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EQUIVALENCE CLASSES OF STAGED TREES

By Christiane Görgen and Jim Q. Smith

University of Warwick

In this paper we give a complete characterization of the equiva-
lence classes of CEGs or equivalently of staged trees. This model class
cannot be unambiguously indexed by its graphical properties. How-
ever, we are able to show that a polynomial defined on an underlying
graph codes all relevant characteristics and is common to all repre-
sentations of the same model. Furthermore, simple transformations
on that polynomial enable us to traverse the statistical equivalence
class of these graphs. So one can design efficient algorithms over the
classes. We illustrate our results throughout the paper, finishing with
a real analysis of the implicit dependence relationships found in [6].

1. Introduction. The Chain Event Graph (CEG) is a discrete statisti-
cal model based on a graphical description given by an event tree [30]. CEGs
have now successfully led statistical inference in a whole range of domains
[2, 6, 12, 33, 34, 35]. However, a formal analysis of the statistical properties
of this class of models is long overdue.

In this paper, it will be most convenient to represent a CEG model by
a corresponding staged tree [30]. From this coloured graph we can read a
parametrization rule given by the multiplication of transition probabilities
along root-to-leaf paths. Two staged trees are said to be statistically equiva-
lent if their parametrization rules parametrize the same model, see Section 2.

The study of these statistical equivalence classes is an important one.
The first reason for this is computational: CEGs constitute a massive model
space to explore. By identifying a single representative within an equivalence
class of model representations and a priori selecting across these representa-
tives rather than the full class, we can dramatically reduce the search effort
across this space. The second reason concerns coherence: when adopting a
Bayesian approach in model selection, [16] and others have argued that two
statistically equivalent models (i.e. those always giving the same likelihood)
should be given the same prior distribution over its parameters. To apply
this principle, it is essential to know when two CEGs make the same dis-
tributional assertions. The third reason is inferential: Just like a Bayesian
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network (BN), a CEG or staged tree has a natural causal extension [6, 32].
So, in particular, causal discovery algorithms can be applied to CEGs to elicit
a putative causal ordering between various associated variables. Clearly a
necessary condition for a causal deduction to be made is that this deduction
is invariant to the choice of one representative within a statistical equiva-
lence class. So again we need to be able to identify equivalence classes of a
hypothesized causal CEG in order to perform these algorithms.

Now, unlike for BNs, where model representations making equivalent dis-
tributional assumptions can be elegantly characterized through their shar-
ing the same essential graph [1, 16], sadly no such common representation
is available for staged trees or CEGs. However, we show here that we can
instead specify staged trees as representations of a set of monomials together
with linear constraints which characterize the model. This then provides a
natural algebraic index for a class of equivalent staged trees to be used as
an analogue of the essential graph classifying equivalence classes of BNs.
Because staged tree models include discrete BN models as a special case,
our characterization also gives an alternative to the ansatz adopted by [13].

Our central theorem, presented in Section 3, is based on two main find-
ings: First, the interpolating polynomial of a staged tree can capture certain
context specific independence structures which are invariant to a class of
graphical transformations we call swaps. These transformations are anal-
ogous to arc reversals sometimes applied to BN models [27]. Second, by
substituting various monomial terms of the interpolating polynomial into
single factors we can often simplify our representation to capture only its
substantive structure. Within our development this corresponds to what we
call here a resize operator on the staged tree. We show later that in the con-
text of decomposable BNs, this operation is analogous for example to the
transformation of a directed acyclic graph (DAG) into a junction tree [17].
Swaps and resizes enable us to meaningfully incrementally traverse the class
of statistically equivalent staged tree representations of a given model. We
are able to show that between every two statistically equivalent staged trees
there is a map which is a composition of these operators. Statistical equiv-
alence classes of staged tree and CEG models are thus fully characterized
through simple relationships between their interpolating polynomials.

In Section 4, a full characterization of the statistical equivalence class
and a putative causal interpretation of the staged tree representing the
Christchurch Health and Development Study [11] rounds off the analysis.
We end the paper with a brief discussion about how this work is currently
being used and extended.
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2. Statistical equivalence for staged trees. In this paper we study
properties of parametric statistical models based on a graphical representa-
tion given by a probability tree [3, 26, 28, 30]. We will treat the probability
tree not only as some easily interpretable picture but also as a directed
graphical model in its own right. To properly study equivalence classes of
these models, we first need to tighten the formalism introduced in [30].

2.1. Discrete parametric models and probability trees. We begin by re-
calling a technical definition of a discrete parametric model. This enables
us to discuss those discrete models which can be represented by probability
trees.

Let Ω always denote a finite space with n ≥ 2 atoms ω ∈ Ω. Write
pθ : Ω→ (0, 1) to denote a strictly positive probability mass function which
depends on a vector of parameters θ ∈ Θ ⊆ Rd, d ∈ N. Denote the vector
of values of that function by pθ =

(
pθ(ω) | ω ∈ Ω

)
and call each of its

components pθ(ω), ω ∈ Ω, an atomic probability. We can then define a
discrete parametric statistical model on Ω as a subset of the open n − 1
dimensional probability simplex

(2.1) PΨ = {pθ | θ ∈ Θ} ⊆ ∆◦n−1

where ∆◦n−1 =
{
p ∈ Rn |

∑
i∈[n] pi = 1, pi ∈ (0, 1) for all i ∈ [n]

}
and where

[n] = {1, . . . , n} [9]. The index Ψ in PΨ is a bijective map

(2.2) Ψ : Θ→ PΨ, θ 7→ pθ

called a parametrization of the model PΨ.
We say that Ψ is a monomial parametrization if every component of its

image is a monomial Ψi(θ) = θ
αi,1
1 · · · θαi,dd with exponent αi ∈ Nd0, i ∈ [n],

where θ = (θ1, . . . , θd). A monomial parametrization is called multilinear if
αi ∈ {0, 1}d for all i ∈ [n]. We henceforth call two parametrizations Ψ and
Φ of the same model, so im(Ψ) = PΨ = PΦ = im(Φ), statistically equivalent.

The following terminology will enable us to discuss parametric statistical
models whose parametrization can be read from a particular graph. The
characterization of statistical equivalence classes of these graphical models
and its implications will then be the focus of this paper.

A finite graph T = (V,E) with vertex set V and edge set E ⊆ V × V
is called a tree if it is connected and has no cycles [28]. In a directed tree,
each e = (v, v′) ∈ E is a pair of ordered vertices. We call vertices pa(v) =
{v′ | ∃(v′, v) ∈ E} the parents of v ∈ V and ch(v) = {v′ ∈ V | ∃(v, v′) ∈ E}
the set of children of v ∈ V . A vertex v0 ∈ V without parents is called a root
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of the tree and vertices without children are called leaves. We use the term
root-to-leaf path for a directed sequence of edges λ = (e | e ∈ E(λ)) with
E(λ) ⊆ E, where one edge e = (v, v′) precedes another e′ = (w,w′) only if
v′ = w. A subpath within a directed tree is then a connected subsequence of
a root-to-leaf path.

Recall that within a tree model (as defined below), every root-to-leaf
path represents an atom in a given sample space and depicts one possible
history of a unit in a population passing through the tree. Every vertex
v ∈ V denotes a situation that such a unit might find itself in during that
progress, and every edge e = (v, v′) ∈ E denotes the possibility of passing
from one situation v to the next v′.

We call a directed tree an event tree if all vertices except for one unique
root have exactly one parent and each parent which is not a leaf has at least
two children. Then for any unit in the population there are always at least
two possible unfoldings from every situation it might pass through.

We denote the set of all root-to-leaf paths of an event tree by Λ(T ). The
power set of the set of root-to-leaf paths is called the path sigma-algebra of
the tree, denoted σ(T ) = P(Λ(T )). For a fixed v ∈ V or e ∈ E we define
vertex- or edge-centered events within the path sigma-algebra as

Λ(v) =
{
λ ∈ Λ(T ) | there is (·, v) ∈ E(λ)

}
,(2.3a)

Λ(e) =
{
λ ∈ Λ(T ) | there is e ∈ E(λ)

}
,(2.3b)

respectively, and set Λ(v0) = Λ(T ). In tree models, the set of all root-to-leaf
paths going through one fixed vertex (or edge) is the set of all atoms for
which that situation happens. These sets are called Moivrean events in [28].

We call a pair Fv = (v,E(v)) where E(v) = {(v, v′) ∈ E | v′ ∈ ch(v)} and
v ∈ V a floret. If v is a leaf then E(v) = ∅ and Fv is an empty floret. The
notion of root-to-leaf paths in an event tree allows us to order florets, edges
e, e′ ∈ E and vertices v, v′ ∈ V (and hence events as in (2.3a) and (2.3b)) in
the following way: We say that e ≺ e′, v ≺ v′ or Fv ≺ Fv′ if and only if every
root-to-leaf path λ ∈ Λ(e)∩Λ(e′) or λ ∈ Λ(v)∩Λ(v′) is a sequence of edges
containing e before e′ or (v, ·) before (v′, ·), respectively. Thus, from [30], ≺
defines a pre-order on an event tree. Tree models therefore admit a natural
directionality and are particularly useful if a model class needs to express a
potential ordering of events, rather than of random variables.

