
in the adjusted Algorithm 3.2 a marginalization operation is performed over Yi at the n − j + 1 backward
inductive step, whilst for Yj this happens at the n − i + 1 step. Therefore Ū ′j is the conditional expected

utility associated to G′ after the marginalization of Yi and Ū ′i is the conditional expected utility after
the marginalization of Yj . Note that under this operation the sets J and Bi, i ∈ [n], might change: we
respectively call J′ and B′i the ones associated to G′.

Proposition 4. Under the conditions of Proposition 3, let p′iyπ and Π′i be a parameter and a parent set
associated to the diagram G′ resulting from arc reversal and barren node removal:

� for i, j ∈ V, if Π′i and Π′j are the parent sets of Yi and Yj after the reversal of the edge (Yi, Yj), then
the polynomial associated to G′ is

p′iyiπ′i =
pjyjπj

piyiπi∑
yi∈Yi

pjyjπjpiyiπi

, p′jyjπ′j =
∑
yi∈Yi

pjyjπj
piyiπi

,

for πi ∈ YΠi
, πj ∈ YΠj

, π′i ∈ YΠ′i
,π′j ∈ YΠ′j

, yi ∈ Yi and yj ∈ Yj;

� for i, j ∈ V, assume that after the reversal of the edges (Yi, Yj), for every children Yj of Yi, Yi is now
a barren node and let Πi

j = Πj \ {i}. Then
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– in the new parametrization p′i is deleted;

– in the original parametrization pi is deleted and pjyjπi
j0 = · · · = pjyjπi

jri−1, for yj ∈ Yj, πij ∈ YΠi
j
,

where the fourth index of pjyjπi
ji

, i ∈ [ri−1], refers to the instantiation of Yi.

The proof of this proposition is reported in Appendix A.3.

Example 10. Reversing the edge (Y2, Y3) in the MID of Figure 3a, by Proposition 4 we obtain:

p′3y3y1
= p3y31y1p21y1 + p3y30y1p20y1 , p′2y2y3y1

=
p3y3y2y1

p2y2y1

p3y31y1p21y1 + p3y30y1p20y1

.

for y1, y2, y3 ∈ {0, 1}. Proposition 4 also specifies that the deletion of the vertex Y2 in Figure 3b simply
corresponds to canceling the vectors p2 and p′2 and setting p3y31y1

equal to p3y30y1
for any y1, y3 ∈ {0, 1}.

A consequence of Proposition 4 is that manipulations of the diagram change the polynomial structure
of the conditional expected utilities under the new parametrization p′. We assume here for simplicity that
i 6∈ Pj , j ∈ [m]. There is no loss of generality in this assumptions since arguments of utility functions cannot
be deleted from the diagram without changing the result of the evaluation of the MID.

Lemma 1. Under the assumptions of Proposition 4 and in the notation of Theorem 1 the following holds:

1. let x be the smallest index in Πi ∪ Πj, reverse of the arc (Yi, Yj) and evaluate the MID using the
adjusted Algorithm 3.2:

(a) if j 6∈ J, then

i. the entries of Ū ′j have rirjba/rj ∈ Z≥1
8 monomials of degree djba; for i < k < j, the entries

of Ū ′k can have different polynomial structure from the ones of Ūk according to Proposition 2;
ii. the vectors Ū ′k, x < k ≤ j, have dimension c′k =

∏
s∈{B′k\{k,...,n}}

rs where B′k = Bk ∪ {l :

(Yl, Yi) or (Yl, Yj) ∈ E(G′)};
(b) if j ∈ J ∩ J′, then

i. the entries of Ū ′j have rir(j+1)ba monomials of degree d(j+1)ba + 1 and, for i < k < j,

the entries of Ū ′k have a different polynomial structure from the ones of Ūk according to
Proposition 2;

ii. for x < k < j, Ū ′k has dimension c′′k =
∏
s∈{B′′k \{k,...,n}}

rs, with B′′k = B′k ∪ Pjj ;

(c) if j 6∈ J′, suppose j ∈ Pt and s is the second highest index in Pt, then

i. for s < k ≤ j, the entries of Ū ′k have the polynomial structure specified in point 1.(b) and
dimension c′′k;

ii. i < k ≤ s, the entries of Ū ′k have the polynomial structure specified in point 1.(a) and
dimension c′k.

iii. for x < k ≤ i, Ū ′k has dimension c′k and the polynomial structure of its entries does not
change;

2. let Yz be the child of Yi in G with the highest index and remove the barren node Yi in G′. Then

(a) for i < k ≤ z, Ū ′k has c′k/ri entries whose polynomial structure does not change;
(b) for k ≤ i, Ū ′k has dimension c′k and its entries have rkba/ri monomials of degree dkba − 1.

The proof of this lemma is provided in Appendix A.4.

Example 11. After the reversal of the edge (Y2, Y3) from the network in Figure 3a, the polynomial structure
of the conditional expected utilities associated to the original and to the manipulated diagrams is reported in
Table 3 by Ūi and Ū r

i respectively. Since Y3 is the only argument of U1 we are in Item (1b) of Lemma 1. The
conditional expected utility Ū r

3 is obtained running the adjusted Algorithm 3.2 for the network of Figure 3b

8This is so since rjba = r′rj for some r′ ∈ Z≥1.
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Ū2 ≡ Ū1 Ū3 Ū4 Ū r
3 Ū r

2 ≡ Ū r
1 Ū b

3 ≡ Ū b
1

# d. s.f. # d. s.f. # d. s.f. # d. s.f. # d. s.f. # d. s.f.

4 4 yes 2 3 yes 2 3 yes 4 4 yes 4 4 yes 2 3 yes

8 5 yes 4 4 yes 4 4 yes 8 5 yes 8 5 yes 4 4 yes

16 6 yes 8 5 yes 4 7 yes 8 8 yes 16 6 yes 8 5 yes

8 8 yes 4 7 yes 8 8 yes 4 7 yes

32 9 yes 16 8 yes 32 9 yes 16 8 yes

16 12 no 8 11 no 16 12 no 8 11 no

Table 3: Polynomial structure of the conditional expected utilities for the original MID, Ūj , for the one
after the reversal of the arc (Y2, Y3), Ū r

j and for the one after the removal of the barren node Y2, Ū b
j . The

symbol # corresponds to the number of monomials, d. to the degree and s.f. whether or not they are square
free.

after the marginalization of Y2. This can be noted to change according to Lemma 1, by comparing its
structure to the one of Ū4. Furthermore, Ū r

2 and Ū r
1 have the same polynomial structures as Ū2 and Ū1.

The last 3 columns of the Table 3 show the polynomial structure of the conditional expected utilities Ū b
3

associated to the MID in Figure 3c which does not include Y2. According to Lemma 1, Ū b
3 has the same

polynomial structure of Ū3 and for each row of the table, the number of monomials with degree d in Ū b
1 is

half the number of monomials of Ū1 having degree d+ 1.