Definition 1 (Probability tree). Let T = (V,E) be an event tree with
a finite number of root-to-leaf paths and associate parameters θ(e) = θ(v, v′)
to all edges e = (v, v′) ∈ E. We call θv =

(
θ(e) | e ∈ E(v)

)
a vector of floret

parameters.
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The pair (T ,ΘT ) is called a probability tree if ΘT = {θv | v ∈ V } is a set
of floret parameter vectors where θv ∈ ∆◦#E(v)−1 for all v ∈ V . In probability

trees, we call each θ(e), e ∈ E, a primitive probability.

Primitive probabilities can be thought of as (conditional) transition prob-
abilities along root-to-leaf paths, as we outline below. Importantly, the con-
straint θv ∈ ∆◦#E(v)−1 for all v ∈ V ensures that primitive probabilities are
positive and those belonging to the same floret sum to unity. Henceforth,
we assume these probability simplices are open in order to avoid various
distracting technical issues concerning boundary cases.

Let (T ,ΘT ) be a given probability tree, T = (V,E). Denote the product
of all primitive probabilities along a root-to-leaf path λ ∈ Λ(T ) by

(2.4) πθ,T (λ) =
∏

e∈E(λ)

θ(e)

where θ =
(
θ(e) | e ∈ E

)
is a vector of all primitive probabilities. We

show below that πθ,T is a probability mass function on a probability space
(Λ(T ), σ(T ), πθ,T ) associated to (T ,ΘT ) and that (2.4) induces a monomial
parametrization as in (2.2).

By Definition 1, πθ,T (λ) ∈ (0, 1) for every λ ∈ Λ(T ). Moreover, the prob-
abilities of all root-to-leaf paths sum to unity:

Lemma 1. Let (T ,ΘT ) be a probability tree and T = (V,E). Then the
constraint that θv ∈ ∆◦#E(v)−1 for all v ∈ V is true if and only if

(2.5)
∑

λ∈Λ(T )

πθ,T (λ) = 1.

This result is immediately apparent from substituting subsums in the
polynomial in (2.5) which sum to unity by definition.

The importance of Lemma 1 will become apparent in Sections 2.2 and 3.1
where we search for different probability trees that have the same probability
mass function πθ,T . In particular, the local floret structure on an underlying
graph can vary provided that the root-to-leaf path condition is satisfied.

From the above, the map πθ,T : σ(T ) → [0, 1], A 7→
∑

λ∈A πθ,T (λ) is a
strictly positive probability measure. Thus, πθ,T =

(
πθ,T (λ) | λ ∈ Λ(T )

)
is

a vector of atomic probabilities and

(2.6) P(T ,ΘT ) =
{
πθ,T | θ ∈×

v∈V
∆◦#E(v)−1

}
⊆ ∆◦#Λ(T )−1
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denotes a parametric model. We call (2.6) a (probability) tree model and
say that the elements in P(T ,ΘT ) factorize according to T , analogous to [18]
where in a BN model distributions factor according to a DAG. Note that a
tree model is always indexed by one possible representation (T ,ΘT ).

Tree models are parametric models with a parametrization as in (2.2),

ΨT : ×
v∈V

∆◦#E(v)−1 → ∆◦#Λ(T )−1(
θ(e) | e ∈ E

)
7→

(∏
e∈E(λ)

θ(e) | λ ∈ Λ(T )
)(2.7)

based on (2.4). Hence, a probability tree (T ,ΘT ) is a graphical represen-
tation of a monomial parametrization ΨT of a family of probability mass
functions PΨT = P(T ,ΘT ) which factorize according to the graph T .

Two parametrizations ΨS and ΨT giving rise to the same tree model
im(ΨS) = P(S,ΘS) = P(T ,ΘT ) = im(ΨT ) are by definition statistically equiv-
alent. Henceforth, we will also call the two probability tree representations
(T ,ΘT ) and (S,ΘS) of that model statistically equivalent. We let the symbol
[T ,ΘT ] denote the set of all probability tree representations of P(T ,ΘT ).

We can always identify the set of root-to-leaf paths Λ(T ) of a probability
tree (T ,ΘT ) with a finite space Ω via a bijection

(2.8) ιT : Ω→ Λ(T ), ω 7→
(
e | e ∈ E(ιT (ω))

)
where T = (V,E). Importantly, πθ,T then induces a measure Pθ = πθ,T ◦ ιT
on Ω which does not depend on the graph T . We will usually use the symbol
Pθ(ω) to refer to a value in (0, 1) and πθ,T (ιT (ω)) to refer to a symbolic
product of parameters, ω ∈ Ω: see Section 3.

By the above, a tree model P(T ,ΘT ) thus has an underlying probability
space (Ω, σ(Ω), Pθ), where σ(Ω) denotes a sigma-algebra on Ω. Then two
probability trees (T ,ΘT ) and (S,ΘS) are statistically equivalent if and only
if they induce the same underlying probability space. So in particular,

(2.9) πθ,T (ιT (ω)) = πθ′,S(ιS(ω)) for all ω ∈ Ω

where θ =
(
θ(e) | e ∈ E

)
and θ′ =

(
θ(e′) | e′ ∈ E′

)
are the vectors of

primitive probabilities for T = (V,E) and S = (V ′, E′), respectively.

Example 1. Let (T ,ΘT ) be a probability tree with n ∈ N root-to-leaf
paths and no additional constraints on the probability mass function πθ,T .
Then the vector πθ,T ∈ ∆◦n−1 can take any value within the probability sim-
plex. Hence, P(T ,ΘT ) = ∆◦n−1. We will call this a saturated tree model.
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Let F = (v0, {e1, . . . , en}) be a floret with an associated parameter vector
θF =

(
θ(ei) | i ∈ [n]

)
∈ ∆◦n−1. Then (F , {θF}) is statistically equivalent to

the saturated tree (T ,ΘT ) if the probabilities associated with the same atoms
are identified: so θ(ei) = πθ,T (ιT (ωi)) for all ι−1

F (ei) = ωi ∈ Ω, i ∈ [n].
In Section 3.3 we show that the map (T ,ΘT ) 7→ F corresponds to a

substitution of the monomials πθ,T (λi) =
∏
e∈E(λi)

θ(e) 7→ θ(ei) for i ∈ [n],
and that a floret is a graphically minimal representation of a saturated model.

A tree model does not need a priori an underlying set of random variables.
However, sometimes a problem is naturally defined through the relationships
between a set of prespecified random variables. When this is so, the following
semantics enable us to exploit the extra information coded in these. Con-
sider a parametric model in the positive discrete distribution framework [31]
where a discrete probability space (Ω, σ(Ω), P ) has a strictly positive mea-
sure P = Pθ, with θ ∈ Θ ⊆ Rd, d ∈ N. Let X = (X1, . . . , Xm) : Ω→ X be a
vector of discrete random variables on that space, where X = X1× . . .×Xm
denotes a product space, m ∈ N. Suppose this probability measure admits
a monomial parametrization implied by

(2.10) Pθ(X = x) = pθ(x) =
∏
i∈[k]

θ(xAi) for all x ∈ X

where xAi denotes the vector (xj | j ∈ Ai) ∈ XAi =×j∈Ai Xj for index sets

Ai ⊆ [m], i ∈ [k] and k ∈ N [18]. Then Ψ : θ 7→ pθ =
(
pθ(x) | x ∈ X

)
defines a discrete parametric statistical model PΨ as in (2.1). If PΨ is also
a tree model, then any of its representations (T ,ΘT ) can be linked to the
underlying probability space via an embedding from the state space of X,
rather than Ω, into the set of paths

ιT = ιT ,A : X1 × X2 × . . .× Xm → Λ(T )

(x1, . . . , xm) 7→
(
e(xA1), . . . , e(xAk)

)(2.11)

such that πθ,T (ιT (x)) = Pθ(X = x) for all x ∈ X [30].
We assume in (2.11) that those index sets which are non-empty Ai 6= ∅

are pairwise different, Ai 6= Aj for i 6= j. However, we do not demand
that their union necessarily covers all indices 1, . . . ,m. This is because some
combinations of x1, . . . , xm might not make sense in a modelling context. In a
tree model we can use shorter root-to-leaf paths to visualize these instead of
retaining redundant information in the product space X1×X2×. . .×Xm [15].
The latter approach is often necessary when encoding a problem as a BN.

If in (2.11) the set A = {A1, . . . , Ak} does not depend on x ∈ X we call
the staged tree X-compatible [6]. Then an edge’s e(xAi) = (v, v′) meaning
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of “passing from situation v to v′” can be equivalently read as “xAi\Ai−1

happened’” given that “xAi−1 happened before”, for Ai−1 =
⋃
j∈[i−1]Aj and

i ≥ 2. Thus, the primitive probabilities θ(xAi) = θ(e(xAi)) from (2.10) are
potentials [20, 21] with a conditional or marginal meaning that depends on
the graph T and its sum-to-1 conditions in ΘT . Floret parameter vectors of
the type θv =

(
θ(xAi) | xAi\Ai−1 ∈ XAi\Ai−1

)
are then rows of conditional

probability tables. Examples 3 and 5 illustrate this.
Note that the pre-order on vertices, edges and florets in an X-compatible

staged tree can be translated into a total order on the components of X.
See Section 4 for an application.

2.2. Staged tree models. Probability trees are most interesting when two
or more vectors of floret parameters are hypothesized to take the same val-
ues, and the distributions πθ,T factorize according to a “coloured” graph T .
We will analyze this type of model in the remainder of this text.

Definition 2 (Staged tree). Let (T ,ΘT ), T = (V,E), be a probability
tree. We define an equivalence relation ∼ on V ×V which relates two vertices
v ∼ w if and only if their parameter vectors coincide θv = θw, for v, w ∈ V .
Then v and w are said to be in the same stage. If this staging is non-trivial,
(T ,ΘT ) is said to be a staged tree, otherwise a saturated tree.

If Λ(v)∩Λ(w) = ∅ for any related v ∼ w, we will call (T ,ΘT ) square-free.

When having a preassigned set of random variables, setting floret vectors
of conditional probabilities equal to each other can be interpreted as specify-
ing a set of context-specific conditional independences as in [3]. Models with
these types of constraints are now widely used in BN modelling, especially
when the domain of application is large. In tree models, given two vertices
are in the same stage and a unit arrives at one of them, the transition prob-
abilities to all children of that vertex will not depend on which of the two
vertices the unit is actually in, and will thus not depend on the way that
unit took to arrive in that situation. The edge (or transition) probabilities
in these stages are thus in a sense independent of their history or location
in the graph [35]. More intuition on stages can be found in [30].

In Section 3, we interpret the stage structure of a probability tree as a set
of linear constraints on the primitive probabilities.

Example 2. The staged tree (T ,ΘT ) depicted in Fig. 1 is a simplified
detail of the graph analyzed in [2]. Here, every atom is represented by a
root-to-leaf path with two edges and, via an embedding ιT , corresponds to a
possible history of a child in the study [11]. The first edge of each such path
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social-economic

background
// life events //

v5 •
v1 •

+ 33
− // v6 •

v2 •
+ //
− ++

v7 •
v8 •

v0 •

++

::

+−

66

−+

++
−− ((

v9 •
v3 •

+ 33
− // v10 •

v4 •
+ //
− ++

v11 •
v12 •

Figure 1. A staged tree (T ,ΘT ), simplified version taken from [2]. We label the edges by
+ and −, corresponding to ‘high’ and ‘low’, respectively. See Example 2 for a discussion.

depicts the socio-economic background of a child, the second corresponds to a
number of life events. For instance, λ = ((v0, v2), (v2, v8)) ∈ Λ(T ) is in one-
to-one correspondence with ‘high social status, low economic background, low
number of life events’.

Using stages, we can embed information of the type ‘if we know the so-
cial status of a child, then its number of life events does not depend on its
economic situation’. In Fig. 1, the vertices v1 ∼ v2 and v3 ∼ v4 are then re-
lated. So the primitive probabilities of the edges of the corresponding florets
are identified, θ(vi, vj) = θ(vi+1, vj+2) for j = 2i+ 3, 2i+ 4 and i = 1, 3.

Denote by UT the by the relation ∼ induced partition on the vertex set,
the stage set of (T ,ΘT ). We call elements in ŨT = {u ∈ UT | #u > 1} non-
trivial stages. If ŨT 6= ∅ then (T ,ΘT ) is also called a coloured tree, and we
actually assign all vertices in the same stage the same colour [2, 30]. We
write θu to denote a representative of the set {θv | v ∈ u}, u ∈ UT .

Every staged tree (T ,ΘT ) has a corresponding saturated tree (T ,ΘT )sat =
(Tsat,ΘTsat) with Tsat = T and ΘT ⊆ ΘTsat where all stages are trivial. Be-
cause stage structure imposes contraints on the underlying probability mass
function, a staged tree (T ,ΘT ) represents a submodel P(T ,ΘT ) ⊆ P(T ,ΘT )sat

of a model represented by (T ,ΘT )sat. Clearly, P(T ,ΘT )sat = ∆◦n−1, as we have
seen in Example 1.

Note that the map θv 7→ θu for v ∈ u, u ∈ UT , induces a projection

Π : ×
v∈V

∆◦#E(v)−1 →×
u∈UT

∆◦#E(u)−1(
θv | v ∈ V

)
7→

(
θu | u ∈ UT

)(2.12)

onto a usually lower dimensional space, because setting primitive probabil-
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ities equal to one another reduces the number of free parameters. E(u) in
(2.12) denotes the edge set E(v) of one fixed representative v ∈ u. For in-
stance, in Example 2 Π maps a vector of all primitive probabilities from
∆◦4−1×i∈[4] ∆◦2−1 onto the space ∆◦4−1 ×∆◦2−1 ×∆◦2−1.

The staging of a probability tree can respect certain symmetries: A vertex
v ∈ V , in T = (V,E), is said to be at level i of the tree T if the subpath from
v0 to v has i edges, i ∈ N. We call a staged tree stratified if all vertices in the
same stage are also at the same level. The symbol [T ,ΘT ]strata ⊆ [T ,ΘT ]
denotes the set of statistically equivalent stratified tree representations of a
model P(T ,ΘT ). This class is amenable to various fast search algorithms [4, 6].

In particular, an X-compatible staged tree is stratified only if its stage
constraints are of the form

(2.13) θ(xA) = θ(x′A) for some xA, x
′
A ∈ XA

where A ⊆ [m]. This is the case for instance in (context-specific) BN models.
Importantly, the stratification constraint (2.13) can be used to prevent an
identification of primitive probabilities which might not make sense in a
modelling context: see Section 4.1.

Note that stratified trees are always also square-free.

Example 3 (Example 2 continued). Let S, E and L be three binary
random variables with a strictly positive joint probability mass function

(2.14) pθ(s, e, l) = θ(s, e)θ(s, e, l)

for all (s, e, l) ∈ {0, 1}3. Here, S represents the social status of a child, E the
economic background and L the number of life events. We use the numerical
values 1 for ‘high’ and 0 for ‘low’. Then the staged tree (T ,ΘT ) in Fig. 1 is
(S,E,L)-compatible and stratified. The staging of (T ,ΘT ) is equivalent to
the conditional independence assumption E ⊥⊥ L | S. This also can be repre-
sented by the three Markov-equivalent DAGs E → S → L, E ← S ← L and
E ← S → L [1]. Note that both the staged tree and DAG model represen-
tations assert that θ(s, e, l) = θ(s, e′, l) for e 6= e′ and s, l = 0, 1, as in
(2.13). We will henceforth write θ(s, l) = θ(s, e, l) for primitive probabilities
belonging to vertices in those stages.

3. An algebraic characterization of staged tree models. Our
analysis in this section starts by characterizing the subclass [T ,ΘT ]c ⊆
[T ,ΘT ] of those statistically equivalent probability trees which share the
same associated polynomial c, as defined below. Substitution operations on
c will then enable us to generalize from [T ,ΘT ]c to [T ,ΘT ]. Theorem 1 finds
a complete characterization of [T ,ΘT ] for any staged tree model P(T ,ΘT ).
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3.1. Stage ideals and polynomials. Some of our results are expressed al-
gebraically, so we first recall some notation from [7]. This enables us to move
from a setting where parameters are place holders for as yet undetermined
values to a setting where parameters are elements of some formal algebraic
structure, see e.g. [9, 24] and [8, 15].

Let S = {s1, . . . , sd}, d ∈ N, be a finite set of indeterminates. A (real)
polynomial ring (Rd[S],+, ·) is a commutative ring whose elements are for-
mal polynomials f =

∑
i∈[n] ris

αi,1
1 s

αi,2
2 · · · sαi,dd with coefficients ri ∈ R and

exponents αi ∈ Nd0, for i ∈ [n] and n ∈ N. Then f = g ∈ Rd[S] in a formal
sense if and only if f = g : Rd → R coincide as functions. The map between
an interpretation of a polynomial as an element of a ring structure and as a
function is called the evaluation homomorphism.

An ideal I ⊆ Rd[S] is a set of polynomials where f ·g ∈ I for all f ∈ Rd[S]
and g ∈ I, and where (I,+) is a subgroup of (Rd[S],+). In particular,

(3.1) 〈g1, . . . , gk〉 =
{∑
i∈[k]

figi | fi ∈ Rd[S], i ∈ [k]
}
⊆ Rd[S]

defines an ideal generated by polynomials g1, . . . , gk ∈ Rd[S]. The set of zeros
of these

(3.2) V (I) =
{
x ∈ Rd | g(x) = 0 for all g ∈ I

}
is called a variety.

The relation ∼ on Rd[S] × Rd[S] which is defined by g ∼ h if and only
if g − h ∈ I, induces a ring of residue classes Rd[S]/∼ = Rd[S]/I, called a
factor ring. Note that by construction, the ideal I ⊆ Rd[S] is the residue
class of all zeros in Rd[S]/I.

The properties of ideals and varieties have already been widely and suc-
cessfully used to capture and exploit the structure of (graphical) statistical
models, see e.g. [9, 10, 13, 14]. In Section 2.2 we provided a graphical and
geometric interpretation of the colouring in a given staged tree. This corre-
spondence is expressed in terms of ideals and polynomial rings below.