4.2. The sufficiency principle

After an MID has been transformed in extensive form according to the rules in Section 4.1, further
manipulations can be applied to simplify its evaluation, such as the sufficiency principle, which mirrors the
concept of sufficiency in statistics and is based on the concept of d-separation for DAG [42]. In order to
state the d-separation criterion, we need to introduce a few concepts of graph theory.

The moralized graph GM of the MID G is a graph with the same vertex set of G. Its directed edges
include the directed edges of G and an undirected edge between any two vertices which are not joined by
an edge in G but which are parents of the same child in Yi, i ∈ V. The skeleton of GM , S(GM ) is a graph
with the same vertex set of GM and an undirected edge between any two vertices (Yi, Yj) ∈ V (GM ) if and
only if there is a directed or undirected edge between Yi and Yj in GM . For any three disjoint subvectors
YA,YB ,YC ∈ V (GM ), YA is d-separated from YC by YB in GM if and only if any path from any vertex
Ya ∈ YA to any vertex Yc ∈ YC passes through a vertex Yb ∈ YB in S(GM ).

Proposition 5. Let j ∈ D and i ∈ V ∩ Πj. Then if Yi is d-separated from {Uk, for k s.t. i ≤ jk} by
{Yk : k ∈ {Πj \ i}} ∪ {Yk : k ∈ D} in the MID G, then the evaluation of the graph G′ provides the same
optimal policy as G, where G′ is such that V (G′) = V (G) \ {Yi} and, letting Chi be the index set of the
children of Yi,

E(G′) = E(G) \ {(Yi, Yj), ∀ j ∈ Chi} \ {(Yk, Yi), ∀ k ∈ Πi} ∪ {(Yk, Yj), ∀ j ∈ Chi, k ∈ Πi}.

The sufficiency principle can be stated for a vector of variables [e.g. 37, 41]. However, we can simply apply
the criterion in Proposition 5 for each variable of the vector and obtain the same result.

Example 12. The MID in Figure 1 is already moralized. Any path from Y2 into Ui, i ∈ [3], goes through
both Y3 and Y4. By Proposition 5, we can delete Y2 and the modified diagram is given in Figure 3c.
Exceptionally, this is equal to the diagram resulting from the reversal of the arc (Y2, Y3) and the deletion
of Y2.
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We now formalize how the sufficiency principle changes the symbolic parametrization of the MID.

Proposition 6. Let i, j, k ∈ V and G be an MID. Let Yi be a vertex removed after the application of the
sufficiency principle to G and G′ the obtained MID. Assume Yi to be a father of Yk and a parent (not a
father) of Yj in G. Let Π′k be the parent set of a vertex Yk in G′ and for l ∈ [n]

Π>i
k = Π(k) \ [i−1], Πk,l

i = Πl ∩Πk ∩Πi.

Then the reparametrization of the MID with graph G′ is

p′kykπ′k
=
∑
yi∈Yi

pkykπk
piyiπi

, p′jyjπ′j =
∑
yj∈Yj

pjyjπj

∏
l∈Π>i

j

∑
y

Π
j,l
i

∈Y
Π
j,l
i

plylπl
piyiπi∑

yi∈Yi

∏
l∈Π>i

j

∑
y

Π
j,l
i

∈Y
Π
j,l
i

plylπl
piyiπi

The proof of this proposition is provided in Appendix A.5. Again, this new parametrization p′ implies a
change in the conditional expected utility vectors.

Lemma 2. Assume the vertex Yi is removed using the sufficiency principle and that Yj is the child of Yi
with the highest index. Under the notation of Theorem 1 the conditional expected utility vectors in G′ are
such that

1. for k < i, the entries of Ū ′k have rkba/ri monomials of degree dkba − 1, whilst for k > i their structure
does not change.

2. for k ≤ j, Ūk has now dimension
∏
s∈B′k

rs, where B′k = {Bk ∪ Πi \ {k, . . . , n}}, whilst for k > j its

dimension does not change.

Proof. Item 1 of Corollary 2 is a straightforward consequence of Proposition 2, since the deletion of the
vertex Yi entails one less EUMarginalization during Algorithm 3.2. Item 2 of Corollary 2 follows from the
fact that the sets Bi and B′i only affect the dimension of the conditional expected utility vectors.

Since the application of the sufficiency principle to the diagram of Figure 3a provides the same output
network as the one obtained from the reversal of the edge (Y2, Y3) and the removal of Y2, an illustration of
these results can be found in Table 3.

5. The lattice of equivalent MIDs

Theorem 1 specifies the polynomial structure of the expected utility associated to any MID at any stage
of its evaluation. However, as we show in this section, there are many MIDs whose conditional expected
utilities share the same polynomial structure. Such MIDs are called equivalent.

5.1. Equivalence between MIDs

Definition 7. Two MIDs in extensive form are equivalent if, under our parametrization, the following
conditions hold:

1. they have the same vertices with the same labelling;

2. they imply the same total order over {Yi : i ∈ D};
3. they have the same sets Pj , j ∈ [m];

4. they imply the same partial order over {Y1, . . . , Yn}

Points 1-3 of Definition 7 specify that the decision problems associated to equivalent MIDs can be
modelled by MIDs with the same vertex sets, more specifically that there is a one-to-one mapping between
random variables and decision variables (point 1), that the order in which decisions are committed to
is equal (point 2) and that the utility functions have the same arguments (point 3). Point 4 implies a
simplification which does not limit generality. This is imposed because different partial orders would require a
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// Y2
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// Y3
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Y4
//

  

Y5
//

OO

Y6

~~
U1 U3

(a) Minimal MID equivalent to one in Figure 1.

U2

Y1

$$
//

??

"" ��
Y2

�� $$ ��
// Y3

��

�� ��
// Y4

��
//

  

Y5
//

OO

Y6

~~
U1 U3

(b) Maximal MID equivalent to the on Figure 1.

Figure 4: Two MIDs in the same equivalence class of the diagram in Figure 1

completely different parameter set. Note however that different partial orders describing the same conditional
independence structure are associated to the same probability density factorization and therefore lead to
evaluations with the same output [see e.g. 37] In particular the edge sets of equivalent MIDs can differ only
for edges into a non controlled variable. Specifically, equivalent MIDs differ at most for the probabilistic
structure they imply. This is formalized by Proposition 7.

Proposition 7. An MID G is equivalent to an MID G′ if and only if

� V (G) = V (G′);

� if (Yi, Uj) ∈ E(G), for j ∈ [m] and i ∈ [n], then (Yi, Uj) ∈ E(G′);

� if (Yi, Yj) ∈ E(G), for i ∈ V and j ∈ D, then (Yi, Yj) ∈ E(G′).

Example 13. The MIDs in Figures 1 and 4 are equivalent according to Proposition 7.

The equivalence between MIDs of Definition 7 is a proper equivalence relation and conditional expected
utilities of MIDs in the same equivalence class C share the same polynomial structure. This is stated in
Proposition 8 whose proof is immediate.