Let PΨ be a discrete parametric statistical model with monomial para-
metrization Ψ : θ 7→

(
θ
αi,1
1 · · · θαi,dd | αi ∈ Nd0, i ∈ [n]

)
as in Section 2.1. In an

algebraic framework, we call the atomic probabilities in that vector atomic
monomials. By abuse of notation, we always let Rd[θ1, . . . , θd] = Rd[Θ] de-
note the real polynomial ring in all indeterminates in a model parametrized
by Ψ : Θ → PΨ. In tree models P(T ,ΘT ), that ring is denoted R[ΘT ] =
Rd[θ(e) | e ∈ E] with indeterminates given by primitive probabilities, for
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12 CH. GÖRGEN AND J. Q. SMITH

some d ∈ N. This is again particular to one parametrization ΨT and one
representation (T ,ΘT ), T = (V,E).

As in Section 2.2, let P(T ,ΘT ) ⊆ P(T ,ΘT )sat . The map linking (T ,ΘT )sat to
(T ,ΘT ) is now the ring homomorphism

ΦT : R[ΘTsat ]→ R[ΘT ],

θ(e) 7→ θ(e′) whenever e ∈ E(v), e′ = E(u) and v ∈ u ∈ UT
(3.3)

in analogy to the projection in (2.12). The kernel ker(ΦT ) equals the ideal

(3.4) IT = 〈θ(e)− θ(e′) | e ∈ E(v), e′ ∈ E(u) and v ∈ u ∈ UT 〉.

Note that the degree 1 binomials generating IT capture the componentwise
equations θv = θv′ whenever v, v′ ∈ u. We call IT the stage ideal of (T ,ΘT ).
The isomorphism theorem [7] then implies that the factor ring R[ΘTsat ]/IT
is isomorphic to the polynomial ring R[ΘT ]. This can be interpreted as first
drawing a saturated tree and then embedding stage information yields the
same model representation as the one obtained by directly drawing a staged
tree.

The variety belonging to the stage ideal equals

(3.5) V (IT ) =
{
θ(e) = θ(e′) | e ∈ E(v), e′ ∈ E(u) and v ∈ u ∈ UT

}
.

Note that V (IT ) equals the space spanned by all indeterminates in ΘT ,
as a subset of the one spanned by all indeterminates in ΘTsat . Thus, the
parameter set of a staged tree can be identified from its saturated version
together with the stage ideal.

The equations in primitive probabilities constraining a staged tree can be
easily translated into polynomial constraints on atomic probabilities πi =
Pθ(ωi), i ∈ [n]. These equations specify an ideal in a ring Rn[π1, . . . , πn]
which is the same across all graphical representations of a staged tree model
P(T ,ΘT ). Then P(T ,ΘT ) ⊆ ∆n−1 can be characterized as the variety of this
ideal of model invariants, and is thus an algebraic statistical model [10].

We illustrate the relationship between these two representations below.

Example 4 (Examples 2 and 3 continued). The stage ideal of the staged
tree (T ,ΘT ) in Fig. 1 equals

(3.6) IT = 〈θ(s, e, l)− θ(s, e′, l) | e 6= e′, s, l = 0, 1〉

in the polynomial ring R[ΘTsat ] = R12[θ(s, e), θ(s, e, l) | s, e, l = 0, 1] of the
saturated model. As above, the factor ring R[ΘTsat ]/IT is isomorphic to the
polynomial ring R[ΘT ] = R8[θ(s, e), θ(s, l) | s, l = 0, 1] of the staged tree.
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In [9, 13], the authors algebraically characterize the conditional indepen-
dence assumption in this model using the cross-product differences in

(3.7) Ip = 〈p000p101 − p001p100, p010p111 − p011p110〉

in a polynomial ring R[p] = R8[psel | s, e, l = 0, 1] with psel = pθ(s, e, l) for
s, e, l ∈ {0, 1}, from (2.14). These constraints on the joint probabilities are
the same for every DAG representation of the model and hence index the
Markov-equivalence class. They could not be read from a staged tree.

Note that both IT and V (IT ) are much simpler objects than Ip and V (Ip).
A reparametrization between the two model representations is given by the
ring homomorphism Φ : R[p] → R[ΘT ], psel 7→ θ(s, e)θ(s, l). The inverse of
this map is rational, calculated using the law of total probability,

(3.8) Φ−1 : θ(s, e) 7→ pse0 + pse1, θ(s, l) 7→
ps0l + ps1l

ps00 + ps01 + ps10 + ps11
.

Thus, whilst Φ is an invertible function and both ideals capture in this sense
the same information, Φ is not a polynomial ring isomorphism, and IT and
Ip are very different objects.

In this paper we develop an alternative but rather different algebraic ap-
proach to the standard one of using ideals and varieties, which is more intu-
itive for staged trees. By using the polynomial defined below we are able to
recover constructively all possible graph representations of the same model,
a process not possible using only stage ideals or ideals of model invariants. In
particular, when treating primitive probabilities as formal indeterminates,
we can easily move from one representation of a model to the next, ignoring
sum-to-1 conditions (and thus the normalization of the underlying proba-
bility mass function) which come for free in tree models: see Lemma 1.

3.2. Polynomially equivalent staged trees and the swap operator. Follow-
ing [8, 15, 25], we define:

Definition 3 (Interpolating polynomial). Let PΨ ⊆ ∆◦n−1 be a discrete
statistical model with underlying discrete space Ω and monomial parametriza-
tion Ψ : θ 7→ pθ ∈ PΨ, θ ∈ Θ. A network polynomial is of the form

(3.9) cg,Ψ(θ) =
∑
ω∈Ω

g(ω)pθ(ω)

where g : Ω→ R is a polynomial. If g = 1, then the formal sum c = c1,Ψ is
called an interpolating polynomial for PΨ.
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14 CH. GÖRGEN AND J. Q. SMITH

Note that in [8], g = 1A is an indicator of events A ∈ σ(Ω) and cg
is called the network polynomial of a discrete Bayesian network. By [36],
indicator functions are indeed polynomials. In other publications we have
already demonstrated the efficacy of using network polynomials in calculat-
ing marginal and conditional probabilities in staged tree models [15] and for
sensitivity analysis in models with a multilinear parametrization [22].

If the parametric model in the definition above is a staged tree model
P(T ,ΘT ) then we also write cT =

∑
λ∈Λ(T ) πθ,T (λ) ∈ R[ΘT ] for the interpo-

lating polynomial c1,ΨT = cT of a specific representation (T ,ΘT ) ∈ [T ,ΘT ].
Note that (T ,ΘT ) is square-free if and only if its parametrization ΨT is
multilinear, so if and only if cT is linear in every indeterminate in R[ΘT ].

We are now able to examine a set of properties of the interpolating poly-
nomial as an object in a polynomial ring. We first define a class of tree
representations for which the interpolating polynomial is formally invariant.

Definition 4 (Polynomial equivalence). Let (T ,ΘT ), (S,ΘS) be two
staged trees with the same underlying space Ω. The trees are polynomially
equivalent if and only if they have the same sets of primitive probabilities
and their network polynomials coincide formally cg,S = cg,T ∈ R[ΘT ] for all
g ∈ R[ΘT ].

Henceforth, the symbol [T ,ΘT ]c denotes a class of polynomially equiva-
lent staged trees sharing the same interpolating polynomial c. Example 5 will
present staged trees which are polynomially equivalent to the one analyzed
in Examples 2 to 4.

When two network polynomials are equal for any polynomial g, they
are also termwise equal and the corresponding atomic probabilities can be
identified. So we have the following:

Lemma 2. Polynomial equivalence implies statistical equivalence.

In general, polynomial equivalence is not necessary for statistical equiv-
alence, see e.g. Example 1. However, Examples 6 and 7 present interesting
cases where necessity holds. Note that by Lemma 1, the composition of floret
parameter vectors between polynomially equivalent trees can differ. We will
thus think of polynomially equivalent trees as a set of graphical representa-
tions of a model which share the same algebraic representation in terms of
potentials (see page 8) with different normalizations.

By Definition 3, the interpolating polynomial cT of a staged tree is simply
a sum over all atomic monomials, calculated as the product of all edge labels
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along a root-to-leaf path in T = (V,E). Centrally, the graph also yields a
way to parenthesize the interpolating polynomial: For every floret Fv where
v ∈ V is the parent of a leaf, we sum all components of its parameter vector
θv and multiply the result by its parent label θ(pa(v), v). We then sum
the result over the parent’s labels θpa(v). By repeating this until all floret
parameter vectors are summed and pa(v) = v0, the interpolating polynomial
can then be written in terms of the nested factorization

(3.10) cT (θ) =
∑

v1∈ch(v0)

θ(v0, v1)
(∑
v2∈ch(v1)

θ(v1, v2) . . .
(∑

vk∈ch(vk−1)

θ(vk−1, vk)
))
.

More generally,

Definition 5 (Tree compatibility). Let PΨ be a discrete parametric
model with monomial parametrization and associated polynomial ring Rd[Θ].
We call any polynomial c ∈ Rd[Θ] tree compatible if it admits a representa-
tion of the form

(3.11) c(θ) =
∑

θ1∈A1

θ1

(∑
θ2∈A2(θ1)

θ2

(∑
θ3∈A3(θ2)

θ3 . . .
(∑

θk∈Ak(θk−1)

θk

)))
where every #A1,#Aj(θj−1) ≥ 2 for j ∈ [k], k ∈ N. We write s(c(θ)) for
one fixed order of summation of the terms in c(θ) as above, and call this a
tree-compatible factorization.