Proposition 8. All MIDs in the equivalence class C have conditional expected utility vectors with the same
polynomial structure.

Corollary 2. The only difference between MIDs in the equivalence class C might consist of a different
dimension for some of their conditional expected utility vectors.

Proof. This result follows directly from the characterization of equivalence in Proposition 7, since the
sets Bi, i ∈ [n], for two equivalent MIDs are the only objects that can differ and these can only affect the
dimension of the conditional expected utility vectors.

The different dimensions of conditional expected utility vectors of equivalent MIDs are actually con-
strained by a rather strong order over the elements of C. Specifically, this is a lattice as shown in Section 5.3.

5.2. An introduction to lattices

Let (L,≺) be a partially ordered set, where L denotes a set and ≺ is a reflexive, antisymmetric and
transitive binary relation. For an S ⊆ L, an element u ∈ L is said to be an upper bound of S if s ≺ u for
every s ∈ S. An upper bound u of S is said to be its least upper bound, or join, if u ≺ x for each upper
bound x of S. Similarly, an l ∈ L is said to be a lower bound of S, if l ≺ s for every s ∈ S. A lower bound l
of S is said to be a greatest lower bound, or meet, if x ≺ l for each lower bound x of S.

A lattice is a partially ordered set in which every two elements x, y ∈ L have a join and a meet, denoted
by x ∨ y and x ∧ y respectively.
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Example 14. Let L be a set and P(L) its power set. The operation of set inclusion gives the structure of
a lattice to P(L) for which the meet of any two sets in P(L) is their intersection and the join their union.

A lattice is said to be bounded if it has an element 1 called maximum and an element 0 called minimum
such that 0 ≺ x ≺ 1 for all x ∈ L. Note that x ∨ 1 = 1 and x ∧ 0 = 0 for any x ∈ L.

Example 15 (Example 14 continued). The minimum is the empty set and the maximum is the complete
set, L.

A lattice is said to be distributive if for any x, y, z ∈ L one of the following two equivalences hold

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (14)

i.e. if one operation distributes over the other.

Example 16 (Example 14 continued). The lattice over the elements of the power set is distributive
since both the union and intersection operations respect equation (14).

An element y of the lattice is said to cover another element x if x ≺ y and there is no other element z of
the lattice such that x ≺ z ≺ y. A lattice is called ranked if there is a rank function r : L→ N such that if
y covers x then r(y) = r(x) + 1. The value of the rank function of an element x ∈ L is called the rank of x.

Example 17 (Example 14 continued). For x ∈ P(L) and any a ∈ L \ x, the set x ∪ {a} covers x. The
power set of L is a ranked lattice and a rank function is given by the number of elements of x ∈ L.

The elements x1, . . . , xn of L form a chain if x1 ≺ · · · ≺ xn. The length of the chain is equal to the
number of its elements (in this case n). A chain is maximal if xi covers xi−1, for i = 2, . . . , n. If for any
x, y ∈ L, such that x ≺ y, any maximal chain from x to y has the same length, then the lattice is said to
respect the Jordan-Dedeking chain condition.

Example 18 (Example 14 continued). The power set respects the Jordan-Dedeking chain condition
since for any two subsets x, y ∈ P(L), x ≺ y, a maximal chain from x to y consists to a sequential union of
an element in y \ x, where the order in which elements are added is irrelevant.

5.3. Lattice structure within an equivalence class

In this section the lattice structure of an equivalence class C of MIDs is studied.

Definition 8. We say that

1. An MID Gmin ∈ C is minimal when, for any i ∈ [n] and j ∈ V, (Yi, Yj) ∈ E(Gmin) if and only if
Yj covers Yi in the partial order over {Y1, . . . , Yn}. The number of edges in E(Gmin) is nmin.

2. An MID Gmax ∈ C is maximal if, for any i ∈ [n], (Yj , Yi) ∈ E(Gmax) for all j ∈ [i − 1]. The number
of edges in E(Gmax) terminating into random vertices is nmax.

The minimal MID can be thought of as the MID including the highest number of conditional independence
statements respecting the partial order over {Y1, . . . , Yn}. The maximal MID on the other hand can be seen
as a saturated model, implying no conditional independence statements. The minimal and maximal MIDs
are particularly important since all the other elements of C can be seen as extensions or simplifications of
the minimal and maximal MIDs respectively.

Example 19. Figures 4a and 4b show the minimal and the maximal MID respectively of the equivalence
class including the MID of Figure 1.

Proposition 9. The MIDs in C form a bounded distributive ranked lattice whose meet and join correspond
respectively to the intersection and the union of the edge sets. Its maximum is the maximal MID, whilst
its minimum is the minimal MID. The rank is determined by the difference between the number of edges
(Yj , Yi), j < i, i ∈ V, and nmin.
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Y1
// Y2

// Y3
// Y4

// U1

(a) Example of a minimal MID.

Y1
''// ''

Y2
''// Y3
// Y4

// U1

(b) Maximal MID in the same equivalence class of 5a.

Figure 5: Minimal and maximal MID of a simple equivalence class.

Gmax

(Y1, Y3), (Y1, Y4) (Y1, Y3), (Y2, Y4) (Y1, Y4), (Y2, Y4)

(Y1, Y3) (Y1, Y4) (Y2, Y4)

Gmin

Figure 6: Hasse diagram of the equivalence class comprising the MIDs in Figure 5. The vertices labelled
with edges correspond to the MID obtained by the union of those edges with the edge set of Gmin.

Proof. This result follows directly by observing that equivalent MIDs can be thought of as a power set
over the edge set of the diagrams.

The rank of Gmin and of Gmax are nmin and nmax =
∑
i∈V i−1, respectively and C has nC = 2nmax−nmin

elements. Although nC is usually very large, its elements can be ordered accordingly to a highly regular
lattice, as noted in Proposition 9, thus providing some computational advantages that we outline below.

Example 20. Consider for example the equivalence class C comprising the MID in Figure 1. It is easy to
deduce that for C, nmin = 4, nmax = 12. This equivalence class then consists of 256 MIDs. We can further
note that within this class there are

(
8
i

)
MIDs having nmin + i edges terminating into random vertices.

Analogously to lattices, we can now define the concept of a cover of one MID with respect to another.

Definition 9. Let G and G′ be two MIDs in C. We say that G′ covers G if for i ∈ V, j < i, the edge set
E(G) is equal to E(G′) ∪ {(Yj , Yi)} .

Example 21. Consider now the equivalence class comprising the minimal and maximal MIDs in Figure 5.
Since nmax − nmin = 3, this equivalence class has 8 different MIDs. The Hasse diagram of this lattice is
reported in Figure 6. This is a diagram whose vertices are the MIDs in the equivalence class and a line goes
upward from x to y whenever y covers x, for any vertices x and y.

Theorem 2 shows how the expected utility vectors of two MIDs in the same equivalence class differ if
one MID covers the other.

Theorem 2. Let G and G′ be two MIDs in C and let Ūk and Ū ′k, k ∈ [n], be conditional utility vectors for
G and G′ respectively. Assume that G′ covers G, that, for some i, j ∈ [n], E(G′) = E(G) ∪ {(Yj , Yi)} and
that S(GM ) 6= S(G′M ), i.e. the moralized versions of the MIDs have different skeletons. The dimension of
the conditional expected utility vectors Ū ′k is equal to ckrj for k = i and for any k = l, where l is the index
of those vertices such that (Yj , Yl) 6∈ E(G), j < l < i.

Proof. Again it follows directly by identifying the sets Bi for which the two MIDs differ.

Theorem 2 implies that if two MIDs have the same skeleton, then not only the entries of their conditional
expected utility vectors have the same polynomial structure, but the vectors have also the exact same
dimension. Corollary 3 then shows how the expected utility vectors of G and G

′
differ if G ≺ G

′
, where ≺

denotes the order relationships associated to C.
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Corollary 3. Let G and G′ be two MIDs be in C and let G ≺ G′ . Then the difference between the expected
utility vectors associated to G and G

′
computed by Algorithm 3.2 is equal to the union of the differences

between any pair Gi, Gj of elements of a maximal chain between G and G
′
.

Proof. This easily follows by noting that C respects the Jordan-Dedeking chain condition.

Corollary 3 can also be used to deduce how the conditional expected utilities of any two MIDs, G and G′

in C differ at any stage of their evaluations. First, the differences between G and G ∧G′ are deduced from
Corollary 3. Then the same procedure is iterated for G ∧G′ and G′. Note that the maximal chains can be
automatically identified by looking at the Hasse diagram associated to the equivalence class C.

We do not fully explore here the computational advantages associated to the lattice structure of C, but
we present an example of how this lattice can help a DM when eliciting the edge set of an MID. From a
computational point of view, Theorem 2 guarantees that the evaluation of two equivalent MIDs with the
same skeleton requires the same number of operations. Therefore, if a DM is not sure whether a certain
conditional independence statement holds or not, the edge associated to such statement can be simply added
to the diagram, given that the resulting MID has the same skeleton.

6. Asymmetric decision problems

The MID framework represents uniform decision problems only. However, real decision problems often
exhibit asymmetries of various kinds. In [31] asymmetries are categorized in three classes. If the possible
outcomes or decision options of a variable vary depending on the past, the asymmetry is called functional.
If the very occurrence of a variable depends on the past, the asymmetry is said to be structural. Order
asymmetries are present if {Yi : i ∈ D} is not totally ordered. In this section we only deal with functional
asymmetries. There are four types of functional asymmetries that can occur:

� chance→ chance: the outcome of random variables restricts the outcomes of other random variables;

� chance → decision: the outcome of random variables restricts the options of controlled variables;

� decision → chance: decisions taken restrict the possible outcomes of random variables;

� decision → decision: decisions taken restrict the options of other controlled variables.

Heuristically, for each of these asymmetries the observation of yA, A ⊂ [n], restricts the space YB associated
to a vector YB , such that A ∩ B = ∅. This new space, Y ′B say, is a subspace of YB . In purely inferential
settings such asymmetries are often depicted by context-specific BNs [43].

In Theorem 3 we characterize an asymmetry between two chance nodes and, depending on the stage
of the evaluation, this may entail setting equal to zero monomials in either some or all the rows of the
conditional expected utility vector. This implies that the polynomial structure of the conditional expected
utility vectors and at times also their dimension change. We present the result for elementary asymmetries
of the following form: if Yi = yi then Yj 6= yj . Composite asymmetries are unions of simple asymmetries
and the features of the conditional expected utility vectors in more general cases can be deduced through a
sequential application of Theorem 3.

Theorem 3. Let G be an MID, Yi and Yj be two random variables with j > i, Ux be the utility node
following Yj in the DS. Assume the asymmetry Yi = yi ⇒ Yj 6= yj holds and that k and z are the highest
indices such that j ∈ Bk and i ∈ Bz and assume k > j. Then

� for j < t ≤ z, Ūt has
∏
s∈Bt\{i∪j} rs rows with no monomials;

� for i < t ≤ j, Ūt has
∏
s∈Bt\{i} rs rows with polynomials all with a different structure. Specifically,

these consists, in the notation of Theorem 1, of r′tba monomials of degree dtba, where, for a = x, . . . ,m
and b = l, . . . , a,

r′tba =

((
a− x
b− l

)
− 1

) ja∏
s=t

rs/rj ;
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Y1

Y3

Y2

Y4

Y6

Y5U1

U3

U2

Y1 = 4|Y4 = 0

Y2 = 1, Y3 = 1|Y5 = 1

Y4 = 1|Y5 = 1, Y6 = 1

Figure 7: Representation of the asymmetric version of the MID of Figure 1 through a sequential influence
diagram.

� for t ≤ i, each row of Ūt has in the notation of Theorem 1, r′′tba monomials of degree dtba, where for
a = x, . . . ,m and b = l, . . . , a

r′′tba =

((
a− x
b− l

)
− 1

) ja∏
s=t

rs/(rj · ri).

The proof of this theorem is provided in Appendix A.6. Corollary 4 gives a characterization of simple
asymmetries between any two variables, whether they are controlled or non-controlled. This follows from
Theorem 3 since controlled variables can be thought of as a special case of random ones.

Corollary 4. In the notation of Theorem 1 and under the assumptions of Theorem 3, with the difference
that Yi and Yj are two variables, controlled or non-controlled, we have that

� for j < t ≤ z, each row of Ūt has
∏
s∈Bt\{i∪j} rs rows with no monomials;

� for i < t ≤ j, Ūt has at most
∏
s∈Bt\{i} rs rows with polynomials all with a different structure.

Specifically, these consists of between r′tba and rtba monomials of degree dtba, for a = x, . . . ,m and
b = l, . . . , a;

� for t ≤ i, some rows of Ūt have a number of monomials of degree dtba between r′′tba and rtba, for
a = x, . . . ,m and b = l, . . . , a.

Example 22. [Example 2 continued] Assume that the DM now believes her decision problem is character-
ized by three composite asymmetries:

� whenever she decides to close the power source, then the population cannot be evacuated from the
area: Y1 = 1⇒ Y4 = 0;

� if either the deposition or the dispersion levels in the area are high, then the human intake is high:
Y2 = 1 ∨ Y3 = 1⇒ Y5 = 1;

� if the evacuation option is followed then both the human intake and the stress levels in the population
are high: Y4 = 1⇒ Y5 = 1 ∧ Y6 = 1.

A graphical representation of these asymmetries is given in Figure 7, in the form of a sequential influence
diagram [27]. Asymmetries are represented as labels on new dashed arcs. If the asymmetry is composite,
then vertices can be grouped through a dashed ellipse and dashed arcs can either start or finish by the side
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of these ellipses. Although this generalization of the MID in Figure 1 graphically captures the asymmetries,
most of its transparency is now lost. Instead asymmetries have the opposite effect on any polynomial
representation of MIDs by greatly simplifying the structure of the conditional expected utilities.