The interpolating polynomial cT (θ) =
∑

x∈X πθ,T (ιT (x)) of every X-
compatible tree (T ,ΘT ) admits an explicit tree-compatible factorization

(3.12) cT (θ) =
∑

xA1
∈XA1

θ(xA1)
(∑
xA′2
∈XA′2

θ(xA2)
(∑
xA′3
∈XA′3

θ(xA3) . . .
(∑
xA′

k
∈XA′

k

θ(xAk)
)))

where the index sets Ai are as in (2.11) and A′i = Ai \Ai−1, i ≥ 2. Note here
that by Proposition 1 below, the embedding in (2.11) can be recovered from
(3.12). Every factorization like the one above together with its correspond-
ing embedding then interpret the underlying monomial parametrization ΨT
in a non-commutative way. Different tree-compatible factorizations of the
interpolating polynomial thus correspond to different normalizations of the
underlying probability mass function: see also Example 5 below.

The factorization (3.12) provides a very efficient way to compute joint
probabilities from marginals in a BN model [20] and comes for free when
representing a discrete BN by a stratified tree.
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16 CH. GÖRGEN AND J. Q. SMITH

An important aspect of the above result is that it is reversible: not only can
we easily read a polynomial from a tree graph, but we can also construct a
tree graph from a tree-compatible factorization. In addition, all polynomially
equivalent staged trees arise from a tree-compatible reordering of a given
summation. Each of these gives a different representations within the same
statistical equivalence class.

Proposition 1. Let PΨ be a discrete parametric model with multilinear
monomial parametrization Ψ and interpolating polynomial c = c1,Ψ ∈ Rd[Θ].
Then there exists a probability tree (T ,ΘT ) with P(T ,ΘT ) = PΨ if and only
if c is tree compatible.

The map c : {s(c(θ)) | s} → [T ,ΘT ]c, s(c(θ)) 7→ (T ,ΘT ) is bijective.

The above proposition provides us with a powerful tool to decide if a
parametric model can be represented by a probability tree. This represen-
tation is a staged tree only if all constraints on the model are of the form
Ai+1(θi) = Aj+1(θj) for some i 6= j in the notation of Definition 5. Note
that because Ψ above is always multilinear, it follows that this tree is also
square-free. This constraint is necessary in Proposition 1 because only then is
πθ,T : Λ(T )→ R[ΘT ] a formally injective function, implying we can uniquely
identify atoms (or root-to-leaf paths) with their atomic monomials.

Now, the result above provokes two natural questions. First, how can we
decide whether or not a given interpolating polynomial c ∈ Rd[Θ] is tree
compatible? We can answer this question based on calculating the greatest
common divisor of certain terms in c and performing a sequence of ideal
membership tests for projections of c onto subrings of Rd[Θ].

The second question is: how do we infer all the possible orders of brack-
eting of a tree-compatible interpolating polynomial cT ? If we are able to do
this, then, using the map c in Proposition 1 and the construction outlined
in the proof, we can obtain all tree representations in [T ,ΘT ]c. Either by a
direct elicitation of a model or by applying a model selection methodology,
typically there is a particular staged tree representation whose interpreta-
tion we then need to draw out. A characterization of all its polynomially
(and hence statistically) equivalent representations will then be vital if this
interpretation is to be given unambiguously. So we next study how to find
different tree-compatible factorizations of a given polynomial.

Clearly, a transformation between two tree-compatible factorizations of
an interpolating polynomial is an application of the distributive property of
addition and multiplication in the ring (R[ΘT ],+, ·). We show below that a
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map between polynomially equivalent staged trees can then be characterized
by a finite number of corresponding intuitive graph transformations.

Let T = (V,E). Let T ′ = (V ′, E′) where (V ′, E′) ⊆ (V,E) be an event tree
with induced edge labels θ(e′) = θ(e) for e′ = e ∈ E′∩E. We henceforth call
(T ,ΘT )′ a (probability) subtree and write T ′ ⊆ T and (T ,ΘT )′ ⊆ (T ,ΘT ).
Call a probability subtree an adjacency subtree if it is of the following form:
T ′ has two levels and all children of its root v′0 ∈ V ′ are in the same stage
u ∈ ŨT in T ⊇ T ′. All florets Fv′ with v′ ∈ ch(v′0) are induced by T , in the
sense that all edges in E(v′) ⊆ E are also in E′. If v′0 ∈ u′ is in a non-trivial
stage u′ ∈ ŨT in T , then also the root-floret Fv′0 of T ′ is induced by T .

The interpolating polynomial of an adjacency subtree (T ,ΘT )′ equals

(3.13) cT ′(θ) =
∑

e′∈E(v′0)

θ(e′)
(∑
e∈E(u)

θ(e)
)

=
∑

e∈E(u)

θ(e)
(∑
e′∈E(v′0)

θ(e′)
)

with E(u) = E(v) for one v ∈ u. Thus, by Proposition 1, there is precisely
one staged tree (T ,ΘT )′u which is polynomially equivalent to (T ,ΘT )′: this
is the one given by the second tree-compatible factorization in (3.13). Also,
(T ,ΘT )′u is a subtree of the tree (T ,ΘT )u which is polynomially equivalent
to (T ,ΘT ) and coincides with that tree everywhere except on (T ,ΘT )′.

Definition 6 (Swap). Let (T ,ΘT ) be a staged tree, (T ,ΘT )′ ⊆ (T ,ΘT )
an adjacency subtree with stage u ∈ ŨT . Denote by (T ,ΘT )′u the staged tree
which is polynomially equivalent to (T ,ΘT )′, and (T ,ΘT )′u ⊆ (T ,ΘT )u. We
then call the map s : (T ,ΘT ) 7→ (T ,ΘT )u a swap.

Figure 2 illustrates an adjacency subtree and a swap. We can see there
that this operation does indeed ‘swap’ the order of edges before and after the
stage u. By [35], edge-centred events Λ(e), e = (v′0, v) ∈ E′, on the first level
of an adjacency subtree are independent of those Λ(e′), e′ = (v, v′) ∈ E′, on
the second level. Our very plausible discovery is that for these independent
events the order Λ(e) ≺ Λ(e′) is reversible within a statistical equivalence
class, using the swap operator. This result is used in a causal analysis in
Section 4.

We henceforth call a composition of swaps for which floret parameter
vectors are invariant a floret-swap. For instance, the swap in Fig. 2 is not a
floret-swap because the root-vector (θ1, θ2, θ3) ∈ ΘT is not an element of ΘS ,
and conversely (θ1, θ4, θ5) ∈ ΘS \ΘT . Importantly, (T ,ΘT ) and (S,ΘS) thus
have different local sum-to-1 conditions on their primitive probabilities. By
Lemma 1 and 2, both are still representations of the same model. So even if
the numerical value of say θ1 = θ(e1) is different in (T ,ΘT ) and (S,ΘS)—we
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• λ1 • λ2

•

θ1 55

θ2 //

θ3
))
• v1

θ4 66

θ5 // • λ3 • λ5

• v2 θ4 //

θ5
((
•

θ6 66

θ7 //

θ8
((
• λ6

(T ,ΘT ) • λ4 • λ7

• λ′1 • λ′4

•

θ′1 66

θ′5
//

θ′4
((

• v1

θ′3 66

θ′2
// • λ′3 • λ′5

• v2 θ′3
//

θ′2
((

•

θ′6 66

θ′7
//

θ′8
((

• λ′6

(T ,ΘT )u • λ′2 • λ′7

Figure 2. Two polynomially equivalent staged trees with the same indeterminates θi = θ′i
and identified root-to-leaf paths λi = ιT ◦ ι−1

S (λ′i) for all i ∈ [8]. The adjacency subtrees
(T ,ΘT )′ ⊆ (T ,ΘT ) and (T ,ΘT )′u ⊆ (T ,ΘT )u are depicted by dotted lines and share the
stage u = {v1, v2}. The map s : (T ,ΘT ) 7→ (T ,ΘT )u is a swap. See page 17.

have indicated this using lables θ1 = θ′1 in Fig. 2—via a renormalization it
is still the probability of the event ι−1

T (Λ(e1)) ∈ σ(Ω). The meaning of this
parameter is thus unchanged and can be identified across different graphs.

A composition of swaps which permute two levels of a tree is called a
level-swap. Level-swaps map stratified trees into stratified trees: see again
Section 4 for an application.

We can now obtain the following result, which enables us to both graphi-
cally and algebraically move around a class of polynomially equivalent trees.

Proposition 2. Two square-free staged trees (T ,ΘT ), (S,ΘS) are poly-
nomially equivalent if and only if there exists a finite composition of swaps
s1, . . . , sl, l ∈ N, for which

(3.14) s = sl ◦ sl−1 ◦ . . . ◦ s1 : (T ,ΘT ) 7→ (S,ΘS).