Example 23 (Example 22 continued). In this asymmetric framework the first row of Ū6 corresponds
to k3ψ311p6111, whilst its second row is empty. This is because according to Theorem 3 the monomial
k3ψ301p6011 in equation (12) is cancelled by the asymmetry Y4 = 1 ⇒ Y6 = 1, k3ψ311p6101 by Y4 = 1 ⇒
Y5 = 1 and k3ψ301p6001 by both asymmetries. The imposition of asymmetries further reduces from ten to
three the number of monomials in Ū5 which becomes

k3ψ311p6111p511i + k2ψ21p511i + hk2k3ψ311ψ21p6111p511i, i = 0, 1.

Suppose the EUMaximization suggested that Y4 = 0 is optimal if Y3 = 1 and that Y4 = 1 is preferred if
Y3 = 0. The entry of Ū3 for which Y2 = 1 and Y1 = 1 can be written as∑
i,j=0,1

((k2ψ21 + k3ψ311p6111(1 + kk2ψ21))p5110p3011 + k1ψ1ip3i11 + kk1k3ψ11p5101p3111((1 + k2ψ21)ψ3j0p6j10)).

This polynomial consists of only nine monomials. This compared with the number of monomials in the
symmetric case, 42 (see Table 3), means that even in this small problem we obtain a reduction of the
number of monomials by over three quarters.

So the example above illustrates that under asymmetries the polynomial representation is simpler than
standard methods but still able to inform decision centres about the necessary parameters to elicit. A
more extensive discussion of the advantages of symbolic approaches in asymmetric contexts, although fully
inferential ones, can be found in [44]. Finally it is possible to develop a variant of Algorithm 3.2 which
explicitly takes into account the asymmetries of the problem during its evaluation. Note that this approach
would be computationally even more efficient, since this would require the computation of a smaller number
of monomials/polynomials.

7. Discussion

The symbolic approach to inference in probabilistic graphical models has been extensively studied in
the literature and implemented in practice using different softwares. However very few authors have looked
at this approach for decision making. Here we have fully defined such a symbolic approach for MIDs and
developed a complete toolkit to deal with standard operations for MIDs from a symbolic point of view, such
as their evaluation, possible manipulations of the diagram and asymmetries. We have further provided an
implementation of our methodology into a computer algebra system which, under the conditions we discussed
above and more extensively in [23], can be simply extended to apply to much more complex problems.

The fairly recent recognition that probability models can be represented as polynomials has started a
whole new area of research called algebraic statistics [45, 46]. Here techniques from, among the others,
algebraic geometry and computational commutative algebra are used to gain insights into the structure and
the properties of certain statistical models. Recently there has been significant attention on the study of
probabilistic graphical models and in particular on the BN model [47, 48]. As far as we know, this paper
is the first to apply these exciting new developments to the study of IDs and then to more general decision
problems.

Although we mention the several potential benefits deriving from the symbolic approach we developed
here, a more systematic study of how, for example, qualitative beliefs and consequently various sensitivity
analyses can be performed has yet to be fully studied. Our symbolic definition could further allow DMs
to simply work with the computer algebra expressions of a decision problem without defining an explicit
graphical representation of the problem. If the underlying structure is very asymmetric, then our algebraic
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representation would still work exactly, whilst there may simply not be any associated graphical represen-
tation which is not contrived. We have some encouraging results in this direction that will be reported in
future papers.

Expected utility also exhibits a similar polynomial representation in the case the variables take values
in continuous spaces. In this case the unknown quantities of the polynomials are low order moments.
Examples of these polynomials are presented in [23] and [49]. Just as in the discrete case, the manipulations
of the diagrams for policies with continuous variables and their associated asymmetries can be described
as operations over the polynomials. A full study of the symbolic representation of expected utilities in a
continuous domain will be reported later.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

We develop the proof via backward induction over the random and decision vertices of the MID, starting
from Yn. Define, for i ∈ [n],

Ū i =

∫
Y

[n]V
i−1

max
Y

[n]D
i−1

∑
I∈P0([m])

hnI−1
∏
i∈I

kiUi(yPi
)f
(
y[n]Vi−1

| y[i−1]

)
dy[n]Vi−1

,

where [n]Vi−1 = [n] \ [i− 1] ∩ V, [n]Di−1 = [n] \ [i− 1] ∩ D and Π[n]Vi−1
= ∪j∈[n]Vi−1

Πj .

The DM’s preferences are a function of Yn only through kmUm(yPm
), since by construction n = jm ∈ J.

Therefore this quantity can be either maximized or marginalized as in equation (3) to compute Ūn(yBn
).

Note that Bn includes only the indices of the variables ūn formally depends on, since Bn = Pm \ {n}, if
n ∈ D, whilst Bn = Pm ∪Πn \ {n}, if n ∈ V. Then

Ūn =
∑

I∈P0([m])

hnI−1
∏
i∈I

(
1{i 6=n} [kiUi(yPi

)] + 1{i=n}
[
Ūi(yBi

)
])
.

Now consider Yn−1. If n− 1 6∈ J, then Ūn is a function of Yn−1 only through Ūn. Therefore maximization
and marginalization steps can be computed as in equation (6) to compute Ūn−1(yBn−1

). Again Bn−1
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includes the indices of the variables ūn−1 formally depends on, since Bn−1 = Pm \ {n, n−1}, if n, n−1 ∈ D,
Bn−1 = Pm ∪ Πn ∪ Πn−1 \ {n, n−1}, if n, n−1 ∈ V, Bn−1 = Pm ∪ Πn−1 \ {n, n−1}, if n ∈ D and n−1 ∈ V,
Bn−1 = Pm ∪Πn \ {n, n−1}, if n ∈ V and n−1 ∈ D. Then

Ūn−1 =
∑

I∈P0([m])

hnI−1
∏
i∈I

(1{i 6=n}kiUi(yPi
) + 1{i=n}Ūi−1(yBi−1

)).

Conversely, if n− 1 ∈ J, Ūn is potentially a function of Yn−1 through both Um−1(yPm−1
) and Ūn(yBn

) and
note that Ūn can be written in this case as

Ūni =
∑

I∈P0([m−2])

hnI−1
∏
i∈I

kiUi(yPi
) + U ′m−1 +

 ∑
i∈P0([m−2])

hni−1
∏
i∈I

kiUiyPi

U ′m−1,

where
U ′m−1 = hkm−1Um−1(yPm−1)Ūn(yBn) + km−1Um−1(yPm−1) + Ūn(yBn).

Therefore optimization and marginalization steps can be performed over U ′m−1 as specified in equations (4)
and (5) respectively. Then note that ūn−1 can be written as

Ūn−1 =
∑

I∈P0([m−2])

hnI−1
∏
i∈I

kiUiyPi + ūn−1yBn−1 +

 ∑
i∈P0([m−2])

hni−1
∏
i∈I

kiUiyPi

 ūn−1yBn−1

=
∑

I∈P0([m−1])

hnI−1
∏
i∈I

(1{i6=n−1}kiUi(yPi
) + 1{i=n−1}Ūi(yBi

)).

Now for a j ∈ [n−2] and assuming with no loss of generality that k is the index of a utility vertex such
that jk−1 < j ≤ jk, we have that

Ū j =
∑

I∈P0([k])

hnI−1
∏
i∈I

(1{i 6=j}kiUi(yPi
) + 1{i=j}Ūi(yBi

)).

Therefore at the following step, when considering Yj−1, we can proceed as done with Yn−1 by maximization
and marginalization in equations (4)-(6) to compute Ū j−1. Thus at the conclusion of the procedure, Ū1

yields the expected utility of the optimal decision.

Appendix A.2. Proof of Theorem 1

For a subset I ∈ P0([m]), let jI be the index of the variable appearing before the utility vertex with
index UmaxI

in the decision sequence. Let CiI = {z ∈ V : i ≤ z ≤ jI}. The conditional expected utility
function of equations (3)-(6) can be (less intuitively) written as

Ūi(yBi
) =

∑
I∈P0({l,...,m})

Ū Ii (yBi
) =

∑
I∈P0({l,...,m})

knI−1
∏
s∈I

ksUs(yPs
)

∑
y
Ci
I
∈Y

Ci
I

P (yCi
I
|yBi

), (A.1)

where
P (yCi

I
|yBi

) =
∏
t∈Ci

I

P (yt|yBt
). (A.2)

The conditional expected utility therefore depends on the power set of the indices of the utility vertices
subsequent to Yi in the decision sequence. We can note that for any I, J ∈ P({l, . . . ,m}) such that #I = #J
and UmaxI

= UmaxJ
, Ū Ii (yBi

) and ŪJi (yBi
) have the same polynomial structure since CiI = CiJ . Now for

a = l, . . . ,m and b = l, . . . , a, the binomial coefficient
(
a−l
b−l
)

counts the number of elements I ∈ P0({l, . . . ,m})
having #I = b− l + 1 and including a. Thus riba in equation (8) counts the correct number of monomials
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having a certain degree since YCI(i) = ×t∈Ci
I
Yt. Further note that considering each combination of b and a

in the ranges specified above, we consider each element of P0({l, . . . ,m}).
By having a closer look at diba in equation (8) it is easy to deduce the corresponding degree of these

monomials. The first term of diba, (b − l), computes the degree associated to the criterion weight k, since
b − l = nI − 1 and the second term, 2(b − l + 1), computes the degree associated to the product between
the criterion weights ks and the utilities Us(yPs) for s ∈ CiI . The last term wia corresponds to the degree
deriving from the probabilistic part of equation (A.1), which is equal to the number of non-controlled vertices
between Yi and YjmaxI

(both included) as shown by equation (A.2).

Since the set Bi includes the arguments of Ūi(yBi
) and Y = ×i∈[n]Yi, equation (7) guarantees that the

dimension of the conditional expected utility vector is
∏
t∈Bi

rt.

Appendix A.3. Proof of Proposition 4.

After the reversal of the arc (Yi, Yj) into (Yj , Yi), the new parent sets of these two variables are Π′j =

{Πj \ i ∪Πi} and Π′i = {j ∪Πi ∪Πj \ i}. Call Πi
j = {Πj \ i}. It then follows that

piyiπ′i = P (yi | yΠ′i
) = P (yi | yΠi

j
,yΠi

, yj) =
P (yj | yΠi

j
,yΠi

, yi)P (yi | yΠi
j
,yΠi

)

P (yj | yΠi
j
,yΠi)

=
P (yj | yΠj

)P (yi | yΠi
)

P (yj | yΠi
j
,yΠi

)
=

P (yj | yΠj )P (yi | yΠi)∑
yi∈Yi

P (yj | yi,yΠi
j
)P (yi | yΠi

)
=

pjyjπjpiyiπi∑
yi∈Yi

pjyjπj
piyiπi

,

and
p′jyjπ′j = P (yj | yΠ′j

) = P (yj | yΠi
j
,yΠi

) =
∑
yi∈Yi

P (yj | yΠj
)P (yi | yΠi

) =
∑
yi∈Yi

pjyjπj
piyiπi

.

The proof of the barren node removal easily follows from the fact that the vertex is not included anymore
in the MID.

Appendix A.4. Proof of Lemma 1.

We first consider the arc reversal and the change of dimension of the vectors. If j 6∈ J the sets Bk that
are affected by the arc reversal are only the ones such that k ∈ Πi ∪ Πj and the set B′k simply takes into
account the presence of the additional edges in G′. If j ∈ J′ then the sets Bk affected by the arc reversal
are the ones such that k ∈ Πi ∪Πj ∪ Pjj and the set B′′k additionally takes into account that the indices in
Pjj are included only before the EUMarginalization between Ūi+1 and pj . The final case is if j 6∈ J′, which
can be seen as a combination of the previous two cases.

Now consider the polynomial structure of the entries after an arc reversal. If j 6∈ J, then the adjusted
Algorithm 3.2 simply computes an EUMarginalization between Ūj+1 and pi instead of pj . Therefore the
entries of Ūj have r′jba = rir(j+1)ba/rj monomials of degree d(j+1)ba and, until the adjusted algorithm

computes Ūi, the change in the structure is propagated through the ’EUOperations’. If j ∈ J′∩J, then instead
of an EUMultiSum and a EUMarginalization, now the algorithm only computes an EU-Marginalization and,
as before, the change is propagated until Ūi. As in the previous paragraph, the last case can be seen as
combination of the previous two situations.

Consider now the deletion of the barren node Yi. The set Bz is the one with the highest index which
includes i in G. Thus, for i < k ≤ z, i ∈ Bk and Ūk is conditional on Yi = yi. The deletion of this vertex
therefore implies that the dimension of the vector becomes c′k/ri. For k ≤ i, Algorithm 3.2 now performs one
EUMarginalization less and, from Proposition 2, we deduce that Ū ′k has now rkba/ri monomials of degree
dkba − 1.
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Appendix A.5. Proof of Proposition 6.

If Yi is father of Yk we have that

p′kykπ′k
= P (yk | yΠ′k

) = P (yk | yΠi ,yΠi
k
) =

∑
yi∈Yi

P (yk | yΠk
,yΠi)P (yi | yΠi

k
,yΠi) (A.3)

=
∑
yi∈Yi

P (yk | yΠk
)P (yi | yΠi

) =
∑
yi∈Yi

pkykπk
piyiπi

If Yi is a parent but not the father of Yj , then P (yi | yΠi
j
,yΠi

) as in Equation (A.3) can be written as

P (yi | yΠi
j
,yΠi

) = P (yi | yΠ>i
j
,yΠ<i

j
,yΠi

) =
P (yΠ>i

j
| yi,yΠ<i

j
,yΠi

)P (yi | yΠi
)∑

yi∈Yi
P (yΠ>i

j
| yi,yΠ<i

j
,yΠi

)P (yi | yΠi
)

=

∏
l∈Π>i

j

∑
y

Π
j,l
i

∈Y
Π
j,l
i

P (yl | yΠl
)P (yi | yΠi

)∑
yi∈Yi

∏
l∈Π>i

j

∑
y

Π
j,l
i

∈Y
Π
j,l
i

P (yl | yΠl
)P (yi | yΠi)

,

where Π<i
k = {Πk \ {i, . . . , k − 1}}.