Thus, the polynomial equivalence classes of staged trees can be fully char-
acterized by the local graph transformations given by swaps. Note that this
operator is a close tree analogue of an arc reversal in BN models. These,
just like swaps, allow one to traverse the class of all graphical representa-
tions of the same model [1], while renormalizing (but not marginalizing) the
associated probability mass function: see the example below.

Example 5 (Examples 2 to 4 continued). Consider again the staged tree
(T ,ΘT ) in Fig. 1. Its interpolating polynomial cT admits the following four
tree-compatible factorizations, in the notation of Example 3.

cT (θ) =
∑

s,e,l=0,1

pθ(s, e, l) =
∑

s,e=0,1

θ(s, e)
(∑
l=0,1

θ(s, l)
)

(3.15a)
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(S,L) E|S

•
•

e=0 44

1 // •
• 0 //

1 **
•
•

•

(s,l)=(0,0)

<<

(0,1)

88

(1,0)

++
(1,1) &&

•
•

0 44

1 // •
• 0 //

1 **
•
•

X Y

•
•

e=0 44

1 // •
• 0 //

1 **
•
•

•

(s,l)=(0,0)

==

(s,l)=(0,1)

88

(s,e)=(1,0)

**
(s,e)=(1,1) &&

•
•

l=0 44

1 // •
• 0 //

1 **
•
•

Figure 3. An ‘arc reversal’ staged tree
(S,ΘS)1 which is polynomially equiva-
lent to (T ,ΘT ) from Example 2, Fig. 1.
See Example 5.

Figure 4. A ‘twist’ staged tree (S,ΘS)2
from Example 5 which is polynomially
equivalent to the ones in Figs. 1 and 4.

=
∑
s,l=0,1

θ(s, l)
(∑
e=0,1

θ(s, e)
)

(3.15b)

=
∑
l=0,1

θ(0, l)
(∑
e=0,1

θ(0, e)
)

+
∑
e=0,1

θ(1, e)
(∑
l=0,1

θ(1, l)
)

(3.15c)

=
∑
l=0,1

θ(1, l)
(∑
e=0,1

θ(1, e)
)

+
∑
e=0,1

θ(0, e)
(∑
l=0,1

θ(0, l)
)
.(3.15d)

We denote the staged trees corresponding to (3.15a) to (3.15d) by (T ,ΘT ),
(S,ΘS)1, (S,ΘS)2 and (S,ΘS)3, respectively.

From Example 4, (T ,ΘT ) gives an alternative representation of a BN,
and we can label its levels by the random variables (S,E) and L|S. Now,
s1 : (T ,ΘT ) 7→ (S,ΘS)1 is a level-swap and (S,ΘS)1 in Fig. 3 represents
the joint variable (S,L) first and E|S last. Since (T ,ΘT ) and (S,ΘS)1 are
in the same polynomial equivalence class, we can deduce here that [T ,ΘT ]c

is sufficiently rich to contain tree representations which renormalize πθ,T to
πθ,S(ιS(s, e, l)) = θ(s, l)θ(s, e). See also Example 7.

Note that, unlike (S,ΘS)1, the staged tree (S,ΘS)2 = s2(T ,ΘT ) in Fig. 4
is not (S,E,L)-compatible. This tree now belongs to a different DAG X → Y
where

X =

{
(S,L) if S = 0

(S,E) if S = 1
and Y =

{
E|L if S = 0

L|E if S = 1.

We call such a transformation a twist. (S,ΘS)3 is also a twist of (T ,ΘT ).

The example above provides a very simple illustration of how the statis-
tical equivalence classes of a staged tree (or CEG) are so much larger than
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those of the BN. It also demonstrates how staged trees can implicitly gen-
erate relationships between new random variables, constructed as functions
of the original ones: possibly useful in later interpretative analysis. A more
detailed discussion of this process is given in Section 4.1. See also [6, 30, 35].

Note that by Example 1, the polynomial equivalence class of a staged tree
can be a proper subclass of its statistical equivalence class. In fact, because
saturated probability trees have no adjacency subtrees, we find:

Corollary 1. Let (T ,ΘT ) be a saturated probability tree with interpo-
lating polynomial c = cT . Then #[T ,ΘT ]c = 1.

We will need this rigidity of polynomial equivalence in cases where we
want to prevent a renormalization of the underlying probability mass func-
tion or to maintain a fixed order of edge-centred events, as in Example 6
below. The following subsection outlines how to impose or avoid it when
necessary.

3.3. Statistically equivalent staged trees and the resize operator. We now
extend the characterization of polynomial equivalence classes [T ,ΘT ]c, with
c ∈ R[ΘT ], to classes [T ,ΘT ] of statistically equivalent staged trees. This
extension is based on reparametrizations between the associated polynomial
rings R[ΘT ] and R[ΘS ] for (T ,ΘT ), (S,ΘS) ∈ [T ,ΘT ].

Lemma 3. Let P(T ,ΘT ) be a staged tree model with an underlying prob-
ability space (Ω, σ(Ω), Pθ) and let (T ,ΘT ) ∈ [T ,ΘT ] be one representation
with embedding ιT : Ω → Λ(T ). Then for any A ∈ σ(T ) and g = 1A, the
network polynomial cg from (3.9) is a map

c1·,T : σ(T )××
v∈V

∆◦#E(v)−1 → [0, 1]

(A, θ) 7→ Pθ(ι
−1
T (A)).

(3.16)

Moreover, for any statistically equivalent (S,ΘS) ∈ [T ,ΘT ], the polynomials
c1·,T = c1·,S are equal as functions.

Thus, while the interpolating polynomial as a formal polynomial is unique
to a polynomial equivalence class, as a function it is unique to the whole
statistical equivalence class. Below, we define a second operator which uses
this result constructively.

We call the pair (T ,ΘT )′ ⊆ (T ,ΘT ) a (probability) subgraph if it is a
probability subtree whose root might have only one emanating edge (not
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two as required in an event tree). It is easily deduced that every staged
tree can be characterized by a set of probability subgraphs. For efficient
computation it is often helpful to replace these subgraphs by florets.

Definition 7 (Resize). Let (T ,ΘT ) be a staged tree and let

(3.17) r : (T ,ΘT ) 7→ (S,ΘS)

denote the map which transforms a probability subgraph (T ,ΘT )′ ⊆ (T ,ΘT )
into a probability tree (F , {θF}) whose graph is a floret with parameter vector
θF =

(
πθ,T ′(λ

′) | λ′ ∈ Λ(T ′)
)
. Then r maps the whole tree (T ,ΘT ) to a

probability tree (S,ΘS) which has that floret as a probability subtree and is
identical to (T ,ΘT ) otherwise.

We call r and its inverse r−1 naive resize operators, and a resize if (S,ΘS)
is a staged tree.

In terms of the atomic monomials, a naive resize performs a substitution
of products of primitive probabilities into degree 1 monomials. By Lemma 3,
atomic probabilities are invariant under this operation. The saturated tree
and its floret representation are again a natural example of this, see Ex-
ample 1. Thus, every naively resized r(T ,ΘT ) is clearly a probability tree
representing the same model P(T ,ΘT ) as (T ,ΘT ). The lemma below estab-
lishes various useful criteria under which r is a well-defined map between
two staged trees.

Lemma 4. Let (T ,ΘT ) be a staged tree and l ∈ N. A composition of
naive resizes r = rl ◦ . . . ◦ r1 applied to (T ,ΘT ) is a resize if one of the
following conditions is fulfilled:

a) r only acts on saturated probability subgraphs.
b) r only acts on probability subgraphs which are polynomially equivalent

to each other and whose vertices are not in the same stage as vertices
outside these subgraphs.

Note that case (a) in Lemma 4 enables us to contract uninformative, triv-
ially staged subgraphs into florets. Case (b) enables us to directly identify
atomic monomials of polynomially equivalent subgraphs rather than repeat-
ing stage equations edge by edge. Note that if these conditions are violated,
then a naive resize can take us out of the statistical equivalence class of a
staged tree, as illustrated below.

Example 6. Consider a BN given by binary random variables X1, X2

and X3, and a collider DAG X1 → X3 ← X2 [29]. We can represent this
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model by an X-compatible staged tree (T ,ΘT ) with embedding (x1, x2, x3)
ιT7→

(e1, e2, e3) where ei = e(x[i]), i = 1, 2, 3. Then because X1 ⊥⊥ X2, all children
of the root are in the same stage. So the subtree with root-to-leaf paths (e1, e2)
is an adjacency subtree. The primitive probabilities θ(e3) = θ(x{1,2,3}) how-
ever will be pairwise different for x[3] ∈ X[3] because X3 is not (conditionally)
independent of any of the other two variables.

The polynomial equivalence class of such a staged tree enables us to level-
swap X1 and X2, in the same way that we can permute these vertices in a
DAG representation, and keeps X3 fixed. This order of variables, ‘X1 and
X2 happen before X3’, can be interpreted as having a possible chronological
or causal meaning [23]. See again Section 4.

Now, any naive resize operator on (T ,ΘT ) would substitute factors in an
atomic monomial by terms of lower degree. As θ(e(x1, x2)) = θ(e(x′1, x2))
for all x2 ∈ X2, x1 6= x′1 ∈ X1, this information would then need to be
captured by a set of non-linear equations, or cross-product differences as in
Example 4. Any resize will thus not yield a staged tree model as defined
in Section 2 but a tree model analogous to a context-specific BN, namely a
graph together with some extra non-graphical information.