Appendix A.6. Proof of Theorem 3

For i, j, k, l ∈ V and s, t ∈ [m], an asymmetry Yi = yi ⇒ Yj = yj implies that any monomials that include
terms of the form pkykπk

, ψsπs
, pkykπk

plylπl
, ψtπt

ψsπs
and pkykπk

ψsπs
entailing both instantiations yi and yj

are associated to a non possible combination of events, with yk ∈ Yk, πk ∈ YΠk
, yl ∈ Yl, πl ∈ YΠl

, πt ∈ YPt

and πs ∈ YPs
. Thus these monomials have to be set equal to zero.

For j < t ≤ z, Ūt has an associated set Bt which includes both i and j and consequently
∏
s∈Bt\{i∪j} rs

rows of the vector corresponds to the conditioning on Yi = yi and Yj = yj . Therefore all the monomials in
those rows have to be set equal to zero.

For i < t ≤ j, the index i is in the set Bt, whilst the variable Yj has been already EUMarginalized. Thus,
there are only

∏
s∈Bt\{i} rs rows conditional on the event Yi = yi. In those rows only some of the monomials

are associated to the event Yj = yj . Specifically, the ones implying Yj = yj can only be multiplying a term
including a ψxPx

from a utility vertex Ux subsequent to Yj in the MID DS. We can deduce that there are∏ja
s=t rs/rj monomials of degree dtba that include the case Yj = yj in such entries of Ūt, for a = x, . . . ,m

and b = l, . . . , a (using the notation of Theorem 1).
Lastly, if t ≤ i, then the set Bt does not include i and j, which have been both EUMarginalized. Thus

monomials including a combination of the events Yj = yj and Yi = yi appears in each row of Ūt. Similarly

as before, we can deduce that there are
∏ja
s=t rs/(ri ·rj) monomials of degree dtba, a = x, . . . ,m, b = l, . . . , a,

implying the event Yi = yi ∧ Yj = yj .

Appendix B. MapleTH Code

### Computation of the highest index in each parent set of a utility node ###

# Inputs: PiU::table, parent sets of utility nodes; m::integer, number of utility nodes
# Output: J::list

CompJ := proc(PiU,m) local i,j:
for j to m do J[j] := max(PiU[J]) end do:
return convert(J,list):
end proc:

### Computation of the indices of the argument of the expected utility at step i ###

# Inputs: PiU::table; PiV::table, parent sets of random nodes; i::integer;
# n::integer, number of random nodes; J::list

# Output: Bi[i]::set
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CompBi := proc(PiU,PiV,i,n,J) local Bi, part, j:
Bi[i], part := {},{}:
for j from i to n do
part := part union {j}:
if member(j,V) then Bi[i] := Bi[i] union PiV[j] end if:
if member(j,J,’l’) then Bi[i] := Bi[i] union PiU[l] end if:

end do:
Bi[i] := Bi[i] minus part:
return Bi[i]:
end proc:

### Initialization of an MID ###

# Inputs: p::table, probability vectors; psi::table, utility vectors; PiV::table;
# PiU::table; n::integer; m::integer

# Outputs: J::list; Bi::list; u::table, expected utility vectors

Initialize := proc(p, psi, PiV, PiU, n, m) local J, i, Bi, u:
J := CompJ(PiU, m):

for i to n do Bi[i] := CompBi(PiU, PiV, i, n, J) end do:
Bi[n+1], u[n+1] := {}, []:
return J, Bi, u:
end proc:

### EUDuplication of a utility vector and an expected utility vector ###

# Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table;
# r::table, size of the decision and sample spaces; Bi::table; J::list

# Outputs: utemp::list, EUDuplicated version of u;
# psitemp::list, EUDuplicated version of psi

EUDuplicationPsi := proc(u, psi, j, PiV, PiU, r, Bi, J)
local i, uprime, psiprime, psitemp, utemp, x, sx, y, h, z:
i, uprime, psiprime, psitemp, utemp:= max(PiU[j]), [], [], psi[j], u[i+1]:

for x from max(Bi[i+1], PiU[j]) by -1 to 1 do
if member(x, (PiU[j] union Bi[i+1]) minus (PiU[j] intersect Bi[i+1])) then
sx := 1:

for y from x+1 to max(Bi[i+1], PiU[j]) do
if member(y, Bi[i+1] union PiU[j]) then sx := sx*r[y] end if

end do:
if member(x, Bi[i+1]) then for l to Size(psitemp)[2]/sx do for z to r[x] do

psiprime := [op(psiprime), op(convert(psitemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do:
psitemp, psiprime := psiprime, []:

elif member(x, PiU[j]) then for l to Size(utemp)[2]/sx do for z to r[x] do
uprime := [op(uprime), op(convert(utemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do:
utemp, uprime := uprime, []:

end if end if end do:
return utemp, psitemp:
end proc:

### EuMultiSum between an expected utility vector and a utility vector ###

# Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table;
# r::table; Bi::table; J::list

# Outputs: ut::list, expected utility vector after an EUMultiSum
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EUMultiSum := proc(u, psi, j, PiV, PiU, r, Bi, J) local i, uprime, psiprime, ut;
i := max(PiU[j]);

uprime, psiprime := EUDuplicationPsi(u, psi, j, PiV, PiU, r, Bi, J);

uprime := convert(uprime, list);

if Size(uprime)[1] = 0 then ut := k[j]*˜psiprime

else ut := h*˜k[j]*˜psiprime*˜uprime +˜ uprime +˜ k[j]*˜psiprime end if;
return ut:
end proc:

### EUDuplication of a probability vector and an expected utility vector ###

# Inputs: u::table; p::table; i::integer; PiV::table; PiU::table;
r::table; Bi::table; J::list

# Outputs: utemp::list, EUDuplicated version of u;
# ptemp::list, EUDuplicated version of p

EUDuplicationP := proc(u, p, i, PiV, PiU, r, Bi, J)
local uprime, pprime, ptemp, utemp, x, sx, y, l, z:
uprime, pprime, ptemp, utemp := [], [], p[i], u[i+1]:

Uni:= Bi[i+1] union PiV[i] union PiU[j];
if member(i, J) then member(i, J, ’j’);
for x from max(Uni) by -1 to 1 do
if member(x, Uni minus ((Bi[i+1] union PiU[j]) intersect (PiV[i] union {i}))) then
sx := 1;

for y from x+1 to max(Uni) do
if member(y, Uni) then sx := sx*r[y] end if

end do;
if member(x, Bi[i+1] union PiU[j]) then
for l to Size(ptemp)[2]/sx do for z to r[x] do

pprime := [op(pprime), op(convert(ptemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do;
ptemp, pprime := pprime, [];

elif member(x, PiV[i]) then
for l to Size(utemp)[2]/sx do for z to r[x] do

uprime := [op(uprime), op(convert(utemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do;
utemp, uprime := uprime, []:

end if end if end do;
else for x from max(Bi[i+1], PiV[i]) by -1 to 1 do

if member(x,(Bi[i+1] union PiV[i])minus(Bi[i+1]intersect(PiV[i] union {i}))) then
sx := 1;

for y from x+1 to max(Bi[i+1], PiV[i]) do
if member(y, Bi[i+1] union PiV[i]) then sx := sx*r[y] end if

end do;
if member(x, Bi[i+1]) then
for l to Size(ptemp)[2]/sx do for z to r[x] do

pprime := [op(pprime), op(convert(ptemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do;
ptemp, pprime := psiprime, [];

elif member(x, PiV[i]) then for l to Size(utemp)[2]/sx do for z to r[x] do
uprime := [op(uprime), op(convert(utemp, list)[(l-1)*sx+1 .. l*sx])]

end do end do;
utemp, uprime := uprime, []:

end if end if end do end if:
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return utemp, ptemp:
end proc:

### EUMarginalization over a sample space ###

# Inputs: u::table; p::table; i::integer; PiV::table; PiU::table;
r::table; Bi::table; J::list

# Outputs: ut::list, expected utility vector after EUMarginalization

EUMarginalization := proc(u, p, i, PiV, PiU, r, Bi, J)
local uprime, pprime, rows, cols, l, one, zero, row, Iprime, ut;
uprime, pprime := EUDuplicationP(u, p, i, PiV, PiU, r, Bi, J);

pprime, rows, cols := convert(pprime, list), 1, Size(pprime)[2];

for l to i-1 do if member(l, PiV[i]) then rows := rows*r[l] end if end do;
one, zero := convert(Vector(r[i], 1), list), convert(Vector(cols, 0), list):

row, Iprime := [op(zero), op(one)], [op(one)]:

for l to rows-1 do Iprime := [op(Iprime), op(row)] end do;
Iprime := Matrix(rows, cols, [op(Iprime), op(one)]);

ut := convert(Multiply(Iprime, Vector[column](uprime*˜pprime)), list);

return ut:
end proc:

### Identification of an optimal policy (at random) ###

# Inputs: r::table; i::integer, index of the decision variable,
# t::integer, number of random draws

#Outputs: maxi::vector, optimal decisions

Maximize := proc(r, i, t) local maxi, l:
maxi := Vector(t, 0):

for l to t do maxi[l] := RandomTools[Generate](integer(range = 1 .. r[i])) end do:
return maxi:
end proc:

### EUMaximization over a decision space ###

# Inputs: u::table; i::integer; r::table
# Outputs: u[i]::list, expected utility vector after EUMaximization

EUMaximization := proc(u, i, r) local opt, Istar, j, l, zero;
opt := Maximize(r, i, Size(u[i+1])[2]/r[i]);

zero := convert(Vector(Size(u[i+1])[2], 0), list);

Istar := [];

for j to Size(u[i+1])[2]/r[i] do for l to r[i] do
if opt[j] = l then Istar := [op(Istar), 1] else Istar := [op(Istar), 0] end if

end do;
if j < Size(u[i+1])[2]/r[i] then Istar := [op(Istar), op(zero)] end if end do;

Istar := Matrix(Size(u[i+1])[2]/r[i], Size(u[i+1])[2], Istar);

u[i] := convert(Multiply(Istar, Vector[column](u[i+1])), list);

return u[i]:
end proc:

### Symbolic evaluation algorithm for an MID ###

# Inputs: p::table; psi::table; PiV::table; PiU::table; n::integer; m::integer; De::set,
# index set of the decision variables;

# V::set, index set of the random variables; r::table

# Output: eu::table, expected utility vectors;
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SymbolicExpectedUtility := proc(p, psi, PiV, PiU, n, m, De, V, r)
local J, Bi, utemp, i, j, ceu,best;
with(LinearAlgebra): with(ArrayTools):

J, Bi, eu := Initialize(p, psi, PiV, PiU, n, m);

j := m;

for i from n by -1 to 1 do if j = 0 then if member(i, De) then
eu[i] := EUMaximization(eu, i, r)

else eu[i] := EUMarginalization(eu, p, i, PiV, PiU, r, Bi, J) end if;
else if J[j] = i then if member(i, De) then

utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMaximization(utemp, i, r)

else
utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMarginalization(utemp, p, i, PiV, PiU, r, Bi, J)

end if;
j := j-1

else if member(i, De) then eu[i] := EUMaximization(eu, i, r)
else eu[i] := EUMarginalization(eu, p, i, PiV, PiU, r, Bi, J) end if

end if end if end do;
return eu:
end proc:

Consider the MID in Figure 1 with n = 6 variables (decision or random nodes) and m = 3 utility nodes.

### Definition of the MID ###

# number of variables and utility nodes

n := 6: m := 3:

# V contains the indices of random nodes and De those of the decision nodes

V := 2, 3, 5, 6: De := 1, 4:

# Conditional probabilities

p[6] := [p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000]:

p[5] := [p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000]:

p[3] := [p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000]:

p[2] := [p211, p201, p210, p200]:

# Utility parameters

psi[1] := [psi11, psi10]:

psi[2] := [psi21, psi20]:

psi[3] := [psi311, psi301, psi310, psi300]:

# Parents of random nodes

PiV[2] := 1: PiV[3] := 1, 2: PiV[5] := 3, 4: PiV[6] := 4, 5:

# Parents of utility nodes

PiU[1] := 3: PiU[2] := 5: PiU[3] := 4, 6:

# Number of levels of the variables

r[1] := 2: r[2] := 2: r[3] := 2: r[4] := 2: r[5] := 2: r[6] := 2:

### Computation of the expected utility vectors ###

eu := SymbolicExpectedUtility(p, psi, PiV, PiU, n, m, De, V, r):

Example of the output of eu[1]:

[((k[1]*psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*

(p6010*psi300*k[3]+p6110*psi310*k[3])+k[3]*psi300*p6010

+k[3]*psi310*p6110)*p5101+(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]

+p6100*psi310*k[3])+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)+
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(k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]+p6110*psi310*k[3])

+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)*p3110+

(k[1]*psi10+h*k[1]*psi10*((k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]

+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3010)*p210+

((k[1]*psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]

+p6110*psi310*k[3])+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)+

(k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]+p6110*psi310*k[3])

+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)*p3100+

(k[1]*psi10+h*k[1]*psi10*((k[2]*psi21+h*k[2]*psi21*

(p6011*psi301*k[3]+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3000)*p200]
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