Now, for non-naive resizes, we obtain the following result which follows
immediately from Lemma 3.

Lemma 5. Let (T ,ΘT ) be a staged tree and r a resize operator. Then
(T ,ΘT ) and (S,ΘS) = r(T ,ΘT ) are statistically equivalent staged trees.

The example below draws the link to analogue operations in BN models,
and stresses that clever applications of resizes can enable us to restrict our
analysis of a model to sufficiently expressive polynomial equivalence classes.

Example 7. A decomposable BN, in accordance with [18], is a model
with a probability mass function of the form

(3.18) pθ(x) =
∏
j∈[k]

θ(xCj ) for all x ∈ X

where Ci, i ∈ [k], are cliques of an underlying DAG D, that is maxi-
mally complete sets of vertices, and Bj = Cj ∩ Cj, where Cj =

⋃j−1
i=1 Ci

for j = 2, 3, . . . , k, are separators. Then, XCj ⊥⊥ XCj−1\Bj | XBj for all
j = 2, 3, . . . , k.

The parametrization above is natural because there are no conditional in-
dependence constraints between variables within the same clique. Hence, in-
ference is often made from a junction tree [17] instead of from D, or in
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non-decomposable models from a DAG of chain components [19]. In analogy
to a resized staged tree, these are also graphically more compact versions of
the original DAG.

Note that in Example 3 we represented the DAG S → E → L by a staged
tree with two levels which was actually based on a DAG (S,E) → L. Using
the swap operator and an extension of the argument presented in Exam-
ple 5, we can show that the polynomial equivalence class of a staged tree
(T ,ΘT ) with a clique-parametrization πθ,T = pθ as in (3.18) contains all
X-compatible staged tree representations of the decomposable BN model.

The resize in conjunction with the swap operator now enables us to tra-
verse the whole equivalence class of a given staged tree.

Theorem 1. Two square-free staged trees (T ,ΘT ), (S,ΘS) are statis-
tically equivalent if and only if there exists a map m : (T ,ΘT ) 7→ (S,ΘS)
which is a finite composition of resizes and swaps.

In the last section we briefly demonstrate how the theorem above can be
used to enhance the interpretation of a discovered staged tree model.

4. Analyzing the statistical equivalence class of a staged tree.
Feasible orders of events in statistically equivalent staged tree representa-
tions are most easily analyzed within a polynomial equivalence class. This
is because, by Proposition 2, this class can be traversed using a swap s.
In particular, if (e, e′) ∈ Λ(T ′) is a root-to-leaf path in an adjacency sub-
tree (T ,ΘT )′ ⊆ (T ,ΘT ) then (e′, e) ∈ Λ(S ′) is a subpath in the image
s(T ,ΘT ) = (S,ΘS) with (S,ΘS)′ ⊆ (S,ΘS). Hence, whilst a naive read-
ing of (T ,ΘT ) might suggest that the event Λ(e) happens before Λ(e′), the
swap operation reverses this order. Since (T ,ΘT ) and (S,ΘS) are repre-
sentations of the same model (by Lemma 2), it would thus for example be
spurious to posit a temporal or causal order to these events. On the other
hand, if (e, e′) is not a root-to-leaf path in an adjacency subtree and for all
statistically equivalent representations (S,ΘS) ∈ [T ,ΘT ] the order of these
events is not reversed, then in the model P(T ,ΘT ) the event ι−1

T (Λ(e)) might

unambiguously be asserted to happen before ι−1
T (Λ(e′)) ∈ σ(Ω): see [28].

Consider the following application from the longitudinal experiment de-
scribed in Examples 2 to 5.

4.1. The statistical equivalence class of a CHDS staged tree. A staged
tree model of the Christchurch Health and Development Study (CHDS) [11]
has been closely analyzed, e.g. in [2, 6], and has been used to describe the
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Figure 5. a) The MAP staged tree (T ,ΘT ) from [6], and (b) a statistically equivalent
staged tree (S,ΘS). Here, S, E, H and L are the a priori problem variables and we label
edges by the outcomes ‘high’, ‘average’ and ‘low’, indicated as +, ◦ and −, respectively.

interplay of the social support S, the economic situation E, hospital ad-
missions H and possible life events L (e.g. divorce) of a group of children
in New Zealand over a fixed period of time. Each of these variables is dis-
crete and their simplified state spaces used in [2] are S = E = {high, low},
H = {yes, no} and L = {high, average, low}, respectively. In [6], using
an MAP search, the authors found the (S,E,H,L)-compatible staged tree
(T ,ΘT ) in Fig. 5 (a). We will now apply Theorem 1 to the statistical equiva-
lence class [T ,ΘT ] in order to enrich our understanding of the model P(T ,ΘT ).

Note first that there is a saturated subtree (T ,ΘT )′ ⊆ (T ,ΘT ) depicted
by dotted lines. By Corollary 1, the associated variables S ≺ E are thus
ordered in the polynomial equivalence class of (T ,ΘT ). This order cannot
be said to have been deduced from the model search. It is therefore helpful for
us to transform (T ,ΘT ) into the statistically equivalent staged tree (S,ΘS)
of Fig. 5 (b), using a resize operator as in Lemma 4 (a) which gives us the
necessary flexibility.
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The root’s edges e ∈ E(v0) ⊆ E in this new tree S = (V,E) can now
be assigned a meaning different from the one in (T ,ΘT ). For ei = (v0, vi)
and i = 1, 2, 3, the embedding ιS : S × E × H × L → Λ(S) interprets e1, e2

and e3 as ‘social background or economic status are high’ and ej = (v0, vj),
j = 4, 5, as ‘both social background and economic status are low, hospital
admission yes or no’. Hence, e1 denotes a ‘child from a wealthy background’,
e2 and e3 as ‘from a moderately wealthy background’ and e4 and e5 as ‘from
a poor background’. Note from the stages of (S,ΘS) that the probabilities
of certain numbers of life events are different for wealthy and poor children.
Interestingly, [5] names the access to credit as a possible monetary measure-
ment of poverty. So being able to borrow from a social network (indicated by
S) or having own savings (indicated by E) is a natural indicator of wealth.
This gives some external support for moving from (T ,ΘT ) to (S,ΘS), sug-
gested from the results of our automated MAP search on the CHDS data.
So henceforth let A be the random variable describing access to credit, with
state space A1 ∪ A2 = ι−1

T (Λ(T ′)) where A1 is the event that a child is
(moderately) wealthy, and A2 that it is poor in the sense above.

We next analyze the polynomial equivalence class [S,ΘS ]c for c = cS .
There are five adjacency subtrees (S,ΘS)1,. . . , (S,ΘS)5 in (S,ΘS). These
are the ones where v1, v2 ∈ ured, v1, v3 ∈ ured, v2, v3 ∈ ured, v4, v5 ∈ ugreen

and v6, v7 ∈ ublue have the same parent and are in the same stage, respec-
tively. Every such subtree depicts a context-specific conditional indepen-
dence on the problem variables, as stated above and outlined in Section 3.1.
There are 25 = 32 possible representations in this polynomial equivalence
class. Now, the swaps s1, s2 and s3 which act on (S,ΘS)1, (S,ΘS)2 and
(S,ΘS)3, respectively, all change the order of A ∈ A1 and H. The swaps
s4 and s5 acting on the subtrees (S,ΘS)4 and (S,ΘS)5 change the order
between A ∈ A2 and L. It would thus be spurious to assert a potentially
causal or chronological order on these events and random variables.

However, there is no staged tree in the polynomial equivalence class
[S,ΘS ]c that would allow for the total order L ≺ H. This is because no
composition of the swaps s1, . . . , s5 can form a level-swap on (S,ΘS). So a
model which treats L as an explanation variable of the response variable H
as in the study [2] is less supported by the data than one treating H as an
explanatory variable of L as in [6]. Of course this deduction needs the caveat
that there exists a reasonably high scoring staged tree model which does em-
bed this reversal. So evidence for the chosen order is quite weak. However, it
is nevertheless formally suggested in the unambiguous way we discuss above.
Note that no deductions about an ordering of variables were possible within
the original BN representation of the data because the MAP model turns
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out to be decomposable. This demonstrates that the extra structure of the
staged tree enables us to draw out new potential causal hypotheses that
could not be discovered when using more conventional graphical methods.

The statistical equivalence class [T ,ΘT ] is very large. It contains nearly
one thousand elements. In particular, through examining how the stratifi-
cation can be maintained using certain resize operators, we can make more
specific assertions about the interplay between hospital admissions and life
events, conditioning on whether or not a child is poor. Similarly, if we first
swap and then resize saturated subtrees in (T ,ΘT ), we can obtain state-
ments on new variables (S,H) and E. The statistical equivalence class of
the MAP tree found in [2] and analyzed in Examples 2 to 5, where during
the search the order of variables was restricted to S ≺ E ≺ L ≺ H, is
similarly rich: we count more than five hundred elements in the polynomial
equivalence class of one particular staged tree representation alone.

Thus, knowing the graphical structure of all elements in the statistical
equivalence class of a staged tree enables us to analyze all representations
of the same model, so all different equivalent ways of explaining the data.
Furthermore, although we do not give details here, knowing that so many
different graphs actually all represent the same model can significantly speed
up the search across these representations of a set of problem variables:
performing model search on the equivalence classes rather than on the staged
trees themselves.

5. Discussion. In this paper we have been able to show that a charac-
terization of staged trees in terms of their interpolating polynomial provides
an elegant way to fully analyze equivalence classes of these models.

Throughout, we have been pointing to putative causal interpretations. It
has been argued by other authors, e.g. [28], that in fact causal hypotheses
are most easily drawn from and analyzed in tree graphs. In a forthcoming
publication we will use the results above as the basis for developing a more
detailed analysis of tree-based causality in comparison to analogous concepts
developed for BN models [23, 32].

Similarly, the theory developed in this paper naturally extends into the
domain of algebraic and differential geometry, just as with BN models [9]. In
a different publication, algebra will further help us to define a fast algorithm
to construct graphical model representations from a given interpolating poly-
nomial.

We believe that in the future this will provide very promising grounds
of research that will help guide statistical inference in general and causal
inference in particular.
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APPENDIX A: PROOFS OF RESULTS

Proof of Lemma 2. Let (T ,ΘT ) and (S,ΘS) be polynomially equiva-
lent. Set gω = 1ω for any ω ∈ Ω. By Definition 4, the network polynomials
cgω ,S = cgω ,T are equal and hence

(A.1) c1ω ,S = πθ,S(ιS(ω)) = πθ,T (ιT (ω)) = c1ω ,T

for all ω ∈ Ω. Hence, the terms of cgω ,S and cgω ,T coincide termwise. Thus, by
the evaluation homomorphism, the atomic probabilities also coincide pair-
wise. So the functions πθ,S = πθ,T are equal. Finally, by definition, (T ,ΘT )
and (S,ΘS) are statistically equivalent.

Proof of Proposition 1. For saturated models, a parametrization in
terms of atomic probabilities is tree compatible. So in this case Example 1
yields the claim. Assume now PΨ is not saturated and Ψ is multilinear.

Sufficiency of the first claim is straight forward. Indeed, by Definition 5
and the nested factorization in (3.10), the interpolating polynomial of a
probability tree model is tree compatible.

For necessity assume now the interpolating polynomial c = c1,Ψ ∈ Rd[Θ]
of PΨ is tree compatible and given by the factorization s(c(θ)) in (3.11).

Let T = (V,E) be a directed tree whose florets are labelled by the subsums
of (3.11), Fj = (vj , {e | θ(e) = θj ∈ Aj(θj−1)}), j ∈ [k], and partially ordered
by reversing the steps that gave us (3.10) above. Then we can define a map
c : s(c(θ)) 7→ (T ,ΘT ). This inductively labels leaf-floret edges in T by the
innermost factors Ak(θk−1) of s(c(θ)) and the roots’ edges by the outermost
factors A1. Since by definition every set Aj(θj−1) has at least two elements,
it follows that there are at least two edges in every floret. So the tree-
compatible factorizations in (3.10) and (3.11) are equal and (T ,ΘT ) is a
probability tree with c = cT . Let (Ω, σ(Ω), Pθ) denote the space underlying
PΨ. If Ψ is multilinear then Pθ and thus πθ,T are (algebraically) injective
functions. Using the identification of root-to-leaf paths λ ∈ Λ(T ) with ω ∈ Ω
such that Pθ(ω) = πθ,T (ιT (ω)), it can be seen that (T ,ΘT ) is indeed a
representation of the model at hand and Ψ = ΨT as well as PΨ = P(T ,ΘT ).

The map c is injective because, by (3.10), two probability trees with dif-
ferently labelled graphs give rise to a different order of summation. By the
construction above, clearly im(c) ⊆ [T ,ΘT ]c. Moreover, im(c) = [T ,ΘT ]c

because every representation (T ,ΘT ) ∈ [T ,ΘT ]c has c as its interpolating
polynomial. Thus, c : {s(c(θ)) | s} → [T ,ΘT ]c is bijective.

Proof of Proposition 2. First let (T ,ΘT ) = c(s1(c(θ))) and (S,ΘS) =
c(s2(c(θ))) be polynomially equivalent staged trees with common interpolat-
ing polynomial c and corresponding factorizations s1 and s2. c denotes the
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map from Proposition 1. Clearly, one factorization s1(c(θ)) is transformed
into the other s2(c(θ)) by applying the distributive law of + and · a fi-
nite number of times. Hence, we can define a map s̃ : s1(c(θ)) 7→ s2(c(θ))
performing these calculations on the subsums of c as in (3.13). Therefore,

(A.2) s : (T ,ΘT )
c−1

7→ s1(c(θ))
s̃7→ s2(c(θ))

c−1

7→ (S,ΘS)

is a map which performs a finite number of swaps on the to s̃ corresponding
adjacency subtrees and thus transforms (T ,ΘT ) into (S,ΘS).

Conversely, let (T ,ΘT ) be any staged tree. By Definition 6, s1(T ,ΘT ) is
polynomially equivalent to (T ,ΘT ). It trivially follows that a finite number
of swaps yield a tree (S,ΘS) = sl◦sl−1◦. . .◦s1(T ,ΘT ) which is polynomially
equivalent to (T ,ΘT ).

Proof of Lemma 3. As also noticed by [8, 15],

(A.3) c1A,T (θ) =
∑

λ∈Λ(T )

1A(λ)πθ,T (λ) = πθ,T (A) = Pθ(ι
−1
T (A))

for any A ∈ σ(T ). Thus, as a function c1·,T coincides with the measure
Pθ on the probability space (Ω, σ(Ω), Pθ) underlying P(T ,ΘT ), independent
of the embedding ιT used to identify that space with (Λ(T ), σ(T ), πθ,T ).
By definition, for every two statistically equivalent probability trees this
measure is the same.

Proof of Lemma 4. a) Since the image r(T ,ΘT ) = (S,ΘS) of a staged
tree is a probability tree and since by assumption the non-trivial stage sets
of image and preimage coincide, ŨT = ŨS , clearly also (S,ΘS) ∈ [T ,ΘT ] is
a staged tree.

b) The assumptions in this case imply that the stage-structure of the
naively resized subgraphs (T ,ΘT )′ ⊆ (T ,ΘT ) is self-contained in the sense
that if we can show that (S,ΘS)′ = r(T ,ΘT )′ is a staged tree, then there are
no extra constraints within (T ,ΘT ) or (S,ΘS) = r(T ,ΘT ) which could cre-
ate non-linear structure. Now, because all subgraphs (T ,ΘT )′, (T ,ΘT )′′ ⊆
(T ,ΘT ) that r acts on are polynomially equivalent, we find in r(T ,ΘT )′ and
r(T ,ΘT )′′ that the atomic probabilities πθ,T ′(λ

′) = πθ,T ′′(λ
′′) coincide for

subpaths λ′, λ′′ which have the same atomic monomial in (T ,ΘT ). Thus,
the image (S,ΘS) = r(T ,ΘT ) is a staged tree where the stages are given by
these identified (formerly atomic now) primitive probabilities.

Proof of Theorem 1. First let (T ,ΘT ), (S,ΘS) ∈ [T ,ΘT ] be statis-
tically equivalent staged trees. By (2.9), for all identified root-to-leaf paths
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λ′ = ιS(ιT (λ)) their atomic probabilities πθ,T (λ) = Pθ(ι
−1
T (λ)) = πθ′,S(λ′)

are equal. Here, Pθ denotes the underlying measure on Ω that (T ,ΘT ) and
(S,ΘS) have in common. If the above equality holds in a formal sense for ev-
ery λ ∈ Λ(T ) then (T ,ΘT ) and (S,ΘS) are polynomially equivalent. In this
case, Lemma 2 states that a map exists between the two staged trees which is
a composition of swaps, and thus proves the claim. If this is not the case, we
denote by Λ ⊆ Λ(T ) the set of root-to-leaf paths in T whose atomic mono-
mials do not coincide formally with the corresponding atomic monomials
in S. Let (T ,ΘT )′ ⊆ (T ,ΘT ) denote a subtree of T for which Λ ⊆ Λ(T ′),
and define analogously the corresponding (S,ΘS)′ ⊆ (S,ΘS). These are
the subtrees which are not polynomially equivalent, and thus have different
parametrizations. We define two resize operators, rT : (T ,ΘT )′ 7→ (F , {θF})
and rS : (S,ΘS)′ 7→ (F , {θF}) which map those subtrees to the same floret.
By Lemma 5, (S,ΘS)′, (T ,ΘT )′ and (F , {θF}) are statistically equivalent.
Thus, there is a composition of resizes r = r−1

S ◦ rT : (T ,ΘT ) 7→ (S,ΘS)
between the statistically equivalent staged trees.

Now let m be a transformation given by swaps and resizes between two
staged trees (T ,ΘT ), (S,ΘS). If m is a composition of swaps, then Propo-
sition 1 ensures polynomial equivalence, and thus statistical equivalence by
Lemma 2. If m is a composition of resizes, then Lemma 5 yields statisti-
cal equivalence. Clearly, also for the composition of both of these operators
holds that (T ,ΘT ) and m(T ,ΘT ) = (S,ΘS) are statistically equivalent. The
claim follows.
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